Role of Microbial Modulation in Management of Atopic Dermatitis in Children
Abstract
:1. Introduction
1.1. Host–Microbiome Development and Nutrition
1.2. Development of Skin and Microbiome in Early Life
1.3. Immune Deregulation within AD
1.4. Current Understanding in the Specific Microbial Modulations in AD
2. Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction
3. Results
3.1. Study Characteristics
3.2. Specific Dietary Intervention
3.3. Effect of Dietary Intervention on Clinically-Detected AD Severity
3.4. Additional Effect of Dietary Interventions
3.5. Treatment Duration and Time of Intervention
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
AD | Atopic dermatitis |
CCL | CC chemokine ligand (−17, −20, −22, −27) |
CXCL | CXC chemokine ligand (−9,−10,−11) |
EASI | Eczema area and severity index |
FLG | Filaggrin |
lcFOS | long chain—Fructo-oligosaccharides |
scGOS | short chain—Galacto-oligosaccharides |
IgE | Immunoglobulin E (total, specific) |
IL | Interleukin (−4, −5, −13, −22, −31) |
IFN | Interferon (−γ) |
NMF | Natural moisturizing factors |
POEM | Patient-oriented eczema measure |
RCT | Randomized controlled trial |
SA-EASI | Self-administered eczema area and severity index score |
SASSAD | Six Area, Six Sign Atopic Dermatitis severity score |
SIS | Skin intensity score |
SCORAD | Scoring atopic dermatitis score, clinical tool for scoring AD severity |
SC | Stratum corneum |
TEWL | Trans epidermal water loss |
Th- | T helper cell type (1, 2, 17, 22) |
TIS | Three Item Severity score |
TJ | Tight junction |
TSLP | Thymic stromal lymphopoietin |
UV | Ultraviolet |
References
- Weidinger, S.; Novak, N. Atopic dermatitis. Lancet 2016, 387, 1109–1122. [Google Scholar] [CrossRef]
- Illi, S.; von Mutius, E.; Lau, S.; Nickel, R.; Gruber, C.; Niggemann, B.; Wahn, U.; Multicenter Allergy Study group. The natural course of atopic dermatitis from birth to age 7 years and the association with asthma. J. Allergy Clin. Immunol. 2004, 113, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Ballardini, N.; Kull, I.; Soderhall, C.; Lilja, G.; Wickman, M.; Wahlgren, C.F. Eczema severity in preadolescent children and its relation to sex, filaggrin mutations, asthma, rhinitis, aggravating factors and topical treatment: A report from the BAMSE birth cohort. Br. J. Dermatol. 2013, 168, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Van’t Land, B.; Schijf, M.A.; Martin, R.; Garssen, J.; van Bleek, G.M. Influencing mucosal homeostasis and immune responsiveness: The impact of nutrition and pharmaceuticals. Eur. J. Pharmacol. 2011, 668 (Suppl. 1), S101–S107. [Google Scholar] [CrossRef] [PubMed]
- Abrams, E.M.; Greenhawt, M.; Fleischer, D.M.; Chan, E.S. Early Solid Food Introduction: Role in Food Allergy Prevention and Implications for Breastfeeding. J. Pediatr. 2017, 184, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Ahmadizar, F.; Vijverberg, S.J.H.; Arets, H.G.M.; de Boer, A.; Turner, S.; Devereux, G.; Arabkhazaeli, A.; Soares, P.; Mukhopadhyay, S.; Garssen, J.; et al. Early life antibiotic use and the risk of asthma and asthma exacerbations in children. Pediatr. Allergy Immunol. 2017, 28, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Verhasselt, V.; Milcent, V.; Cazareth, J.; Kanda, A.; Fleury, S.; Dombrowicz, D.; Glaichenhaus, N.; Julia, V. Breast milk-mediated transfer of an antigen induces tolerance and protection from allergic asthma. Nat. Med. 2008, 14, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.S.; Kakuma, R. Maternal dietary antigen avoidance during pregnancy or lactation, or both, for preventing or treating atopic disease in the child. Cochrane Database Syst. Rev. 2012, CD000133. [Google Scholar] [CrossRef]
- Turati, F.; Bertuccio, P.; Galeone, C.; Pelucchi, C.; Naldi, L.; Bach, J.F.; La Vecchia, C.; Chatenoud, L.; HYGIENE Study Group. Early weaning is beneficial to prevent atopic dermatitis occurrence in young children. Allergy 2016, 71, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Snijders, B.E.; Thijs, C.; van Ree, R.; van den Brandt, P.A. Age at first introduction of cow milk products and other food products in relation to infant atopic manifestations in the first 2 years of life: The KOALA Birth Cohort Study. Pediatrics 2008, 122, e115–e122. [Google Scholar] [CrossRef] [PubMed]
- Te Velde, A.A.; Bezema, T.; van Kampen, A.H.; Kraneveld, A.D.; t Hart, B.A.; van Middendorp, H.; Hack, E.C.; van Montfrans, J.M.; Belzer, C.; Jans-Beken, L.; et al. Embracing Complexity beyond Systems Medicine: A New Approach to Chronic Immune Disorders. Front Immunol. 2016, 7, 587. [Google Scholar] [CrossRef] [PubMed]
- Round, J.L.; Mazmanian, S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. USA 2010, 107, 12204–12209. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, S.; Hiller, J.; van Bergenhenegouwen, J.; Knippels, L.M.; Garssen, J.; Traidl-Hoffmann, C. In Vitro Evidence for Immune-Modulatory Properties of Non-Digestible Oligosaccharides: Direct Effect on Human Monocyte Derived Dendritic Cells. PLoS ONE 2015, 10, e0132304. [Google Scholar] [CrossRef] [PubMed]
- Boyle, R.J.; Tang, M.L.; Chiang, W.C.; Chua, M.C.; Ismail, I.; Nauta, A.; Hourihane, J.O.; Smith, P.; Gold, M.; Ziegler, J.; et al. Prebiotic-supplemented partially hydrolysed cow’s milk formula for the prevention of eczema in high-risk infants: A randomized controlled trial. Allergy 2016, 71, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 2010, 107, 11971–11975. [Google Scholar] [CrossRef] [PubMed]
- Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [Green Version]
- Huang, Y.J.; Marsland, B.J.; Bunyavanich, S.; O’Mahony, L.; Leung, D.Y.; Muraro, A.; Fleisher, T.A. The microbiome in allergic disease: Current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. J. Allergy Clin. Immunol. 2017, 139, 1099–1110. [Google Scholar] [PubMed]
- Oh, J.; Byrd, A.L.; Park, M.; Program, N.C.S.; Kong, H.H.; Segre, J.A. Temporal Stability of the Human Skin Microbiome. Cell 2016, 165, 854–866. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.H.; Oh, J.; Deming, C.; Conlan, S.; Grice, E.A.; Beatson, M.A.; Nomicos, E.; Polley, E.C.; Komarow, H.D.; NISC Comparative Sequence Program; et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012, 22, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Hanifin, J.M.; Rogge, J.L. Staphylococcal infections in patients with atopic dermatitis. Arch. Dermatol. 1977, 113, 1383–1386. [Google Scholar] [CrossRef] [PubMed]
- Zollner, T.M.; Wichelhaus, T.A.; Hartung, A.; Von Mallinckrodt, C.; Wagner, T.O.; Brade, V.; Kaufmann, R. Colonization with superantigen-producing Staphylococcus aureus is associated with increased severity of atopic dermatitis. Clin. Exp. Allergy 2000, 30, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E.A.; Connolly, J.; Hourihane, J.O.; Fallon, P.G.; McLean, W.H.; Murray, D.; Jo, J.H.; Segre, J.A.; Kong, H.H.; Irvine, A.D. Skin microbiome before development of atopic dermatitis: Early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J. Allergy Clin. Immunol. 2017, 139, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.L.; Curran-Everett, D.; Leung, D.Y. Food allergy is associated with Staphylococcus aureus colonization in children with atopic dermatitis. J. Allergy Clin. Immunol. 2016, 137, 1247–1248.e3. [Google Scholar] [CrossRef] [PubMed]
- Tauber, M.; Balica, S.; Hsu, C.Y.; Jean-Decoster, C.; Lauze, C.; Redoules, D.; Viodé, C.; Schmitt, A.M.; Serre, G.; Simon, M.; et al. Staphylococcus aureus density on lesional and nonlesional skin is strongly associated with disease severity in atopic dermatitis. J. Allergy Clin. Immunol. 2016, 137, 1272–1274.e3. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.H.; Croll, D.; Cho, J.H.; Kim, Y.R.; Lee, Y.W. Analysis of the nasal vestibule mycobiome in patients with allergic rhinitis. Mycoses 2015, 58, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Van Woerden, H.C.; Gregory, C.; Brown, R.; Marchesi, J.R.; Hoogendoorn, B.; Matthews, I.P. Differences in fungi present in induced sputum samples from asthma patients and non-atopic controls: A community based case control study. BMC Infect. Dis. 2013, 13, 69. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.R.; Gallo, R.L. The role of the skin microbiome in atopic dermatitis. Curr. Allergy Asthma Rep. 2015, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Kezic, S.; Novak, N.; Jakasa, I.; Jungersted, J.M.; Simon, M.; Brandner, J.M.; Middelkamp-Hup, M.A.; Weidinger, S. Skin barrier in atopic dermatitis. Front. Biosci. 2014, 19, 542–556. [Google Scholar] [CrossRef]
- Paternoster, L.; Standl, M.; Waage, J.; Baurecht, H.; Hotze, M.; Strachan, D.P.; Curtin, J.A.; Bønnelykke, K.; Tian, C.; Takahashi, A.; et al. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat. Genet. 2015, 47, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Paternoster, L.; Standl, M.; Chen, C.M.; Ramasamy, A.; Bonnelykke, K.; Duijts, L.; Ferreira, M.A.; Alves, A.C.; Thyssen, J.P.; Albrecht, E.; et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat. Genet. 2011, 44, 187–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irvine, A.D.; McLean, W.H.; Leung, D.Y. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 2011, 365, 1315–1327. [Google Scholar] [CrossRef] [PubMed]
- Yuki, T.; Tobiishi, M.; Kusaka-Kikushima, A.; Ota, Y.; Tokura, Y. Impaired Tight Junctions in Atopic Dermatitis Skin and in a Skin-Equivalent Model Treated with Interleukin-17. PLoS ONE 2016, 11, e0161759. [Google Scholar] [CrossRef] [PubMed]
- Fluhr, J.W.; Darlenski, R.; Taieb, A.; Hachem, J.P.; Baudouin, C.; Msika, P.; De Belilovsky, C.; Berardesca, E. Functional skin adaptation in infancy - almost complete but not fully competent. Exp. Dermatol. 2010, 19, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.Y. New insights into atopic dermatitis: Role of skin barrier and immune dysregulation. Allergol. Int. 2013, 62, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Albanesi, C. Keratinocytes in allergic skin diseases. Curr. Opin. Allergy Clin. Immunol. 2010, 10, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Castan, L.; Magnan, A.; Bouchaud, G. Chemokine receptors in allergic diseases. Allergy 2016. [CrossRef] [PubMed]
- Homey, B.; Steinhoff, M.; Ruzicka, T.; Leung, D.Y. Cytokines and chemokines orchestrate atopic skin inflammation. J. Allergy Clin. Immunol. 2006, 118, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Esaki, H.; Brunner, P.M.; Renert-Yuval, Y.; Czarnowicki, T.; Huynh, T.; Tran, G.; Lyon, S.; Rodriguez, G.; Immaneni, S.; Johnson, D.B.; et al. Early-onset pediatric atopic dermatitis is TH2 but also TH17 polarized in skin. J. Allergy Clin. Immunol. 2016, 138, 1639–1651. [Google Scholar] [CrossRef] [PubMed]
- Van der Velden, V.H.; Laan, M.P.; Baert, M.R.; de Waal Malefyt, R.; Neijens, H.J.; Savelkoul, H.F. Selective development of a strong Th2 cytokine profile in high-risk children who develop atopy: Risk factors and regulatory role of IFN-gamma, IL-4 and IL-10. Clin. Exp. Allergy 2001, 31, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Boyle, R.J.; Bath-Hextall, F.J.; Leonardi-Bee, J.; Murrell, D.F.; Tang, M.L. Probiotics for treating eczema. Cochrane Database Syst. Rev. 2008, CD006135. [Google Scholar] [CrossRef]
- Lee, J.; Seto, D.; Bielory, L. Meta-analysis of clinical trials of probiotics for prevention and treatment of pediatric atopic dermatitis. J. Allergy Clin. Immunol. 2008, 121, 116–121.e11. [Google Scholar] [CrossRef] [PubMed]
- Michail, S.K.; Stolfi, A.; Johnson, T.; Onady, G.M. Efficacy of probiotics in the treatment of pediatric atopic dermatitis: A meta-analysis of randomized controlled trials. Ann. Allergy Asthma Immunol. 2008, 101, 508–516. [Google Scholar] [CrossRef]
- Van der Aa, L.B.; Heymans, H.S.; van Aalderen, W.M.; Sillevis Smitt, J.H.; Knol, J.; Ben Amor, K.; Goossens, D.A.; Sprikkelman, A.B.; synbad Study Group. Effect of a new synbiotic mixture on atopic dermatitis in infants: A randomized-controlled trial. Clin. Exp. Allergy 2010, 40, 795–804. [Google Scholar] [PubMed]
- Kim, S.O.; Ah, Y.M.; Yu, Y.M.; Choi, K.H.; Shin, W.G.; Lee, J.Y. Effects of probiotics for the treatment of atopic dermatitis: A meta-analysis of randomized controlled trials. Ann. Allergy Asthma Immunol. 2014, 113, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J.; Langan, S.; Deckert, S.; Svensson, A.; von Kobyletzki, L.; Thomas, K.; Spuls, P.; Harmonising Outcome Measures for Atopic Dermatitis (HOME) Initiative. Assessment of clinical signs of atopic dermatitis: A systematic review and recommendation. J. Allergy Clin. Immunol. 2013, 132, 1337–1347. [Google Scholar] [PubMed]
- Bozensky, J.; Hill, M.; Zelenka, R.; Skyba, T. Prebiotics Do Not Influence the Severity of Atopic Dermatitis in Infants: A Randomised Controlled Trial. PLoS ONE 2015, 10, e0142897. [Google Scholar] [CrossRef] [PubMed]
- Shafiei, A.; Moin, M.; Pourpak, Z.; Gharagozlou, M.; Aghamohammadi, A.; Sajedi, V.; Soheili, H.; Sotoodeh, S.; Movahedi, M. Synbiotics could not reduce the scoring of childhood atopic dermatitis (SCORAD): A randomized double blind placebo-controlled trial. Iran. J. Allergy Asthma Immunol. 2011, 10, 21–28. [Google Scholar] [PubMed]
- Gore, C.; Custovic, A.; Tannock, G.W.; Munro, K.; Kerry, G.; Johnson, K.; Peterson, C.; Morris, J.; Chaloner, C.; Murray, C.S.; et al. Treatment and secondary prevention effects of the probiotics Lactobacillus paracasei or Bifidobacterium lactis on early infant eczema: Randomized controlled trial with follow-up until age 3 years. Clin. Exp. Allergy 2012, 42, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Farid, R.; Ahanchian, H.; Jabbari, F.; Moghiman, T. Effect of a new synbiotic mixture on atopic dermatitis in children: A randomized-controlled trial. Iran. J. Pediatr. 2011, 21, 225–230. [Google Scholar] [PubMed]
- Gerasimov, S.V.; Vasjuta, V.V.; Myhovych, O.O.; Bondarchuk, L.I. Probiotic supplement reduces atopic dermatitis in preschool children: A randomized, double-blind, placebo-controlled, clinical trial. Am. J. Clin. Dermatol. 2010, 11, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Niccoli, A.A. Preliminary results on clinical effects of probiotic Lactobacillus salivarius LS01 in children affected by atopic dermatitis. J. Clin. Gastroenterol. 2014, 48 (Suppl. 1), S34–S36. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Kim, B.; Ban, J.; Lee, J.; Kim, B.J.; Choi, B.S.; Hwang, S.; Ahn, K.; Kim, J. A randomized trial of Lactobacillus plantarum CJLP133 for the treatment of atopic dermatitis. Pediatr. Allergy Immunol. 2012, 23, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.J.; Wang, J.Y. Children with atopic dermatitis show clinical improvement after Lactobacillus exposure. Clin. Exp. Allergy 2015, 45, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.I.; Kim, J.Y.; Lee, Y.J.; Kim, N.S.; Hahn, Y.S. Effect of Lactobacillus sakei supplementation in children with atopic eczema-dermatitis syndrome. Ann. Allergy Asthma Immunol. 2010, 104, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.G.; Li, T.H.; Peng, H.J. Lactobacillus salivarius plus fructo-oligosaccharide is superior to fructo-oligosaccharide alone for treating children with moderate to severe atopic dermatitis: A double-blind, randomized, clinical trial of efficacy and safety. Br. J. Dermatol. 2012, 166, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Miniello, V.L.; Brunetti, L.; Tesse, R.; Natile, M.; Armenio, L.; Francavilla, R. Lactobacillus reuteri modulates cytokines production in exhaled breath condensate of children with atopic dermatitis. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Torii, S.; Torii, A.; Itoh, K.; Urisu, A.; Terada, A.; Fujisawa, T.; Yamada, K.; Suzuki, H.; Ishida, Y.; Nakamura, F.; et al. Effects of oral administration of Lactobacillus acidophilus L-92 on the symptoms and serum markers of atopic dermatitis in children. Int. Arch. Allergy Immunol. 2011, 154, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Viljanen, M.; Savilahti, E.; Haahtela, T.; Juntunen-Backman, K.; Korpela, R.; Poussa, T.; Tuure, T.; Kuitunen, M. Probiotics in the treatment of atopic eczema/dermatitis syndrome in infants: A double-blind placebo-controlled trial. Allergy 2005, 60, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Gerbens, L.A.; Prinsen, C.A.; Chalmers, J.R.; Drucker, A.M.; von Kobyletzki, L.B.; Limpens, J.; Nankervis, H.; Svensson, Å.; Terwee, C.B.; Zhang, J.; et al. Evaluation of the measurement properties of symptom measurement instruments for atopic eczema: A systematic review. Allergy 2017, 72, 146–163. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, A.; West, C.E.; Prescott, S.L.; Jenmalm, M.C. Pre- and probiotics for allergy prevention: Time to revisit recommendations? Clin. Exp. Allergy 2016, 46, 1506–1521. [Google Scholar] [CrossRef] [PubMed]
- Cuello-Garcia, C.A.; Brozek, J.L.; Fiocchi, A.; Pawankar, R.; Yepes-Nunez, J.J.; Terracciano, L.; Gandhi, S.; Agarwal, A.; Zhang, Y.; Schünemann, H.J. Probiotics for the prevention of allergy: A systematic review and meta-analysis of randomized controlled trials. J. Allergy Clin. Immunol. 2015, 136, 952–961. [Google Scholar] [CrossRef] [PubMed]
- Zuccotti, G.; Meneghin, F.; Aceti, A.; Barone, G.; Callegari, M.L.; Di Mauro, A.; Fantini, M.P.; Gori, D.; Indrio, F.; Maggio, L.; et al. Probiotics for prevention of atopic diseases in infants: Systematic review and meta-analysis. Allergy 2015, 70, 1356–1371. [Google Scholar] [CrossRef] [PubMed]
Subjects (Age, N, Treatment vs. Control) | Inclusion Criteria | Dietary Intervention | Treatment Period and Dose of Pre/Probiotics | Primary Parameter | Clinical Outcome, AD Severity and IgE | Immunological Outcomes | Gastro Intestinal Outcomes | Reference |
---|---|---|---|---|---|---|---|---|
Term infants 6–8 weeks N = 120 60 vs. 60 | Positive history of allergy in one parent or sibling No breastfeeding at inclusion | Hydrolysed formula (HA) with GOS Control diet Only HA formula | For six months; Per 100 mL GOS 0.5 g | Differences in SCORAD score | After dietary intervention decrease of SCORAD in both groups (ns) | No serum data was available | Significant softer stool consistency in prebiotic group (p < 0.05) | Bozensky, et al. 2015 [46] |
Term infants 0–7 months N = 89 42/47 | SCORAD > 15 No more breastfeeding at inclusion No antibiotics four weeks before inclusion | Extensively hydrolysed formula with Bifidobacterium Breve M-16V and GOS/FOS Control diet Only extensively hydrolysed formula | For 12 weeks; Per 100 mL BB. 1.3 × 109 CFU GOS 0.72 g (90%) FOS 0.08 g (10%) | Change in severity of AD | After dietary intervention significant reduction of SCORAD in both groups. In subgroup of 50 infants, with elevated IgE levels, improvement in SCORAD after 12 weeks was greater in synbiotic group compared to control diet (p = 0.04) | No differences in spec IgE after 12 weeks between groups, No significant differences on IL-5, IgG1, IgG4, CCL17 and CCL27 after 12 weeks between groups. Significant increase of total IgE levels in both groups | Faecal pH was significantly lower in synbiotic group (p = 0.001) Significant softer stool consistency in synbiotic group (p = 0.05). Diaper dermatitis less prevalent in synbiotic group (p = 0.008) | Van der Aa, et al. 2010 [43] |
Infants 1–36 months N = 36 18/18 | Moderate to severe AD (SCORAD > 25) | Daily sachet with 7 strains of probiotics and FOS Control diet Daily sachet 1000 mg sucrose | For eight weeks; 10 mg probiotic mixture of 1 × 109 CFU 990 mg FOS | Clinical effect | After dietary intervention the mean total SCORAD in both groups decreased by 56% of all children. No differences between groups. In IgE + subgroup, similar decrease of AD severity in both groups | No serum data was available | No gastro intestinal data was available | Shafiei, et al. 2011 [47] |
>34 weeks gestation 3–6 months N = 137 90 vs. 47 | SCORAD>10 >200 mL standard formula daily | Extensively hydrolysed formula with a sachet Lactobacillus paracasei CNCM I-2116 or with a sachet Bifidobacterium lactis CNCM I-3446 Control diet; Extensively hydrolysed formula with maltodextrin sachet | For 12 weeks; LP. 1010 CFU BL. 1010 CFU LP. N = 45 BL. N = 45 C. N = 47 | Change in SCORAD | After dietary intervention SCORAD reduction decreased significantly over time in all groups | No significant effect of probiotic treatments on the prevalence of allergen sensitization post-intervention | No differences in infants administered the L/M-permeability test between the groups | Gore, et al. 2012 [48] |
Infants 3–72 months N = 40 19 vs. 21 | Mild to severe AD No prior exposure to antibiotics or probiotics | 1 g sachet with a mixture of 7 probiotic strains and FOS Control diet; 1 g sachet with placebo powder | For eight weeks; Twice daily mixture of 1 × 109 CFU and FOS | Change in AD severity | After dietary intervention greater reduction in SCORAD in synbiotic group compared to control diet (p = 0.005) | No significant differences on cytokine production of IFN-y or IL-4 between groups | No gastro intestinal data was available | Farid, et al. 2011 [49] |
Infants 12–36 months N = 90 43 vs. 47 | Moderate to severe AD (8 vs. 9 children with proven DBPCFC milk or egg allergy two months before inclusion on a milk or egg diet) | Lactobacillus achidophilus DDS-1 and Bifidobacterium lactis UABLA-12 and FOS in a rice maltodextrin powder Control diet; Pure powder of rice maltodextrin | For eight weeks; Twice daily Mixture of LA. and BL2. 5 × 109 CFU and 50mg FOS | Percentage change in SCORAD | After dietary intervention greater decrease in mean SCORAD in synbiotic group compared to control diet (p = 0.001) | Absolut count of CD4 and CD25 lymphocyte subsets were decreased whereas CD8 count increased in synbiotic group after dietary intervention compared to control diet. | No gastro intestinal data was available | Gerasimov, et al. 2010 [50] |
Children 0–11 years N = 43 | AD symptoms | Sachet Lactobacillus salivarius LS01 DSM22775 No control diet | For eight weeks; Twice daily LS. 1 × 109 CFU | Change in AD severity | After dietary intervention significant reduction SCORAD in N = 28 (p = 0.001) | No serum data was available | No gastro intestinal data was available | Niccoli A, et al. 2014 [51] |
Children 1–13 years N = 83 44 vs. 39 | SCORAD ranged from 20 to 50 | Lactobacillus plantarum CJLP133 Control diet; placebo preparation No fermented food products containing live microorganisms were allowed | For 12 weeks; Twice daily LP2. 0.5 × 1010 CFU | Improvement of clinical and immunological parameters in children with AD | After dietary intervention greater decrease in SCORAD compared to control (p = 0.004) | Total eosinophil counts, Logarithmic IFN-y and IL-4 were significantly lower after dietary intervention in probiotic group compared to control (p = 0.023) (p < 0.001) (p = 0.049) | No gastro intestinal data was available | Han, et al. 2012 [52] |
Children 1–18 years N = 220 165 vs. 55 | AD symptoms > 6 months before inclusion SCORAD >15 At least 1 positive SPT or spec. IgE antibodies to common allergens | Capsule with Lactobacillus para-casei GMNL-133 or capsule with Lactobacillus fermentum GM090 or capsule with both probiotics Control diet; Placebo capsule | For three months; LP3. 2 × 109 CFU LF. 2 × 109 CFU LP3 + LF 4 × 109 CFU LP3. N = 55 LF. N = 53 LP3 + LF N = 51 C. N = 53 | Change in AD severity | After dietary intervention (three groups LP, LF, and LP + LF mixture) lower SCORAD compared to control (p < 0.001) Difference remained at four months after discontinuing the probiotics | Total IgE levels were reduced within the LP and LP + LF group, but no significant differences compared to control. Significant change in IL-4 compared to control (p = 0.04) | The probiotics groups had significant higher fecal colony counts of Bifidobacterium (p = 0.004) and lower counts of Clostridium (p = 0.03) compared to control | Wang IJ, et al. 2015 [53] |
Children 2–10 years N = 75 41 vs. 34 | AEDS for six months prior to study Total SCORAD > 25 | Microcrystalline cellulose with Lactobacillus sakei KCTC 10755BP Control diet; only microcrystalline cellulose | For 12 weeks; Twice daily LS2. 5 × 109 CFU | Evaluation of clinical outcome of AD | After dietary intervention mean change in Total SCORAD was significantly greater in probiotic group compared to the control group (p = 0.008) | Serum CCL17 and CCL27 levels were significantly decreased in probiotic group compared to control (both p < 0.001) | No gastro intestinal data was available | Woo, et al. 2010 [54] |
Children 2–14 years N = 54 27 vs. 27 | AD symptoms for at least four days SCORAD > 25 | Capsule with Lactobacillus salivarius PM-A0006 and FOS Control diet; Capsule with corn starch and FOS | For eight weeks; Twice daily 25 mg LS3. (2 × 109 CFU), 475 mg FOS Control; 25 mg corn starch 475 mg FOS | SCORAD changes | After dietary intervention SCORAD significant lower in synbiotic group compared to prebiotic group (p = 0.022), differences remained at week 10 | The median serum eosinophil cationic protein decreased significant within the groups but not significant different between the groups | No gastro intestinal data was available | Wu, et al. 2012 [55] |
Children 4–10 years N = 51 26 vs. 25 | AD symptoms No antibiotics for eight weeks No local corticosteroid use for eight weeks prior to study | Chewable tablet with Lactobacillus reuteri ATCC55730 Control diet; chewable placebo tablet | For eight weeks; Once daily LR. 1 × 108 CFU | Effects on exhaled breath condensate (EBC) cytokine expression | After dietary intervention, no significant changes SCORAD mean values in probiotic group compared to control group | EBC IFN-y increased and IL4 decreased significantly in 16 IgE positive AD children in probiotic group compared to 14 IgE positive AD children in the control group (both p = 0.001) | No gastro intestinal data was available | Miniello, et al. 2010 [56] |
Children 4–15 years N = 20 | AD No cow’s milk spec IgE | Fermented milk with Lactobacillus acidophilus L-92 No control diet | For eight weeks; once daily 150 mL milk + LA2. 3 × 1010 CFU | Symptom-medication score (SMS), which is calculated as sum ADASI and calculated medication score of less topical steroid use. | Changes in ADASI, in SMS, and itch (all three; p < 0.001) | No changes in blood biochemical parameters, including the total plasma IgE concentration. | Significant decrease in the total faecal Bacteroidaceae count (p = 0.034), Significant increase in the faecal Lactobacillus count (p = 0.007) | Torii S, et al. 2010 [57] |
Children 1–12 years N = 50 | AD No cow’s milk spec IgE | Fermented milk with dried and heat-killed Lactobacillus acidophilus 92 and dextrin. Control diet; Fermented milk with dextrin | For eight weeks; once daily 150 mL milk + heat-killed LA2 1.5 × 10 11 CFU + 900 mg dextrin | Symptom-medication score (SMS). | Significantly decreased of SMS in probiotic group compared to control group (p = 0.0127) | Changes in CCL17 levels were significantly different between probiotic group compared to control group (p < 0.01) | No gastro intestinal data was available | Torii S, et al. 2010 [57] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hulshof, L.; Van’t Land, B.; Sprikkelman, A.B.; Garssen, J. Role of Microbial Modulation in Management of Atopic Dermatitis in Children. Nutrients 2017, 9, 854. https://doi.org/10.3390/nu9080854
Hulshof L, Van’t Land B, Sprikkelman AB, Garssen J. Role of Microbial Modulation in Management of Atopic Dermatitis in Children. Nutrients. 2017; 9(8):854. https://doi.org/10.3390/nu9080854
Chicago/Turabian StyleHulshof, Lies, Belinda Van’t Land, Aline B. Sprikkelman, and Johan Garssen. 2017. "Role of Microbial Modulation in Management of Atopic Dermatitis in Children" Nutrients 9, no. 8: 854. https://doi.org/10.3390/nu9080854
APA StyleHulshof, L., Van’t Land, B., Sprikkelman, A. B., & Garssen, J. (2017). Role of Microbial Modulation in Management of Atopic Dermatitis in Children. Nutrients, 9(8), 854. https://doi.org/10.3390/nu9080854