Optimization of Storage Conditions of the Medicinal Herb Ilex asprella against the Sterigmatocystin Producer Aspergillus versicolor Using Response Surface Methodology
Abstract
:1. Introduction
2. Results and Discussion
2.1. Growth of A. versicolor after Manual Inoculation
2.2. Sterigmatocystin Content in I. asprella
2.3. Polysaccharide and Total Saponin Contents
2.4. Model Fitting and Statistical Analysis
2.5. Response Surface Analysis
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material Preparation and Pretreatment
4.3. Experimental Design
4.4. Determination of Sterigmatocystin by HPLC-MS/MS
4.5. Determination of Total Saponin Content
4.6. Determination of Polysaccharide Amounts
4.7. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Biselli, S. Analytische Methoden für die Kontrolle von Lebens- und Futtermitteln auf Mykotoxine. J. Verbrauch. Lebensm. 2006, 1, 106–114. [Google Scholar] [CrossRef]
- Aiko, V.; Mehta, A. Prevalence of toxigenic fungi in common medicinal herbs and spices in India. 3 Biotech 2016, 6, 159. [Google Scholar] [CrossRef] [PubMed]
- Halt, M. Moulds and mycotoxins in herb tea and medicinal plants. Eur. J. Epidemiol. 1998, 3, 269–274. [Google Scholar] [CrossRef]
- Baoyu, Z. Research progress of sterigmatocystin. Pro. Vet. Med. 1997, 2, 18–21. [Google Scholar]
- Yu, J.; Chang, P.K.; Ehrlich, K.C.; Cary, J.W.; Bhatnagar, D.; Cleveland, T.E.; Payne, G.A.; Linz, J.E.; Woloshuk, C.P.; Bennett, J.W. Clustered Pathway Genes in Aflatoxin Biosynthesis. Appl. Environ. Microbiol. 2004, 70, 1253–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VersÌ ilovskis, A.; De Saeger, S. Sterigmatocystin: Occurrence in foodstuffs and analytical methods—An overview. Mol. Nut. Food Res. 2010, 54, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Vesonder, R.F.; Horn, B.W. Sterigmatocystin in dairy cattle feed contaminated with Aspergillus versicolor. Appl. Environ. Microbiol. 1985, 49, 234–235. [Google Scholar] [PubMed]
- Cai, W. Study on the cause of “yellow stain” in Ningxia sheep. J. Nanjing Agric. Univ. 1991, 14, 70–76. [Google Scholar]
- Zheng, R.; Xu, H.; Wang, W.; Zhan, R.; Chen, W. Simultaneous determination of aflatoxin B1, B2, G1, G2, ochratoxin A, and sterigmatocystin in traditional Chinese medicines by LC–MS–MS. Anal. Bioanal. Chem. 2014, 406, 3031–3039. [Google Scholar] [CrossRef] [PubMed]
- Du, B.Z.; Yang, X.Y.; Feng, X.; Yin, X.; Zhang, H.X.; Zhao, F.; Gao, Z.P.; Tu, P.F.; Chai, X.Y. A phytochemical and pharmacological advance on Ilex asprella. CJCMM 2017, 1. [Google Scholar]
- Wei, Y. Determination of polysaccharides in Ficus carica by phenol sulfuric acid method. Food Sci. Tech. 2009, 34, 256–262. [Google Scholar]
- Bellemain, E.; Carlsen, T.; Brochmann, C.; Coissac, E.; Taberlet, P.; Kauserud, H. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiol. 2010, 10, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, F.; Qiu, J.; Xu, J.; Yu, M.; Wang, S.; Sun, Y.; Zhang, G.; Shi, J. Effect of environmental factors on Fusarium population and associated trichothecenes in wheat grain grown in Jiangsu province, China. Int. J. Food Microbiol. 2016, 230, 58–63. [Google Scholar] [CrossRef] [PubMed]
- West, J.S.; Holdgate, S.; Townsend, J.A.; Edwards, S.G.; Jennings, P.; Fitt, B.D.L. Impacts of changing climate and agronomic factors on fusarium ear blight of wheat in the UK. Fungal Ecol. 2012, 5, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Shera, S.S.; Banik, J.; Banik, R.M. Optimization of cultural conditions using response surface methodology versus artificial neural network and modeling of l-glutaminase production by Bacillus cereus MTCC 1305. Bioresource Technol. 2013, 137, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Qiu, L.; Zhang, H.; Sun, J.; Hu, X.; Wang, B. Optimization for the Production of Deoxynivalenoland Zearalenone by Fusarium graminearum Using Response Surface Methodology. Toxins 2017, 9, 57. [Google Scholar] [CrossRef] [PubMed]
- Muralidhar, R. Racemic resolution of RS-baclofen using lipase from Candida cylindracea. Mededelingen 2001, 66, 227–232. [Google Scholar] [PubMed]
- Kontogiannopoulos, K.N.; Patsios, S.I.; Karabelas, A.J. Tartaric acid recovery from winery lees using cation exchange resin: Optimization by Response Surface Methodology. Sep. Pur. Technol. 2016, 165, 32–41. [Google Scholar] [CrossRef]
- Sahoo, C.; Gupta, A.K. Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach. J. Hazard. Mater. 2012, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Abramson, D. Mycotoxin formation in hulless barley during granary storage at 15 and 19% moisture content. J. Stored Prod. Res. 1999, 35, 297–305. [Google Scholar] [CrossRef]
- Tian, H. Survey and analysis on sterigmatocystin contaminated in grains in China. J. Hygiene Res. 2004, 33, 606–608. [Google Scholar]
- Müller, P.; Basedow, T. Aflatoxin contamination of pods of Indian Cassia senna L. (Caesalpinaceae) before harvest, during drying and in storage: Reasons and possible methods of reduction. J. Stored Prod. Res. 2007, 43, 323–329. [Google Scholar] [CrossRef]
Test | Temp. | Hum. | ST (μg/kg) | Total Saponins (mg/g) | Polysaccharides (%) |
---|---|---|---|---|---|
1 | 23 | 82 | 13.0 | 6.48 | 9.93 |
2 | 37 | 82 | 8.8 | 4.47 | 9.45 |
3 | 23 | 93 | 11.2 | 4.67 | 7.48 |
4 | 37 | 93 | 11.6 | 3.86 | 4.39 |
5 | 20 | 88 | 10.6 | 7.07 | 9.73 |
6 | 40 | 88 | 10.6 | 4.12 | 11.38 |
7 | 30 | 80 | 8.4 | 6.21 | 9.4 |
8 | 30 | 95 | 12.2 | 2.25 | 6.28 |
9 | 30 | 88 | 18.0 | 3.52 | 5.03 |
10 | 30 | 88 | 19.6 | 1.83 | 4.41 |
11 | 30 | 88 | 18.8 | 3.1 | 4.66 |
12 | 30 | 88 | 17.2 | 2.5 | 4.28 |
13 | 30 | 88 | 16.8 | 2.17 | 4.72 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
ST | |||||
Model | 74.2 | 5 | 14.84 | 10.37 | 0.0065 |
Temp | 2.22 | 1 | 2.22 | 1.55 | 0.2597 |
Hum | 1.85 | 1 | 1.85 | 1.29 | 0.2993 |
TH | 5.68 | 1 | 5.68 | 3.97 | 0.0935 |
T2 | 25.35 | 1 | 25.35 | 17.72 | 0.0056 |
H2 | 62.73 | 1 | 62.73 | 43.84 | 0.0006 |
Residual | 8.59 | 6 | 1.43 | ||
Lack of fit | 5.39 | 3 | 1.80 | 1.68 | 0.3397 |
Pure Error | 3.20 | 3 | 1.07 | ||
Cor Total | 185.76 | 12 | |||
Total saponins | |||||
Model | 29.39 | 5 | 5.88 | 11.55 | 0.0049 |
Temp | 6.13 | 1 | 6.13 | 12.05 | 0.0133 |
Hum | 7.97 | 1 | 7.97 | 15.67 | 0.0075 |
TH | 0.33 | 1 | 0.33 | 0.64 | 0.4542 |
T2 | 12.98 | 1 | 12.98 | 25.51 | 0.0023 |
H2 | 3.10 | 1 | 3.10 | 6.09 | 0.0486 |
Residual | 3.05 | 6 | 0.51 | ||
Lack of fit | 2.17 | 3 | 0.72 | 2.48 | 0.2379 |
Pure Error | 0.88 | 3 | 0.29 | ||
Cor Total | 35.57 | 12 | |||
Polysaccharides | |||||
Model | 63.44 | 5 | 12..69 | 9.51 | 0.0081 |
Temp | 0.12 | 1 | 0.12 | 0.092 | 0.7722 |
Hum | 17.80 | 1 | 17.80 | 13.34 | 0.0107 |
TH | 1.36 | 1 | 1.36 | 1.02 | 0.3512 |
T2 | 39.61 | 1 | 39.61 | 29.68 | 0.0016 |
H2 | 7.18 | 1 | 7.18 | 5.38 | 0.0595 |
Residual | 8.01 | 6 | 1.33 | ||
Lack of fit | 7.81 | 3 | 2.60 | 40.08 | 0.0064 |
Pure Error | 0.19 | 3 | 0.065 | ||
Cor Total | 83.21 | 12 |
Variables | Symbols | Range and Levels | Remarks | ||||
---|---|---|---|---|---|---|---|
−1 | −alpha | 0 | +alpha | +1 | |||
Temperature (°C) | T | 22.93 | 20 | 30 | 40 | 37.03 | predicted |
23 | 20 | 30 | 40 | 37 | actual | ||
Humidity (°C) | H | 82.2 | 80 | 87.5 | 95 | 92.8 | predicted |
83 | 80 | 88 | 95 | 93 | actual |
Compound | Collision energy (kv) | Quantitative Ion (m/z) | Qualitative Ion (m/z) |
---|---|---|---|
ST | 36/25 | 325 > 281 | 325 > 310 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Luo, C.; Xing, J.; Han, Z.; Li, T.; Wu, W.; Xu, H.; Zhan, R.; Chen, W. Optimization of Storage Conditions of the Medicinal Herb Ilex asprella against the Sterigmatocystin Producer Aspergillus versicolor Using Response Surface Methodology. Toxins 2018, 10, 499. https://doi.org/10.3390/toxins10120499
Lu X, Luo C, Xing J, Han Z, Li T, Wu W, Xu H, Zhan R, Chen W. Optimization of Storage Conditions of the Medicinal Herb Ilex asprella against the Sterigmatocystin Producer Aspergillus versicolor Using Response Surface Methodology. Toxins. 2018; 10(12):499. https://doi.org/10.3390/toxins10120499
Chicago/Turabian StyleLu, Xiaofang, Chaoquan Luo, Jianyong Xing, Zhengzhou Han, Tong Li, Weiwei Wu, Hui Xu, Ruoting Zhan, and Weiwen Chen. 2018. "Optimization of Storage Conditions of the Medicinal Herb Ilex asprella against the Sterigmatocystin Producer Aspergillus versicolor Using Response Surface Methodology" Toxins 10, no. 12: 499. https://doi.org/10.3390/toxins10120499
APA StyleLu, X., Luo, C., Xing, J., Han, Z., Li, T., Wu, W., Xu, H., Zhan, R., & Chen, W. (2018). Optimization of Storage Conditions of the Medicinal Herb Ilex asprella against the Sterigmatocystin Producer Aspergillus versicolor Using Response Surface Methodology. Toxins, 10(12), 499. https://doi.org/10.3390/toxins10120499