Influence of Food Matrices on the Stability and Bioavailability of Abrin
Abstract
:1. Introduction
2. Results
2.1. Abrin Inactivation in Whole Milk and Non-Fat Milk Require Similar Conditions
2.2. Minimal Processing Temperatures and Times for Plain Whole Egg and Scrambled Eggs (22% Solids) Are Insufficient for Inactivation of Abrin
2.3. Ground Beef Affects the Bioavailability of Abrin
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Bioavailability of Abrin in Whole Milk and Non-Fat Milk after Pasteurization Conditions
4.3. Bioavailaibity and Thermal Stability of Abrin Toxin in Ground Beef
4.4. Abrin Stability and Toxicity in Liquid Egg Exposed to Thermal Heat
4.5. Abrin In Vitro Cell Free Translation Assay
4.6. Vero Cell Cytotoxicity Assay
4.7. Abrin Intraperitoneal Route (ip) Mouse Bioassay
Author Contributions
Funding
Conflicts of Interest
References
- Endo, Y.; Mitsui, K.; Motizuki, M.; Tsurugi, K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J. Biol. Chem. 1987, 262, 5908–5912. [Google Scholar] [PubMed]
- Endo, Y.; Tsurugi, K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem. 1987, 262, 8128–8130. [Google Scholar] [PubMed]
- Cheng, J.; Lu, T.H.; Liu, C.L.; Lin, J.Y. A biophysical elucidation for less toxicity of agglutinin than abrin-a from the seeds of Abrus precatorius in consequence of crystal structure. J. Biomed. Sci. 2010, 17, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhou, B.; Ma, H.; Carney, C.; Janda, K.D. Selection and characterization of human monoclonal antibodies against abrin by phage display. Bioorg. Med. Chem. Lett. 2007, 17, 5690–5692. [Google Scholar] [CrossRef] [PubMed]
- Reedman, L.; Shih, R.D.; Hung, O. Survival after an intentional ingestion of crushed abrus seeds. West. J. Emerg. Med. 2008, 9, 157–159. [Google Scholar] [PubMed]
- Narayanan, S.; Surolia, A.; Karande, A.A. Ribosome-inactivating protein and apoptosis: Abrin causes cell death via mitochondrial pathway in jurkat cells. Biochem. J. 2004, 377, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, S.; Surendranath, K.; Bora, N.; Surolia, A.; Karande, A.A. Ribosome inactivating proteins and apoptosis. FEBS Lett. 2005, 579, 1324–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garber, E.A. Toxicity and detection of ricin and abrin in beverages. J. Food. Prot. 2008, 71, 1875–1883. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.C.; Zhou, Y.; Jain, R.; Lemire, S.W.; Fox, S.; Sabourin, P.; Barr, J.R. Quantification of l-abrine in human and rat urine: A biomarker for the toxin abrin. J. Anal. Toxicol. 2009, 33, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Gill, D.M. Bacterial toxins: A table of lethal amounts. Microbiol. Rev. 1982, 46, 86–94. [Google Scholar] [PubMed]
- Alhamdani, M.; Brown, B.; Narula, P. Abrin poisoning in an 18-month-old child. Am. J. Case Rep. 2015, 16, 146–148. [Google Scholar] [PubMed]
- Dickers, K.J.; Bradberry, S.M.; Rice, P.; Griffiths, G.D.; Vale, J.A. Abrin poisoning. Toxicol. Rev. 2003, 22, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.H.; Hoffman, R.S.; Nelson, L.S. Attempted suicide, by mail order: Abrus precatorius. J. Med. Toxicol. 2010, 6, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Krupakar, J.; Swaminathan, C.P.; Das, P.K.; Surolia, A.; Podder, S.K. Calorimetric studies on the stability of the ribosome-inactivating protein abrin ii: Effects of ph and ligand binding. Biochem. J. 1999, 338, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Tolleson, W.H.; Jackson, L.S.; Triplett, O.A.; Aluri, B.; Cappozzo, J.; Banaszewski, K.; Chang, C.W.; Nguyen, K.T. Chemical inactivation of protein toxins on food contact surfaces. J. Agric. Food. Chem. 2012, 60, 6627–6640. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.S.; Triplett, O.A.; Tolleson, W.H. Influence of yogurt fermentation and refrigerated storage on the stability of protein toxin contaminants. Food Chem. Toxicol. 2015, 80, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.C.; Henderson, T.D.; Stanker, L.H.; He, X.; Cheng, L.W. Abrin toxicity and bioavailability after temperature and ph treatment. Toxins 2017, 9, 320. [Google Scholar] [CrossRef] [PubMed]
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration (FDA). Summaries of Competitive Food Defense Research Reports, 2005; FDA: Rockville, MD, USA, 2006. [Google Scholar]
- Rasooly, R.; He, X.; Friedman, M. Milk inhibits the biological activity of ricin. J. Biol. Chem. 2012, 287, 27924–27929. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Lu, S.; Cheng, L.W.; Rasooly, R.; Carter, J.M. Effect of food matrices on the biological activity of ricin. J. Food Prot. 2008, 71, 2053–2058. [Google Scholar] [CrossRef] [PubMed]
- Olsnes, S. The history of ricin, abrin and related toxins. Toxicon 2004, 44, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, L.; Ciani, M.; Girbes, T.; Liu, W.Y.; Van Damme, E.J.; Peumans, W.J.; Stirpe, F. Enzymatic activity of toxic and non-toxic type 2 ribosome-inactivating proteins. FEBS Lett. 2004, 563, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Bolognesi, A.; Bortolotti, M.; Maiello, S.; Battelli, M.G.; Polito, L. Ribosome-inactivating proteins from plants: A historical overview. Molecules 2016, 21, 1627. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, P.; Tejero, J.; Cordoba-Diaz, D.; Quinto, E.J.; Garrosa, M.; Gayoso, M.J.; Girbes, T. Ebulin from dwarf elder (Sambucus ebulus L.): A mini-review. Toxins 2015, 7, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Girbes, T.; Ferreras, J.M.; Arias, F.J.; Stirpe, F. Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. Min. Rev. Med. Chem. 2004, 4, 461–476. [Google Scholar] [CrossRef]
- Garrosa, M.; Jimenez, P.; Tejero, J.; Cabrero, P.; Cordoba-Diaz, D.; Quinto, E.J.; Gayoso, M.J.; Girbes, T. Toxicity of the anti-ribosomal lectin ebulin f in lungs and intestines in elderly mice. Toxins 2015, 7, 367–379. [Google Scholar] [CrossRef] [PubMed]
- He, X.; McMahon, S.; Henderson, T.D.; Griffey, S.M.; Cheng, L.W. Ricin toxicokinetics and its sensitive detection in mouse sera or feces using immuno-PCR. PLoS ONE 2010, 5, e12858. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, P.; Gayoso, M.; Tejero, J.; Cabrero, P.; Cordoba-Diaz, D.; Basterrechea, J.E.; Girbes, T. Toxicity in mice of lectin ebulin f present in dwarf elderberry (Sambucus ebulus L.). Toxicon 2013, 61, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Li, X.P.; Tumer, N.E. Wild type RTA and less toxic variants have distinct requirements for Png1 for their depurination activity and toxicity in saccharomyces cerevisiae. PLoS ONE 2014, 9, e113719. [Google Scholar] [CrossRef] [PubMed]
- Lord, J.M.; Spooner, R.A. Ricin trafficking in plant and mammalian cells. Toxins 2011, 3, 787–801. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.S.; Tolleson, W.H.; Chirtel, S.J. Thermal inactivation of ricin using infant formula as a food matrix. J. Agric. Food Chem. 2006, 54, 7300–7304. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Quinones, B.; Carter, J.M.; Mandrell, R.E. Validation of a cell-free translation assay for detecting shiga toxin 2 in bacterial culture. J. Agric. Food Chem. 2009, 57, 5084–5088. [Google Scholar] [CrossRef] [PubMed]
- Niyogi, S.K.; Rieders, F. Toxicity studies with fractions from Abrus precatorius seed kernels. Toxicon 1969, 7, 211–216. [Google Scholar] [CrossRef]
- Herrera, C.; Tremblay, J.M.; Shoemaker, C.B.; Mantis, N.J. Mechanisms of ricin toxin neutralization revealed through engineered homodimeric and heterodimeric camelid antibodies. J. Biol. Chem. 2015, 290, 27880–27889. [Google Scholar] [CrossRef] [PubMed]
Treatment | Relative Cytotoxicity (%) |
---|---|
DMEM/Matrices | 0 |
Abrin Whole Milk | 97 ± 3 |
Abrin Whole Milk 63 °C 30 min | 98 ± 2 |
Abrin Whole Milk 72 °C 15 s | 97 ± 3 |
Abrin Whole Milk 134 °C 2 s | 89 ± 11 |
Abrin Whole Milk 134 °C 30 s | 93 ± 2 |
Abrin Whole Milk 134 °C 60 s | 22 ± 8 |
Abrin Whole Milk 63 °C 3 min | 93 ± 5 |
Abrin Whole Milk 74 °C 3 min | 87 ± 6 |
Abrin Whole Milk 80 °C 3 min | 24 ± 12 |
Abrin Whole Milk 85 °C 3 min | 19 ± 6 |
Abrin Whole Milk 99 °C 3 min | 21 ± 8 |
Abrin Non-fat Milk | 94 ± 6 |
Abrin Non-fat Milk 63 °C 30 min | 87 ± 7 |
Abrin Non-fat Milk 72 °C 15 s | 90 ± 6 |
Abrin Non-fat Milk 134 °C 2 s | 95 ± 5 |
Abrin Non-fat Milk 134 °C 30 s | 83 ± 3 |
Abrin Non-fat Milk 134 °C 60 s | 0 |
Abrin Non-fat Milk 63 °C 3 min | 91 ± 5 |
Abrin Non-fat Milk 74 °C 3 min | 74 ± 9 |
Abrin Non-fat Milk 80 °C 3 min | 27 ± 2 |
Abrin Non-fat Milk 85 °C 3 min | 8 ± 3 |
Abrin Non-fat Milk 99 °C 3 min | 6 ± 4 |
Treatment | Relative Cytotoxicity (%) |
---|---|
DMEM/Liquid egg | 0 |
Abrin Liquid egg | 100 ± 0.1 |
Abrin Liquid egg 60 °C 2.4 min | 96 ± 5 |
Abrin Liquid egg 60 °C 3.5 min | 100 |
Abrin Liquid egg 63 °C 3 min | 87 ± 11 |
Abrin Liquid egg 74 °C 3 min | 23 ± 10 |
Treatment | Relative Cytotoxicity (%) |
---|---|
DMEM/Matrices | 0 |
Abrin PBSG 1 µg | 100 |
Abrin PBSG 2 µg | 100 |
Abrin Ground beef 1 µg | 49 ± 26 |
Abrin Ground beef 2 µg | 39 ± 22 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tam, C.C.; Henderson, T.D., II; Stanker, L.H.; Cheng, L.W. Influence of Food Matrices on the Stability and Bioavailability of Abrin. Toxins 2018, 10, 502. https://doi.org/10.3390/toxins10120502
Tam CC, Henderson TD II, Stanker LH, Cheng LW. Influence of Food Matrices on the Stability and Bioavailability of Abrin. Toxins. 2018; 10(12):502. https://doi.org/10.3390/toxins10120502
Chicago/Turabian StyleTam, Christina C., Thomas D. Henderson, II, Larry H. Stanker, and Luisa W. Cheng. 2018. "Influence of Food Matrices on the Stability and Bioavailability of Abrin" Toxins 10, no. 12: 502. https://doi.org/10.3390/toxins10120502
APA StyleTam, C. C., Henderson, T. D., II, Stanker, L. H., & Cheng, L. W. (2018). Influence of Food Matrices on the Stability and Bioavailability of Abrin. Toxins, 10(12), 502. https://doi.org/10.3390/toxins10120502