Response Surface Methodology for the Optimization of Ultrasound-Assisted Extraction of Tetrodotoxin from the Liver of Takifugu pseudommus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Single Factor Optimization
2.2. Fitting the Response Surface Models
2.3. Response Surface Analysis
2.4. Optimization of UAE Process and Validation of the Model
2.5. Identification of TTX
3. Conclusions
4. Materials and Methods
4.1. Pufferfish
4.2. Chemicals and Reagents
4.3. UAE Method
4.4. UPLC-MS/MS Analysis
4.5. Experimental Design
4.5.1. Single-Factor Selection Experiments
4.5.2. RSM Optimization Process
4.6. Experimental Design
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bane, V.; Lehane, M.; Dikshit, M.; O’Riordan, A.; Furey, A. Tetrodotoxin: Chemistry, toxicity, source, distribution and detection. Toxins 2014, 6, 693–755. [Google Scholar] [CrossRef] [PubMed]
- Chau, R.; Kalaitzis, J.A.; Neilan, B.A. On the origins and biosynthesis of tetrodotoxin. Aquat. Toxicol. 2011, 104, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, K.; Ikuma, S.; Kawamura, M.; Tachikawa, R.; Sakai, K. Tetrodotoxin. VII. On the structure of tetrodotoxin and its derivatives. Chem. Pharm. Bull. 1964, 12, 1357–1374. [Google Scholar] [CrossRef] [PubMed]
- Nzoughet, J.K.; Campbell, K.; Barnes, P.; Cooper, K.M.; Chevallier, O.P.; Elliott, C.T. Comparison of sample preparation methods, validation of an UPLC-MS/MS procedure for the quantification of tetrodotoxin present in marine gastropods and analysis of pufferfish. Food Chem. 2013, 136, 1584–1589. [Google Scholar] [CrossRef] [PubMed]
- Sui, L.M.; Chen, K.; Hwang, P.A.; Hwang, D.F. Identification of tetrodotoxin in marine gastropods implicated in food poisoning. J. Nat. Toxins 2002, 11, 213–220. [Google Scholar] [PubMed]
- Gall, B.G.; Stokes, A.N.; French, S.S.; Brodie, E.D., 3rd; Brodie, E.D., Jr. Female newts (Taricha granulosa) produce tetrodotoxin laden eggs after long term captivity. Toxicon 2012, 60, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Yotsu-Yamashita, M.; Toennes, S.W.; Mebs, D. Tetrodotoxin in Asian newts (Salamandridae). Toxicon 2017, 134, 14–17. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Hwang, D.F.; Chai, T.J.; Jeng, S.S. Toxicity and toxic components of two xanthid crabs, Atergatis floridus and Demania reynaudi, in Taiwan. Toxicon 1997, 35, 1327–1335. [Google Scholar] [CrossRef]
- McNabb, P.; Selwood, A.I.; Munday, R.; Wood, S.A.; Taylor, D.I.; Mackenzie, L.A.; van Ginkel, R.; Rhodes, L.L.; Cornelisen, C.; Heasman, K.; et al. Detection of tetrodotoxin from the grey side-gilled sea slug—Pleurobranchaea maculata, and associated dog neurotoxicosis on beaches adjacent to the Hauraki Gulf, Auckland, New Zealand. Toxicon 2010, 56, 466–473. [Google Scholar] [CrossRef]
- Lin, S.J.; Hwang, D.F. Possible source of tetrodotoxin in the starfish Astropecten scoparius. Toxicon 2001, 39, 573–579. [Google Scholar] [CrossRef]
- Butler, M.S. Natural products to drugs: Natural product-derived compounds in clinical trials. Nat. Prod. Rep. 2008, 25, 475–516. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Liu, T.T.; Wang, X.; Epstein, D.H.; Zhao, L.Y.; Zhang, X.L.; Lu, L. Tetrodotoxin reduces cue-induced drug craving and anxiety in abstinent heroin addicts. Pharmacol. Biochem. Behav. 2009, 92, 603–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lago, J.; Rodriguez, L.P.; Blanco, L.; Vieites, J.M.; Cabado, A.G. Tetrodotoxin, an Extremely Potent Marine Neurotoxin: Distribution, Toxicity, Origin and Therapeutical Uses. Mar. Drugs 2015, 13, 6384–6406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.; Li, J.; Lu, C.L.; Kang, L.; Xie, L.; Zhang, Y.Y.; Zhou, X.B.; Zhong, S. Tetrodotoxin alleviates acute heroin withdrawal syndrome: A multicentre, randomized, double-blind, placebo-controlled study. Clin. Exp. Pharmacol. Physiol. 2011, 38, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Adachi, M.; Imazu, T.; Isobe, M.; Nishikawa, T. An improved synthesis of (-)-5,11-dideoxytetrodotoxin. J. Org. Chem. 2013, 78, 1699–1705. [Google Scholar] [CrossRef] [PubMed]
- Jen, H.C.; Lin, S.J.; Tsai, Y.H.; Chen, C.H.; Lin, Z.C.; Hwang, D.F. Tetrodotoxin poisoning evidenced by solid-phase extraction combining with liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 871, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Yotsu-Yamashita, M.; Abe, Y.; Kudo, Y.; Ritson-Williams, R.; Paul, V.J.; Konoki, K.; Cho, Y.; Adachi, M.; Imazu, T.; Nishikawa, T.; et al. First identification of 5,11-dideoxytetrodotoxin in marine animals, and characterization of major fragment ions of tetrodotoxin and its analogs by high resolution ESI-MS/MS. Mar. Drugs 2013, 11, 2799–2813. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Sahin, S.; Aybastier, O.; Isik, E. Optimisation of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology. Food Chem. 2013, 141, 1361–1368. [Google Scholar] [CrossRef]
- Li, X. Puffer Fish and Its Processing and Utilization; China Agriculture Press: Beijing, China, 1998; pp. 102–106. [Google Scholar]
- Mishra, S.; Datta-Gupta, A. Chapter 7—Experimental Design and Response Surface Analysis. In Applied Statistical Modeling and Data Analytics; Mishra, S., Datta-Gupta, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 169–193. [Google Scholar]
- Kan, L.L.; Guo, B. Research on the Ultrasonic Extraction of TTX by Orthogonal Design. Chin. Arch. Tradit. Chin. Med. 2008, 26, 2. [Google Scholar]
- Dai, J.; Yaylayan, V.A.; Raghavan, G.S.; Pare, J.R.; Liu, Z.; Belanger, J.M. Influence of operating parameters on the use of the microwave-assisted process (MAP) for the extraction of azadirachtin-related limonoids from neem (Azadirachta indica) under atmospheric pressure conditions. J. Agric. Food Chem. 2001, 49, 4584–4588. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.W.; Liu, H.X.; Jin, Y.B.; Li, S.F.; Bi, X.; Chung, S.; Zhang, S.S.; Jiang, Y.Y. Separation, identification and quantification of tetrodotoxin and its analogs by LC-MS without calibration of individual analogs. Toxicon 2011, 57, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Yotsu-Yamashita, M.; Jang, J.-H.; Cho, Y.; Konoki, K. Optimization of simultaneous analysis of tetrodotoxin, 4-epitetrodotoxin, 4,9-anhydrotetrodotoxin, and 5,6,11-trideoxytetrodotoxin by hydrophilic interaction liquid chromatography–tandem mass spectrometry. Forensic. Toxicol. 2010, 29, 61–64. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, Z.; Wang, Y.; Jiang, T.; Wang, J.; Sun, X.; Guo, Y. Immunoaffinity chromatography purification and ultrahigh performance liquid chromatography tandem mass spectrometry determination of tetrodotoxin in marine organisms. J. Agric. Food Chem. 2015, 63, 3129–3134. [Google Scholar] [CrossRef] [PubMed]
Experiment Number | Temperature [°C] | Liquid:Material Ratio [mL·g−1] | Extraction Time [min] | TTX Extraction Yield [%] |
---|---|---|---|---|
1 | 0 | 1 | 1 | 80.3 |
2 | 1 | 0 | 1 | 80.25 |
3 | 0 | 0 | 0 | 80.01 |
4 | −1 | −1 | 0 | 78.78 |
5 | 0 | −1 | −1 | 77.94 |
6 | −1 | 1 | 0 | 78.44 |
7 | −1 | 0 | 1 | 79.55 |
8 | 0 | 1 | −1 | 78.46 |
9 | −1 | 0 | −1 | 78.87 |
10 | 1 | 1 | 0 | 80.98 |
11 | 1 | 0 | −1 | 78.31 |
12 | 1 | −1 | 0 | 79.02 |
13 | 0 | −1 | 1 | 77.89 |
14 | 0 | 0 | 0 | 80.02 |
15 | 0 | 0 | 0 | 80.87 |
16 | 0 | 0 | 0 | 80.76 |
17 | 0 | 0 | 0 | 80.88 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F Value | p > F | Significant |
---|---|---|---|---|---|---|
Model | 17.09 | 9 | 1.9 | 6.68 | 0.0102 | Significant |
A | 1.07 | 1 | 1.07 | 3.75 | 0.0941 | Insignificant |
B | 2.59 | 1 | 2.59 | 9.1 | 0.0195 | Significant |
C | 2.43 | 1 | 2.43 | 8.55 | 0.0222 | Significant |
AB | 1.32 | 1 | 1.32 | 4.65 | 0.068 | Insignificant |
AC | 0.4 | 1 | 0.4 | 1.4 | 0.2761 | Insignificant |
BC | 0.89 | 1 | 0.89 | 3.14 | 0.1197 | Insignificant |
A2 | 0.39 | 1 | 0.39 | 1.36 | 0.2822 | Insignificant |
B2 | 3.41 | 1 | 3.41 | 12 | 0.0105 | Significant |
C2 | 3.88 | 1 | 3.88 | 13.65 | 0.0077 | Significant |
Residual | 1.99 | 7 | 0.28 | |||
Lack of Fit | 1.17 | 3 | 0.39 | 1.91 | 0.2698 | Insignificant |
Pure Error | 0.82 | 4 | 0.2 | |||
Total Deviation | 19.09 | 16 |
Analyte | Precursor Ion (m/z) | Product Ion (m/z) | Cone Voltage (V) | Collision Energy (eV) |
---|---|---|---|---|
TTX | 320 | 302.1 * | 40 | 25 |
162.1 | 35 | |||
5,6,11-trideoxyTTX | 272 | 254.1 * | 40 | 25 |
162.1 | ||||
5,11-dideoxyTTX | 288 | 270.1 | 40 | 25 |
4,9-anhydroTTX | 302 | 256.1 * | 40 | 25 |
162.1 | 35 | |||
5-deoxyTTX | 304 | 286.1 * | 40 | 20 |
162.1 | 25 |
Factors | Levels | ||
---|---|---|---|
1 | 2 | 3 | |
Extraction temperature (A) [°C] | 40 | 50 | 60 |
Liquid:material ratio (B) [mL g−1] | 2 | 3 | 4 |
Extraction time (C) [min] | 15 | 20 | 25 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Han, C.; Chen, S.; Li, L.; Zong, J.; Zeng, J.; Mei, G. Response Surface Methodology for the Optimization of Ultrasound-Assisted Extraction of Tetrodotoxin from the Liver of Takifugu pseudommus. Toxins 2018, 10, 529. https://doi.org/10.3390/toxins10120529
Zhang X, Han C, Chen S, Li L, Zong J, Zeng J, Mei G. Response Surface Methodology for the Optimization of Ultrasound-Assisted Extraction of Tetrodotoxin from the Liver of Takifugu pseudommus. Toxins. 2018; 10(12):529. https://doi.org/10.3390/toxins10120529
Chicago/Turabian StyleZhang, Xiaojun, Chengcheng Han, Si Chen, Le Li, Jingjing Zong, Junjie Zeng, and Guangming Mei. 2018. "Response Surface Methodology for the Optimization of Ultrasound-Assisted Extraction of Tetrodotoxin from the Liver of Takifugu pseudommus" Toxins 10, no. 12: 529. https://doi.org/10.3390/toxins10120529
APA StyleZhang, X., Han, C., Chen, S., Li, L., Zong, J., Zeng, J., & Mei, G. (2018). Response Surface Methodology for the Optimization of Ultrasound-Assisted Extraction of Tetrodotoxin from the Liver of Takifugu pseudommus. Toxins, 10(12), 529. https://doi.org/10.3390/toxins10120529