Complexes of the Mycotoxins Citrinin and Ochratoxin A with Aluminum Ions and their Spectroscopic Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Coordination-Induced Changes in Absorption and Complex Stoichiometry
2.2. Fluorescence Characteristics
2.3. HPLC-FLD Measurements
3. Conclusions and Outlook
4. Materials and Methods
4.1. Chemicals
4.2. Absorption and Fluorescence Spectroscopy
4.3. Fluorescence Quantum Yields (Φ)
4.4. Time-Correlated Single Photon Counting (TCSPC)
4.5. Job Plot Analysis
4.6. HPLC-DAD/FLD Measurements
Author Contributions
Funding
Conflicts of Interest
References
- Ostry, V.; Malir, F.; Ruprich, J. Producers and important dietary sources of ochratoxin A and citrinin. Toxins 2013, 5, 1574–1586. [Google Scholar] [CrossRef]
- Bragulat, M.; Martínez, E.; Castellá, G.; Cabañes, F. Ochratoxin A and citrinin producing species of the genus Penicillium from feedstuffs. Int. J. Food Microbiol. 2008, 126, 43–48. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Ju, X.-L.; Zhou, Y.-G. The variability of citrinin production in Monascus type cultures. Food Microbiol. 2005, 22, 145–148. [Google Scholar] [CrossRef]
- Vrabcheva, T.; Usleber, E.; Dietrich, R.; Martlbauer, E. Co-occurrence of ochratoxin A and citrinin in cereals from Bulgarian villages with a history of Balkan endemic nephropathy. J. Agric. Food Chem. 2000, 48, 2483–2488. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Tozlovanu, M.; Tran, T.L.; Pfohl-Leszkowicz, A. Occurrence of aflatoxin B1, citrinin and ochratoxin A in rice in five provinces of the central region of Vietnam. Food Chem. 2007, 105, 42–47. [Google Scholar] [CrossRef]
- Dall’Asta, C.; Galaverna, G.; Dossena, A.; Marchelli, R. Reversed-phase liquid chromatographic method for the determination of ochratoxin A in wine. J. Chromatogr. A 2004, 1024, 275–279. [Google Scholar] [CrossRef]
- Dohnal, V.; Pavlikova, L.; Kuča, K. Rapid and sensitive method for citrinin determination using high-performance liquid chromatography with fluorescence detection. Anal. Lett. 2010, 43, 786–792. [Google Scholar] [CrossRef]
- Commission, E. Commission Regulation (EC) No 123/2005 of 26 January 2005 amending Regulation (EC) No 466/2001 as regards ochratoxin A. Off. J. Eur. Union 2005, L25, 3–5. [Google Scholar]
- Molinié, A.; Faucet, V.; Castegnaro, M.; Pfohl-Leszkowicz, A. Analysis of some breakfast cereals on the French market for their contents of ochratoxin A, citrinin and fumonisin B1: Development of a method for simultaneous extraction of ochratoxin A and citrinin. Food Chem. 2005, 92, 391–400. [Google Scholar] [CrossRef]
- Liu, B.-H.; Tsao, Z.-J.; Wang, J.-J.; Yu, F.-Y. Development of a monoclonal antibody against ochratoxin A and its application in enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip. Anal. Chem. 2008, 80, 7029–7035. [Google Scholar] [CrossRef] [PubMed]
- Abramson, D.; Usleber, E.; Märtlbauer, E. An indirect enzyme immunoassay for the mycotoxin citrinin. Appl. Environ. Microb. 1995, 61, 2007–2009. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3nd ed.; Springer: New York, NY, USA, 2006; pp. 63–94. [Google Scholar]
- Hetmanski, M.T.; Scudamore, K.A. Detection of zearalenone in cereal extracts using high-performance liquid chromatography with post-column derivatization. J. Chromatogr. A 1991, 588, 47–52. [Google Scholar] [CrossRef]
- Hollman, P.C.; van Trijp, J.M.; Buysman, M.N. Fluorescence detection of flavonols in HPLC by postcolumn chelation with aluminum. Anal. Chem. 1996, 68, 3511–3515. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Sugisawa, A.; Umegaki, K. Comparison of photometric, electrochemical and post-column fluorescence detection for the determination of flavonoids by HPLC. J. Food Hyg. Soc. Jpn. 2001, 42, 174–178. [Google Scholar] [CrossRef]
- Poor, M.; Kuzma, M.; Matisz, G.; Li, Y.; Perjesi, P.; Kunsagi-Mate, S.; Koszegi, T. Further Aspects of Ochratoxin A-Cation Interactions: Complex Formation with Zinc Ions and a Novel Analytical Application of Ochratoxin A-Magnesium Interaction in the HPLC-FLD System. Toxins 2014, 6, 1295–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakazato, M.; Kanmuri, M.; Nakazawa, K.; Ariga, T.; Fujinuma, K.; Nishijima, M.; NAOI, Y. Fluorometric determination of citrinin in cereals. Food Hyg. Saf. Sci. 1981, 22, 391–396. [Google Scholar] [CrossRef]
- Poor, M.; Kunsagi-Mate, S.; Matisz, G.; Li, Y.; Czibulya, Z.; Peles-Lemli, B.; Koszegi, T. Interaction of alkali and alkaline earth ions with Ochratoxin A. J. Lumin. 2013, 135, 276–280. [Google Scholar] [CrossRef]
- Porter, L.; Markham, K. The unsuitability of ethanol as a solvent for the spectroscopic detection of functional groups in hydroxyflavones with aluminium chloride. Phytochemistry 1970, 9, 1363–1365. [Google Scholar] [CrossRef]
- Cornard, J.; Boudet, A.; Merlin, J. Complexes of Al (III) with 3′ 4′-dihydroxy-flavone: Characterization, theoretical and spectroscopic study. Spectrochim. Acta Part A 2001, 57, 591–602. [Google Scholar] [CrossRef]
- Renny, J.S.; Tomasevich, L.L.; Tallmadge, E.H.; Collum, D.B. Method of continuous variations: Applications of job plots to the study of molecular associations in organometallic chemistry. Angew. Chem. Int. Ed. Engl. 2013, 52, 11998–12013. [Google Scholar] [CrossRef] [PubMed]
- Langseth, W. Separation of inorganic and organomercury chelates on a polystyrene—Divinylbenzene copolymer column. J. Chromatogr. A 1988, 438, 414–418. [Google Scholar] [CrossRef]
- Würth, C.; Lochmann, C.; Spieles, M.; Pauli, J.; Hoffmann, K.; Schüttrigkeit, T.; Franzl, T.; Resch-Genger, U. Evaluation of a commercial integrating sphere setup for the determination of absolute photoluminescence quantum yields of dilute dye solutions. Appl. Spectrosc. 2010, 64, 733–741. [Google Scholar] [CrossRef] [PubMed]
Analyte | ε(λmax)/L·mol−1·cm−1 | λem/nm | Φ/% | τ/ns |
---|---|---|---|---|
CIT | 3030 (318) | 505 | 0.6 | 3.7 |
CIT-Al | 8440 (330); 4220 (365) | 470 | 29.5 | 9.7 |
OTA | 4650 (332) | 465 | 44.7 | 6.3 |
OTA-Al | 6700 (365) | 425 | 34.2 | 5.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keller, J.; Moldenhauer, D.; Byrne, L.; Haase, H.; Resch-Genger, U.; Koch, M. Complexes of the Mycotoxins Citrinin and Ochratoxin A with Aluminum Ions and their Spectroscopic Properties. Toxins 2018, 10, 538. https://doi.org/10.3390/toxins10120538
Keller J, Moldenhauer D, Byrne L, Haase H, Resch-Genger U, Koch M. Complexes of the Mycotoxins Citrinin and Ochratoxin A with Aluminum Ions and their Spectroscopic Properties. Toxins. 2018; 10(12):538. https://doi.org/10.3390/toxins10120538
Chicago/Turabian StyleKeller, Julia, Daniel Moldenhauer, Liam Byrne, Hajo Haase, Ute Resch-Genger, and Matthias Koch. 2018. "Complexes of the Mycotoxins Citrinin and Ochratoxin A with Aluminum Ions and their Spectroscopic Properties" Toxins 10, no. 12: 538. https://doi.org/10.3390/toxins10120538
APA StyleKeller, J., Moldenhauer, D., Byrne, L., Haase, H., Resch-Genger, U., & Koch, M. (2018). Complexes of the Mycotoxins Citrinin and Ochratoxin A with Aluminum Ions and their Spectroscopic Properties. Toxins, 10(12), 538. https://doi.org/10.3390/toxins10120538