Antipruritic Effects of Botulinum Neurotoxins
Abstract
:1. Introduction
2. Pruritus
3. Botulinum Toxin Type A (BoNTA)
4. Experimental Evidence for Antipruritic Effects of BoNTA in Healthy Humans
5. Experimental Evidence for Antipruritic Effects of BoNTA in Animal Models
6. Clinical Evidence for Antipruritic Effects of BoNTs
6.1. Post Herpetic Itch
6.2. Brachioradial Pruritus
6.3. Notalgia Paresthetica
6.4. Lichen Simplex Chronicus (LSC)
6.5. Vulvodynia
6.6. Keloids and Hypertrophic Scars
6.7. Psoriasis
6.8. Pompholyx
6.9. Postburn Itch
6.10. Fox–Fordyce Disease
6.11. Hailey-Hailey Disease
6.12. Rhinitis
7. Concluding Remarks and Future Perspectives
Conflicts of Interest
References
- Brin, M.F. Botulinum toxin: Chemistry, pharmacology, toxicity, and immunology. Muscle Nerve Suppl. 1997, 6, S146–S168. [Google Scholar] [CrossRef]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum neurotoxins: Biology, pharmacology, and toxicology. Pharmacol. Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.B. Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. Ophthalmology 1980, 87, 1044–1049. [Google Scholar] [CrossRef]
- Dressler, D. Clinical applications of botulinum toxin. Curr. Opin. Microbiol. 2012, 15, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Luvisetto, S.; Gazerani, P.; Cianchetti, C.; Pavone, F. Botulinum toxin type a as a therapeutic agent against headache and related disorders. Toxins 2015, 7, 3818–3844. [Google Scholar] [CrossRef] [PubMed]
- Wollina, U. Botulinum toxin: Non-cosmetic indications and possible mechanisms of action. J. Cutan. Aesthet. Surg. 2008, 1, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Campanati, A.; Martina, E.; Giuliodori, K.; Consales, V.; Bobyr, I.; Offidani, A. Botulinum toxin off-label use in dermatology: A review. Skin Appendage Disord. 2017, 3, 39–56. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Hong, E.S.; Kim, H.S. Botulinum toxin in the field of dermatology: Novel indications. Toxins 2017, 9, 403. [Google Scholar] [CrossRef]
- Ho, D.; Jagdeo, J. Pruritus associated with onabotulinumtoxina treatment of neuromuscular pain. J. Drugs Dermatol. 2015, 14, 199–200. [Google Scholar] [PubMed]
- Ikoma, A.; Steinhoff, M.; Stander, S.; Yosipovitch, G.; Schmelz, M. The neurobiology of itch. Nat. Rev. Neurosci. 2006, 7, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Green, D.; Dong, X. The cell biology of acute itch. J. Cell Biol. 2016, 213, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, S.; Stander, S. Chronic pruritus: Clinics and treatment. Ann. Dermatol. 2011, 23, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Stander, S.; Weisshaar, E.; Mettang, T.; Szepietowski, J.C.; Carstens, E.; Ikoma, A.; Bergasa, N.V.; Gieler, U.; Misery, L.; Wallengren, J.; et al. Clinical classification of itch: A position paper of the international forum for the study of itch. Acta Derm. Venereol. 2007, 87, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Kini, S.P.; DeLong, L.K.; Veledar, E.; McKenzie-Brown, A.M.; Schaufele, M.; Chen, S.C. The impact of pruritus on quality of life the skin equivalent of pain. Arch. Dermatol. 2011, 147, 1153–1156. [Google Scholar] [CrossRef] [PubMed]
- Carr, C.W.; Veledar, E.; Chen, S.C. Factors mediating the impact of chronic pruritus on quality of life. JAMA Dermatol. 2014, 150, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Stander, S.; Zeidler, C.; Magnolo, N.; Raap, U.; Mettang, T.; Kremer, A.E.; Weisshaar, E.; Augustin, M. Clinical management of pruritus. J. Dtsch. Dermatol. Ges. 2015, 13, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Han, J.S.; Lee, K.; Bang, J.; Lee, H. The peripheral and central mechanisms underlying itch. BMB Rep. 2016, 49, 474–487. [Google Scholar] [CrossRef] [PubMed]
- LaMotte, R.H.; Dong, X.Z.; Ringkamp, M. Sensory neurons and circuits mediating itch. Nat. Rev. Neurosci. 2014, 15, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.K.; McQueen, D.S.; Rees, J.L. Involvement of histamine h4 and h1 receptors in scratching induced by histamine receptor agonists in balb c mice. Br. J. Pharmacol. 2004, 142, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Strasser, A.; Wittmann, H.J.; Buschauer, A.; Schneider, E.H.; Seifert, R. Species-dependent activities of g-protein-coupled receptor ligands: Lessons from histamine receptor orthologs. Trends Pharmacol. Sci. 2013, 34, 13–32. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Carstens, E. Neural processing of itch. Neuroscience 2013, 250, 697–714. [Google Scholar] [CrossRef] [PubMed]
- Nystedt, S.; Emilsson, I.E.; Wahlestedt, C.; Sundelin, J. Molecular-cloning of a potential proteinase activated receptor. Proc. Natl. Acad. Sci. USA 1994, 91, 9208–9212. [Google Scholar] [CrossRef] [PubMed]
- Steinhoff, M.; Neisius, U.; Ikoma, A.; Fartasch, M.; Heyer, G.; Skov, P.S.; Luger, T.A.; Schmelz, M. Proteinase-activated receptor-2 mediates itch: A novel pathway for pruritus in human skin. Exp. Dermatol. 2004, 13, 529–591. [Google Scholar] [CrossRef]
- Liu, Q.; Dong, X. The role of the mrgpr receptor family in itch. Handb. Exp. Pharmacol. 2015, 226, 71–88. [Google Scholar] [PubMed]
- Han, L.; Ma, C.; Liu, Q.; Weng, H.J.; Cui, Y.; Tang, Z.; Kim, Y.; Nie, H.; Qu, L.; Patel, K.N.; et al. A subpopulation of nociceptors specifically linked to itch. Nat. Neurosci. 2013, 16, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tang, Z.; Surdenikova, L.; Kim, S.; Patel, K.N.; Kim, A.; Ru, F.; Guan, Y.; Weng, H.J.; Geng, Y.; et al. Sensory neuron-specific gpcr mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 2009, 139, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Lembo, P.M.; Grazzini, E.; Groblewski, T.; O’Donnell, D.; Roy, M.O.; Zhang, J.; Hoffert, C.; Cao, J.; Schmidt, R.; Pelletier, M.; et al. Proenkephalin a gene products activate a new family of sensory neuron-specific gpcrs. Nat. Neurosci. 2002, 5, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Sikand, P.; Dong, X.; LaMotte, R.H. Bam8-22 peptide produces itch and nociceptive sensations in humans independent of histamine release. J. Neurosci. 2011, 31, 7563–7567. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Sikand, P.; Ma, C.; Tang, Z.; Han, L.; Li, Z.; Sun, S.; LaMotte, R.H.; Dong, X. Mechanisms of itch evoked by beta-alanine. J. Neurosci. 2012, 32, 14532–14537. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, T.; Harada, M.; Ogi, K.; Maruyama, M.; Fujii, R.; Tanaka, H.; Fukusumi, S.; Komatsu, H.; Hosoya, M.; Noguchi, Y.; et al. Identification of a g protein-coupled receptor specifically responsive to beta-alanine. J. Biol. Chem. 2004, 279, 23559–23564. [Google Scholar] [CrossRef] [PubMed]
- Shim, W.S.; Tak, M.H.; Lee, M.H.; Kim, M.; Kim, M.; Koo, J.Y.; Lee, C.H.; Kim, M.; Oh, U. Trpv1 mediates histamine-induced itching via the activation of phospholipase a2 and 12-lipoxygenase. J. Neurosci. 2007, 27, 2331–2337. [Google Scholar] [CrossRef] [PubMed]
- Gamper, N. Itchy channels and where to find them. J. Physiol.-Lond. 2017, 595, 3257–3259. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Park, C.K.; Chen, G.; Han, Q.J.; Xie, R.G.; Liu, T.; Ji, R.R.; Lee, S.Y. A monoclonal antibody that targets a na(v)1.7 channel voltage sensor for pain and itch relief. Cell 2014, 157, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Storan, E.R.; O’Gorman, S.M.; McDonald, I.D.; Steinhoff, M. Role of cytokines and chemokines in itch. Handb. Exp. Pharmacol. 2015, 226, 163–176. [Google Scholar] [PubMed]
- Nattkemper, L.A.; Martinez-Escala, M.E.; Gelman, A.B.; Singer, E.M.; Rook, A.H.; Guitart, J.; Yosipovitch, G. Cutaneous t-cell lymphoma and pruritus: The expression of il-31 and its receptors in the skin. Acta Derm. Venereol. 2016, 96, 894–898. [Google Scholar] [CrossRef] [PubMed]
- Arai, I.; Tsuji, M.; Takeda, H.; Akiyama, N.; Saito, S. A single dose of interleukin-31 (il-31) causes continuous itch-associated scratching behaviour in mice. Exp. Dermatol. 2013, 22, 669–671. [Google Scholar] [CrossRef] [PubMed]
- Arai, I.; Tsuji, M.; Miyagawa, K.; Takeda, H.; Akiyama, N.; Saito, S. Repeated administration of il-31 upregulates il-31 receptor a (il-31ra) in dorsal root ganglia and causes severe itch-associated scratching behaviour in mice. Exp. Dermatol. 2015, 24, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Sanders, K.M.; Nattkemper, L.A.; Yosipovitch, G. Advances in understanding itching and scratching: A new era of targeted treatments. F1000Res 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.G.; Chen, Z.F. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 2007, 448, 700–703. [Google Scholar] [CrossRef]
- Ross, S.E.; Mardinly, A.R.; McCord, A.E.; Zurawski, J.; Cohen, S.; Jung, C.; Hu, L.; Mok, S.I.; Shah, A.; Savner, E.M.; et al. Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in bhlhb5 mutant mice. Neuron 2010, 65, 886–898. [Google Scholar] [CrossRef] [PubMed]
- Kardon, A.P.; Polgar, E.; Hachisuka, J.; Snyder, L.M.; Cameron, D.; Savage, S.; Cai, X.Y.; Karnup, S.; Fan, C.R.; Hemenway, G.M.; et al. Dynorphin acts as a neuromodulator to inhibit itch in the dorsal horn of the spinal cord. Neuron 2014, 82, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Bourane, S.; Duan, B.; Koch, S.C.; Dalet, A.; Britz, O.; Garcia-Campmany, L.; Kim, E.; Cheng, L.Z.; Ghosh, A.; Ma, Q.F.; et al. Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science 2015, 350, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.H.; Arendt-Nielsen, L.; Gazerani, P. Glial cells are involved in itch processing. Acta Derm. Venereol. 2016, 96, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Shiratori-Hayashi, M.; Koga, K.; Tozaki-Saitoh, H.; Kohro, Y.; Toyonaga, H.; Yamaguchi, C.; Hasegawa, A.; Nakahara, T.; Hachisuka, J.; Akira, S.; et al. Stat3-dependent reactive astrogliosis in the spinal dorsal horn underlies chronic itch. Nat. Med. 2015, 21, 927–931. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Han, Q.J.; Chen, G.; Huang, Y.; Zhao, L.X.; Berta, T.; Gao, Y.J.; Ji, R.R. Toll-like receptor 4 contributes to chronic itch, alloknesis, and spinal astrocyte activation in male mice. Pain 2016, 157, 806–817. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dun, S.L.; Chen, Y.H.; Luo, J.J.; Cowan, A.; Dun, N.J. Scratching activates microglia in the mouse spinal cord. J. Neurosci. Res. 2015, 93, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Torigoe, K.; Tominaga, M.; Ko, K.C.; Takahashi, N.; Matsuda, H.; Hayashi, R.; Ogawa, H.; Takamori, K. Intrathecal minocycline suppresses itch-related behavior and improves dermatitis in a mouse model of atopic dermatitis. J. Investig. Dermatol. 2016, 136, 879–881. [Google Scholar] [CrossRef] [PubMed]
- Hoeck, E.A.; Marker, J.B.; Gazerani, P.; H, H.A.; Arendt-Nielsen, L. Preclinical and human surrogate models of itch. Exp. Dermatol. 2016, 25, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Chen, S. Clinical uses of botulinum neurotoxins: Current indications, limitations and future developments. Toxins (Basel) 2012, 4, 913–939. [Google Scholar] [CrossRef] [PubMed]
- Silberstein, S.D.; Aoki, K.R. Botulinum toxin type A: Myths, facts, and current research. Headache 2003, 43 (Suppl. 1), S1. [Google Scholar] [CrossRef]
- Aoki, K.R. Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A. Neurotoxicology 2005, 26, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Heckmann, M.; Heyer, G.; Brunner, B.; Plewig, G. Botulinum toxin type a injection in the treatment of lichen simplex: An open pilot study. J. Am. Acad. Dermatol. 2002, 46, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Swartling, C.; Naver, H.; Lindberg, M.; Anveden, I. Treatment of dyshidrotic hand dermatitis with intradermal botulinum toxin. J. Am. Acad. Dermatol. 2002, 47, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Wollina, U.; Karamfilov, T. Adjuvant botulinum toxin a in dyshidrotic hand eczema: A controlled prospective pilot study with left-right comparison. J. Eur. Acad. Dermatol. Venereol. 2002, 16, 40–42. [Google Scholar] [CrossRef] [PubMed]
- Breidenbach, M.A.; Brunger, A.T. New insights into clostridial neurotoxin-snare interactions. Trends Mol. Med. 2005, 11, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Dressler, D.; Saberi, F.A. Botulinum toxin: Mechanisms of action. Eur. Neurol. 2005, 53, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.R. Evidence for antinociceptive activity of botulinum toxin type a in pain management. Headache 2003, 43 (Suppl. 1), S9–S15. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, L.B.; Karshenas, A.; Bach, F.W.; Rasmussen, S.; Arendt-Nielsen, L.; Gazerani, P. Blockade of glutamate release by botulinum neurotoxin type a in humans: A dermal microdialysis study. Pain Res. Manag. 2014, 19, 126–132. [Google Scholar] [CrossRef]
- Gazerani, P.; Au, S.; Dong, X.D.; Kumar, U.; Arendt-Nielsen, L.; Cairns, B.E. Botulinum neurotoxin type a (bonta) decreases the mechanical sensitivity of nociceptors and inhibits neurogenic vasodilation in a craniofacial muscle targeted for migraine prophylaxis. Pain 2010, 151, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, L.B.; Poulsen, J.N.; Arendt-Nielsen, L.; Gazerani, P. Botulinum neurotoxin type a modulates vesicular release of glutamate from satellite glial cells. J. Cell. Mol. Med. 2015, 19, 1900–1909. [Google Scholar] [CrossRef] [PubMed]
- Gazerani, P.; Staahl, C.; Drewes, A.M.; Arendt-Nielsen, L. Effect of botulinum toxin type a (bonta) on capsaicin-evoked pain, flare, and secondary hyperalgesia in an experimental human model of trigeminal sensitization. Cephalalgia 2005, 25, 990. [Google Scholar]
- Gazerani, P.; Pedersen, N.S.; Staahl, C.; Drewes, A.M.; Arendt-Nielsen, L. Subcutaneous botulinum toxin type a reduces capsaicin-induced trigeminal pain and vasomotor reactions in human skin. Pain 2009, 141, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, L.B.; Kulas, D.; Karshenas, A.; Cairns, B.E.; Bach, F.W.; Arendt-Nielsen, L.; Gazerani, P. Time course analysis of the effects of botulinum neurotoxin type a on pain and vasomotor responses evoked by glutamate injection into human temporalis muscles. Toxins 2014, 6, 592–607. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, A.; Smith, H.S. Botulinum toxins: Mechanisms of action, antinociception and clinical applications. Toxicology 2013, 306, 124–146. [Google Scholar] [CrossRef] [PubMed]
- Gazerani, P.; Pedersen, N.S.; Drewes, A.M.; Arendt-Nielsen, L. Botulinum toxin type a reduces histamine-induced itch and vasomotor responses in human skin. Brit. J. Dermatol. 2009, 161, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Leigh, A.; Nattkemper, L.A.; Stull, C.; Lavery, M.J.; Valdes-Rodriguez, R.; McGregory, M.; Ramsey, R.V.; Chen, Y.H.; Mochizuki, H.; Yosipovitch, G. Prolonged antipruritic effect of Botulinum toxin type A on cowhage induced itch. OP43, lecture abstracts, Abstracts from the 9th world congress on itch. Acta Derm. Venereol. 2017, 97, 1021. [Google Scholar]
- Lieu, T.; Jayaweera, G.; Zhao, P.; Poole, D.P.; Jensen, D.; Grace, M.; McIntyre, P.; Bron, R.; Wilson, Y.M.; Krappitz, M.; et al. The bile acid receptor tgr5 activates the trpa1 channel to induce itch in mice. Gastroenterology 2014, 147, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Ji, R.R. Oxidative stress induces itch via activation of transient receptor potential subtype ankyrin 1 in mice. Neurosci. Bull. 2012, 28, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.M.; Cheng, R.X.; Wang, S.; Huang, Y.; Gao, Y.J.; Zhou, Y.; Liu, T.T.; Wang, X.L.; Chen, L.H.; Liu, T. Antioxidants attenuate acute and chronic itch: Peripheral and central mechanisms of oxidative stress in pruritus. Neurosci. Bull. 2017, 33, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.F.; Si, M.; Huang, Y.; Chen, L.H.; Peng, X.Y.; Qin, Y.Q.; Liu, T.T.; Zhou, Y.; Liu, T.; Luo, W.F. Long-term anti-itch effect of botulinum neurotoxin a is associated with downregulation of trpv1 and trpa1 in the dorsal root ganglia in mice. Neuroreport 2017, 28, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, A.M. Mechanisms of histamine release by compound 48–80. Br. J. Pharmacol. 1970, 38, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Han, S.B.; Kim, H.; Cho, S.H.; Chung, J.H.; Kim, H.S. Protective effect of botulinum toxin type a against atopic dermatitis-like skin lesions in nc/nga mice. Dermatol. Surg. 2017. [Google Scholar] [CrossRef] [PubMed]
- Mollanazar, N.K.; Smith, P.K.; Yosipovitch, G. Mediators of chronic pruritus in atopic dermatitis: Getting the itch out? Clin. Rev. Allergy Immunol. 2016, 51, 263–292. [Google Scholar] [CrossRef] [PubMed]
- Martel, B.C.; Lovato, P.; Baumer, W.; Olivry, T. Translational animal models of atopic dermatitis for preclinical studies. Yale J. Biol Med. 2017, 90, 389–402. [Google Scholar] [PubMed]
- Park, T.H. The effects of botulinum toxin a on mast cell activity: Preliminary results. Burns 2013, 39, 816–817. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N. Response to: The effects of botulinum toxin a on mast cell activity: Preliminary results. Burns 2013, 39, 817–818. [Google Scholar] [CrossRef] [PubMed]
- Ward, N.L.; Kavlick, K.D.; Diaconu, D.; Dawes, S.M.; Michaels, K.A.; Gilbert, E. Botulinum neurotoxin a decreases infiltrating cutaneous lymphocytes and improves acanthosis in the kc-tie2 mouse model. J. Investig. Dermatol. 2012, 132, 1927–1930. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghamdi, A.S.; Alghanemy, N.; Joharji, H.; Al-Qahtani, D.; Alghamdi, H. Botulinum toxin: Non cosmetic and off-label dermatological uses. J. Dermatol. Dermatol. Surg. 2015, 19, 1–8. [Google Scholar] [CrossRef]
- Boozalis, E.; Sheu, M.; Selph, J.; Kwatra, S.G. Botulinum toxin type a for the treatment of localized recalcitrant chronic pruritus. J. Am. Acad. Dermatol. 2018, 78, 192–194. [Google Scholar] [CrossRef] [PubMed]
- Wood, G.J.; Akiyama, T.; Carstens, E.; Oaklander, A.L.; Yosipovitch, G. An insatiable itch. J. Pain 2009, 10, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, E.; Barmeir, E.; Bergman, R. Notalgia paresthetica associated with nerve root impingement. J. Am. Acad. Dermatol. 1997, 37, 998–1000. [Google Scholar] [CrossRef]
- Mittal, A.; Srivastava, A.; Balai, M.; Khare, A.K. A study of postherpetic pruritus. Indian Dermatol. Online J. 2016, 7, 343–344. [Google Scholar] [CrossRef] [PubMed]
- Argoff, C.E. A focused review on the use of botulinum toxins for neuropathic pain. Clin. J. Pain 2002, 18, S177–S181. [Google Scholar] [CrossRef]
- Weinfeld, P.K. Successful treatment of notalgia paresthetica with botulinum toxin type A. Arch. Dermatol. 2007, 143, 980–982. [Google Scholar] [CrossRef] [PubMed]
- Waisman, M. Solar pruritus of the elbows (brachioradial summer pruritus). Arch. Dermatol. 1968, 98, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, G.M.; Tidman, M.J. Botulinum a toxin and brachioradial pruritus. Brit. J. Dermatol. 2012, 166, 1147. [Google Scholar] [CrossRef] [PubMed]
- Heyl, T. Brachioradial pruritus. Arch. Dermatol. 1983, 119, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Veien, N.K.; Hattel, T.; Laurberg, G.; Spaun, E. Brachioradial pruritus. J. Am. Acad. Dermatol. 2001, 44, 704–705. [Google Scholar] [CrossRef] [PubMed]
- Walcyk, P.J.; Elpern, D.J. Brachioradial pruritus: A tropical dermopathy. Br. J. Dermatol. 1986, 115, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, J.D.; Bordeaux, J.S. Medical pearl: The ice-pack sign in brachioradial pruritus. J. Am. Acad. Dermatol. 2005, 52, 1073. [Google Scholar] [CrossRef] [PubMed]
- Alai, N.N.; Skinner, H.B.; Nabili, S.T.; Jeffes, E.; Shahrokni, S.; Saemi, A.M. Notalgia paresthetica associated with cervical spinal stenosis and cervicothoracic disk disease at c4 through c7. Cutis 2010, 85, 77–81. [Google Scholar] [PubMed]
- Chiriac, A.; Podoleanu, C.; Moldovan, C.; Stolnicu, S. Notalgia paresthetica, a clinical series and review. Pain Pract. 2016, 16, E90–E91. [Google Scholar] [CrossRef] [PubMed]
- Wallengren, J.; Bartosik, J. Botulinum toxin type a for neuropathic itch. Br. J. Dermatol. 2010, 163, 424–426. [Google Scholar] [CrossRef] [PubMed]
- Maari, C.; Marchessault, P.; Bissonnette, R. Treatment of notalgia paresthetica with botulinum toxin A: A double-blind randomized controlled trial. J. Am. Acad. Dermatol. 2014, 70, 1139–1141. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.; Cardones, A.; Berger, T. Pruritic skin disease in the elderly. J. Investig. Dermatol. 2008, 128, 1606. [Google Scholar]
- Apalla, Z.; Sotiriou, E.; Lallas, A.; Lazaridou, E.; Ioannides, D. Botulinum toxin a in postherpetic neuralgia: A parallel, randomized, double-blind, single-dose, placebo-controlled trial. Clin. J. Pain 2013, 29, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Salardini, A.; Richardson, D.; Jabbari, B. Relief of intractable pruritus after administration of botulinum toxin a (botox): A case report. Clin. Neuropharmacol. 2008, 31, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Eppsteiner, E.; Boardman, L.; Stockdale, C.K. Vulvodynia. Best Pract. Res. Clin. Obstet. Gynaecol. 2014, 28, 1000–1012. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Chung, W.S.; Shim, B.S. Botulinum toxin a for the management of vulvodynia. Int. J. Impot. Res. 2007, 19, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Petersen, C.D.; Giraldi, A.; Lundvall, L.; Kristensen, E. Botulinum toxin type a-a novel treatment for provoked vestibulodynia? Results from a randomized, placebo controlled, double blinded study. J. Sex. Med. 2009, 6, 2523–2537. [Google Scholar] [CrossRef] [PubMed]
- Berman, B.; Maderal, A.; Raphael, B. Keloids and hypertrophic scars: Pathophysiology, classification, and treatment. Dermatol. Surg. 2017, 43, S3–S18. [Google Scholar] [CrossRef] [PubMed]
- Perdanasari, A.T.; Torresetti, M.; Grassetti, L.; Nicoli, F.; Zhang, Y.X.; Dashti, T.; Di Benedetto, G.; Lazzeri, D. Intralesional injection treatment of hypertrophic scars and keloids: A systematic review regarding outcomes. Burns Trauma 2015, 3, 14. [Google Scholar] [CrossRef] [PubMed]
- Gassner, H.G.; Sherris, D.A.; Otley, C.C. Treatment of facial wounds with botulinum toxin a improves cosmetic outcome in primates. Plast Reconstr. Surg. 2000, 105, 1948–1953. [Google Scholar] [CrossRef] [PubMed]
- Gauglitz, G.G.; Bureik, D.; Dombrowski, Y.; Pavicic, T.; Ruzicka, T.; Schauber, J. Botulinum toxin a for the treatment of keloids. Skin Pharmacol. Phys. 2012, 25, 313–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabai, L.; Ghahary, A. Hypertrophic scarring in the rabbit ear: A practical model for studying dermal fibrosis. Methods Mol. Biol. 2017, 1627, 81–89. [Google Scholar] [PubMed]
- Caliskan, E.; Gamsizkan, M.; Acikgoz, G.; Durmus, M.; Toklu, S.; Dogrul, A.; Kurt, A.; Tunca, M. Intralesional treatments for hypertrophic scars: Comparison among corticosteroid, 5-fluorouracil and botulinum toxin in rabbit ear hypertrophic scar model. Eur. Rev. Med. Pharmacol. 2016, 20, 1603–1608. [Google Scholar]
- Prodromidou, A.; Frountzas, M.; Vlachos, D.E.G.; Vlachos, G.D.; Bakoyiannis, I.; Perrea, D.; Pergialiotis, V. Botulinum toxin for the prevention and healing of wound scars: A systematic review of the literature. Plast. Surg. 2015, 23, 260–264. [Google Scholar] [CrossRef]
- Shaarawy, E.; Hegazy, R.A.; Hay, R.M.A. Intralesional botulinum toxin type a equally effective and better tolerated than intralesional steroid in the treatment of keloids: A randomized controlled trial. J. Cosmet. Dermatol. US 2015, 14, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Zanchi, M.; Favot, F.; Bizzarini, M.; Piai, M.; Donini, M.; Sedona, P. Botulinum toxin type-a for the treatment of inverse psoriasis. J. Eur. Acad. Dermatol. 2008, 22, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Brassard, D.; Benohanian, A.; Saber, M. A case of inverse psoriasis responding to botulinum toxin type A. J. Am. Acad. Dermatol. 2011, 64, Ab161. [Google Scholar]
- Chroni, E.; Monastirli, A.; Tsambaos, D. Botulinum toxin for inverse psoriasis? J. Eur. Acad. Dermatol. Venereol. 2009, 23, 955. [Google Scholar] [CrossRef] [PubMed]
- Molin, S.; Diepgen, T.L.; Ruzicka, T.; Prinz, J.C. Diagnosing chronic hand eczema by an algorithm: A tool for classification in clinical practice. Clin. Exp. Dermatol. 2011, 36, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Soler, D.C.; Bai, X.; Ortega, L.; Pethukova, T.; Nedorost, S.T.; Popkin, D.L.; Cooper, K.D.; McCormick, T.S. The key role of aquaporin 3 and aquaporin 10 in the pathogenesis of pompholyx. Med. Hypotheses 2015, 84, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Kontochristopoulos, G.; Gregoriou, S.; Agiasofitou, E.; Nikolakis, G.; Rigopoulos, D.; Katsambas, A. Letter: Regression of relapsing dyshidrotic eczema after treatment of concomitant hyperhidrosis with botulinum toxin-a. Dermatol. Surg. 2007, 33, 1289–1290. [Google Scholar] [CrossRef] [PubMed]
- Nedelec, B.; LaSalle, L. Postburn itch: A review of the literature. Wounds 2018, 30, E118–E124. [Google Scholar] [PubMed]
- Akhtar, N.; Brooks, P. The use of botulinum toxin in the management of burns itching: Preliminary results. Burns 2012, 38, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ramos, J.; Alonso-Pacheco, M.L.; Goiburu-Chenu, B.; Mayor-Ibarguren, A.; Herranz-Pinto, P. Successful treatment of refractory pruritic fox-fordyce disease with botulinum toxin type a. Br. J. Dermatol. 2016, 174, 458–459. [Google Scholar] [CrossRef] [PubMed]
- Ravitskiy, L.; Heymann, W.R. Botulinum toxin-induced resolution of axillary granular parakeratosis. SkinMed 2005, 4, 118–120. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.; Jagdeo, J. Successful botulinum toxin (onabotulinumtoxina) treatment of hailey-hailey disease. J. Drugs Dermatol. 2015, 14, 68–70. [Google Scholar] [PubMed]
- Bagherani, N.; Smoller, B.R. The efficacy of botulinum toxin type a in the treatment of hailey-hailey disease. Dermatol. Ther. 2016, 29, 394–395. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, J.; Khaltaev, N.; Cruz, A.A.; Denburg, J.; Fokkens, W.J.; Togias, A.; Zuberbier, T.; Baena-Cagnani, C.E.; Canonica, G.W.; van Weel, C.; et al. Allergic rhinitis and its impact on asthma (aria) 2008 update (in collaboration with the world health organization, ga(2)len and allergen). Allergy 2008, 63 (Suppl. 86), 8–160. [Google Scholar] [CrossRef] [PubMed]
- International consensus report on the diagnosis and management of rhinitis. International rhinitis management working group. Allergy 1994, 49, 1–34. [Google Scholar]
- Zhang, E.Z.; Tan, S.; Loh, I. Botolinum toxin in rhinitis: Literature review and posterior nasal injection in allergic rhinitis. Laryngoscope 2017, 127, 2447–2454. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, C.; Ismi, O. Botulinum toxin for rhinitis. Curr. Allergy Asthma Rep. 2016, 16, 58. [Google Scholar] [CrossRef] [PubMed]
- Braun, T.; Gurkov, R.; Kramer, M.F.; Krause, E. Septal injection of botulinum neurotoxin a for idiopathic rhinitis: A pilot study. Am. J. Otolaryngol. 2012, 33, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.M.; Okhovat, A.; Amini, S.; Pourghasemian, M. Comparing the effects of botulinum toxin-a and cetirizine on the treatment of allergic rhinitis. Allergol. Int. 2013, 62, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Mozafarinia, K.; Abna, M.; Khanjani, N. Effect of botulinum neurotoxin a injection into the submucoperichondrium of the nasal septum in reducing idiopathic non-allergic rhinitis and persistent allergic rhinitis. Iran. J. Otorhinolaryngol. 2015, 27, 253–259. [Google Scholar] [PubMed]
- Rohrbach, S.; Junghans, K.; Kohler, S.; Laskawi, R. Minimally invasive application of botulinum toxin a in patients with idiopathic rhinitis. Head Face Med. 2009, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Stone, H.F.; Thach, T.Q.; Garcia, L.; Ruegg, C.L. A novel botulinum neurotoxin topical gel: Treatment of allergic rhinitis in rats and comparative safety profile. Am. J. Rhinol. Allergy 2012, 26, 450–454. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gazerani, P. Antipruritic Effects of Botulinum Neurotoxins. Toxins 2018, 10, 143. https://doi.org/10.3390/toxins10040143
Gazerani P. Antipruritic Effects of Botulinum Neurotoxins. Toxins. 2018; 10(4):143. https://doi.org/10.3390/toxins10040143
Chicago/Turabian StyleGazerani, Parisa. 2018. "Antipruritic Effects of Botulinum Neurotoxins" Toxins 10, no. 4: 143. https://doi.org/10.3390/toxins10040143
APA StyleGazerani, P. (2018). Antipruritic Effects of Botulinum Neurotoxins. Toxins, 10(4), 143. https://doi.org/10.3390/toxins10040143