Designed Strategies for Fluorescence-Based Biosensors for the Detection of Mycotoxins
Abstract
:1. Introduction
Regulatory Limits of Myctoxins
2. Monitoring of Mycotoxins
3. Fluorescence Biosensors
3.1. Formats in Fluorescence Biosensors
Fluorescence-Based Aptasensors
3.2. Criteria for Selection of a Fluorescent Label
3.3. Types of Fluorescence Labels
3.3.1. Organic Dyes
3.3.2. Nanomaterials as Fluorophores and Quenchers
4. Fluorescence-based Biosensors for Mycotoxins Analysis
4.1. Immunosensing Platforms
4.1.1. Ochratoxin A (OTA) Detection
4.1.2. Aflatoxins Detection
4.1.3. Other Mycotoxins Detection
4.2. Aptamer-Based Assays
4.2.1. OTA Detection
4.2.2. Aflatoxin and Other Mycotoxin Detection
5. Conclusions and Future Prospective
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Moss, M. Secondary metabolism and food intoxication—Moulds. J. Appl. Microbiol. 1992, 73, 80s–88s. [Google Scholar] [CrossRef]
- Overy, D.P.; Seifert, K.A.; Savard, M.E.; Frisvad, J.C. Spoilage fungi and their mycotoxins in commercially marketed chestnuts. Int. J. Food Microbiol. 2003, 88, 69–77. [Google Scholar] [CrossRef]
- Miller, J.D.; Young, J.C.; Trenholm, H.L. Fusarium toxins in field corn. I. Time course of fungal growth and production of deoxynivalenol and other mycotoxins. Can. J. Bot. 1983, 61, 3080–3087. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef] [PubMed]
- Szabó, A.; Szabó-Fodor, J.; Fébel, H.; Mézes, M.; Balogh, K.; Bázár, G.; Kocsó, D.; Ali, O.; Kovács, M. Individual and combined effects of fumonisin b1, deoxynivalenol and zearalenone on the hepatic and renal membrane lipid integrity of rats. Toxins 2017, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Wannemacher, R.W.; Wiener, S.L.; Sidell, F.; Takafuji, E.; Franz, D. Trichothecene mycotoxins. Med. Asp. Chem. Biol. Warf. 1997, 6, 655–676. [Google Scholar]
- Madsen, J.M. Toxins as weapons of mass destruction. A comparison and contrast with biological-warfare and chemical-warfare agents. Clin. Lab. Med. 2001, 21, 593–605. [Google Scholar] [PubMed]
- The Commission of the European Communities. Setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32006R1881 (accessed on 19 December 2006).
- Regulation, E. Commission regulation on microbiological criteria for foodstuffs. Off. J. Eur. Union 2007, 50, 12–29. [Google Scholar]
- Van Egmond, H.P.; Jonker, M.A. Worldwide Regulations for Mycotoxins in Food and Feed in 2003; FAO: Rome, Italy, 2005; pp. 1–7. [Google Scholar]
- Scott, P.M.; Lawrence, J.W.; van Walbeek, W. Detection of mycotoxins by thin-layer chromatography: Application to screening of fungal extracts. Appl. Microbiol. 1970, 20, 839–842. [Google Scholar] [PubMed]
- Olsson, J.; Börjesson, T.; Lundstedt, T.; Schnürer, J. Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose. Int. J. Food Microbiol. 2002, 72, 203–214. [Google Scholar] [CrossRef]
- Malachová, A.; Stránská, M.; Václavíková, M.; Elliott, C.T.; Black, C.; Meneely, J.; Hajšlová, J.; Ezekiel, C.N.; Schuhmacher, R.; Krska, R. Advanced LC–MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Anal. Bioanal. Chem. 2018, 410, 801–825. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, R.; Kumar, P.K. Molecular beacon aptamer fluoresces in the presence of tat protein of HIV-1. Genes Cells 2000, 5, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Mallikaratchy, P.; Yang, R.; Kim, Y.; Zhu, Z.; Wang, H.; Tan, W. Aptamer switch probe based on intramolecular displacement. J. Am. Chem. Soc. 2008, 130, 11268–11269. [Google Scholar] [CrossRef] [PubMed]
- Nutiu, R.; Li, Y. Structure-switching signaling aptamers. J. Am. Chem. Soc. 2003, 125, 4771–4778. [Google Scholar] [CrossRef] [PubMed]
- Nutiu, R.; Li, Y. Structure-switching signaling aptamers: Transducing molecular recognition into fluorescence signaling. Chem. A Eur. J. 2004, 10, 1868–1876. [Google Scholar] [CrossRef] [PubMed]
- Anfossi, L.; Di Nardo, F.; Cavalera, S.; Giovannoli, C.; Spano, G.; Speranskaya, E.S.; Goryacheva, I.Y.; Baggiani, C. A lateral flow immunoassay for straightforward determination of fumonisin mycotoxins based on the quenching of the fluorescence of CdSe/ZnS quantum dots by gold and silver nanoparticles. Microchim. Acta 2018, 185, 94. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Chen, X.; Hu, W. A fluorescence aptasensor based on semiconductor quantum dots and MoS2 nanosheets for ochratoxin A detection. Sens. Actuators B Chem. 2017, 246, 61–67. [Google Scholar] [CrossRef]
- Wu, S.; Duan, N.; Ma, X.; Xia, Y.; Wang, H.; Wang, Z.; Zhang, Q. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal. Chem. 2012, 84, 6263–6270. [Google Scholar] [CrossRef] [PubMed]
- Rhouati, A.; Hayat, A.; Mishra, R.K.; Bueno, D.; Shahid, S.A.; Muñoz, R.; Marty, J.L. Ligand assisted stabilization of fluorescence nanoparticles; an insight on the fluorescence characteristics, dispersion stability and DNA loading efficiency of nanoparticles. J. Fluoresc. 2016, 26, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, J.D.; Balakrishna, R.G. Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sens. Actuators B Chem. 2017, 258, 1191–1214. [Google Scholar]
- Gao, D.; Wang, Z.; Liu, B.; Ni, L.; Wu, M.; Zhang, Z. Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT. Anal. Chem. 2008, 80, 8545–8553. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, B. Label-free single-nucleotide polymorphism detection using a cationic tetrahedralfluorene and silica nanoparticles. Anal. Chem. 2007, 79, 7214–7220. [Google Scholar] [CrossRef] [PubMed]
- Bonacchi, S.; Montalti, M.; Prodi, L.; Zaccheroni, N.; Juris, R.; Genovese, D.; Rampazzo, E. Silica Nanoparticles Doped with Multiple Dyes Featuring Highly Efficient Energy Transfer and Tunable Stokes-Shift. U.S. Patents 9616141B2, 11 April 2017. [Google Scholar]
- Rampazzo, E.; Genovese, D.; Palomba, F.; Prodi, L.; Zaccheroni, N. Nir fluorescent dye doped silica nanoparticles for in vivo imaging, sensing and theranostic. Methods Appl. Fluoresc. 2018, 6, 022002. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.J.; Giovannini, G.; Kunc, F.; Hall, A.J.; Gubala, V. ‘Overloading’ fluorescent silica nanoparticles with dyes to improve biosensor performance. J. Mater. Chem. B 2017, 5, 5564–5572. [Google Scholar] [CrossRef]
- Ahmad, A.; Zakaria, N.D.; Razak, K.A. Photostability effect of silica nanoparticles encapsulated fluorescence dye. AIP Conf. Proc. 2017, 1901, 020010. [Google Scholar] [CrossRef]
- Wang, B.; Chen, Y.; Wu, Y.; Weng, B.; Liu, Y.; Lu, Z.; Li, C.M.; Yu, C. Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosens. Bioelectron. 2016, 78, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Dubertret, B.; Calame, M.; Libchaber, A.J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat. Biotechnol. 2001, 19, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, D.J.; Taylor, J.R.; Nie, S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J. Am. Chem. Soc. 2002, 124, 9606–9612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fu, Y.; Lakowicz, J.R. Enhanced förster resonance energy transfer (FRET) on a single metal particle. J. Phys. Chem. C 2007, 111, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Duan, N.; Wu, S.; Dai, S.; Miao, T.; Chen, J.; Wang, Z. Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim. Acta 2015, 182, 917–923. [Google Scholar] [CrossRef]
- Bülbül, G.; Hayat, A.; Mustafa, F.; Andreescu, S. DNA assay based on nanoceria as fluorescence quenchers (nanoceracq DNA assay). Sci. Rep. 2018, 8, 2426. [Google Scholar] [CrossRef] [PubMed]
- Maragos, C.M.; Busman, M. Rapid and advanced tools for mycotoxin analysis: A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 688–700. [Google Scholar] [CrossRef] [PubMed]
- Shim, W.-B.; Kolosova, A.Y.; Kim, Y.-J.; Yang, Z.-Y.; Park, S.-J.; Eremin, S.A.; Lee, I.-S.; Chung, D.-H. Fluorescence polarization immunoassay based on a monoclonal antibody for the detection of ochratoxin A. Int. J. Food Sci. Technol. 2004, 39, 829–837. [Google Scholar] [CrossRef]
- Ngundi, M.M.; Shriver-Lake, L.C.; Moore, M.H.; Lassman, M.E.; Ligler, F.S.; Taitt, C.R. Array biosensor for detection of ochratoxin A in cereals and beverages. Anal. Chem. 2005, 77, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Ngundi, M.M.; Shriver-Lake, L.C.; Moore, M.H.; Ligler, F.S.; Taitt, C.R. Multiplexed detection of mycotoxins in foods with a regenerable array. J. Food Prot. 2006, 69, 3047–3051. [Google Scholar] [CrossRef] [PubMed]
- Zezza, F.; Longobardi, F.; Pascale, M.; Eremin, S.A.; Visconti, A. Fluorescence polarization immunoassay for rapid screening of ochratoxin A in red wine. Anal. Bioanal. Chem. 2009, 395, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Jeon, K.S.; Suh, Y.D.; Kim, M.G. A label-free, direct and noncompetitive fret immunoassay for ochratoxin A based on intrinsic fluorescence of an antigen and antibody complex. Chem. Commun. 2011, 47, 9098–9100. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Simón, B.; Karube, I.; Saiki, H. Sensitive detection of ochratoxin A in wine and cereals using fluorescence-based immunosensing. Food Chem. 2012, 135, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.C.; Duato, P.; Bonel, L.; Castillo, J.R. Molecularly imprinted on-line solid-phase extraction coupled with fluorescence detection for the determination of ochratoxin A in wheat samples. Anal. Lett. 2012, 45, 51–62. [Google Scholar] [CrossRef]
- Liang, Y.; Huang, X.; Yu, R.; Zhou, Y.; Xiong, Y. Fluorescence elisa for sensitive detection of ochratoxin A based on glucose oxidase-mediated fluorescence quenching of CdTe QDs. Anal. Chim. Acta 2016, 936, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhan, S.; Xu, H.; Meng, X.; Xiong, Y.; Chen, X. Ultrasensitive fluorescence immunoassay for detection of ochratoxin A using catalase-mediated fluorescence quenching of CdTe QDs. Nanoscale 2016, 8, 9390–9397. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, X.; Xiong, Y.; Pei, K.; Nie, L.; Xiong, Y. Silver nanoparticle-based fluorescence-quenching lateral flow immunoassay for sensitive detection of ochratoxin A in grape juice and wine. Toxins 2017, 9, 83. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dostálek, J.; Knoll, W. Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin m1 in milk. Biosens. Bioelectron. 2009, 24, 2264–2267. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Yu, Y.; Niessner, R.; Miro, M.; Knopp, D. Magnetic bead-based fluorescence immunoassay for aflatoxin b1 in food using biofunctionalized rhodamine b-doped silica nanoparticles. Analyst 2010, 135, 2661–2667. [Google Scholar] [CrossRef] [PubMed]
- Zekavati, R.; Safi, S.; Hashemi, S.J.; Rahmani-Cherati, T.; Tabatabaei, M.; Mohsenifar, A.; Bayat, M. Highly sensitive fret-based fluorescence immunoassay for aflatoxin b1 using cadmium telluride quantum dots. Microchim. Acta 2013, 180, 1217–1223. [Google Scholar] [CrossRef]
- Xu, W.; Xiong, Y.; Lai, W.; Xu, Y.; Li, C.; Xie, M. A homogeneous immunosensor for afb1 detection based on fret between different-sized quantum dots. Biosens. Bioelectron. 2014, 56, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tang, X.; Wang, D.; Zhang, Q.; Li, P.; Ding, X. Rapid on-site sensing aflatoxin B1 in food and feed via a chromatographic time-resolved fluoroimmunoassay. PLoS ONE 2015, 10, e0123266. [Google Scholar] [CrossRef] [PubMed]
- Beloglazova, N.V.; Eremin, S.A. Rapid screening of aflatoxin B1 in beer by fluorescence polarization immunoassay. Talanta 2015, 142, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhou, X.; Zhang, Y.; Song, B.; Zhang, J.; Shi, H. Highly sensitive and simultaneous detection of melamine and aflatoxin m1 in milk products by multiplexed planar waveguide fluorescence immunosensor (MPWFI). Food Chem. 2016, 197, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Zhu, A.; Wang, H.; Wu, J.; Zhou, L.; Long, F. Direct and ultrasensitive optofluidic-based immunosensing assay of aflatoxin m1 in dairy products using organic solvent extraction. Anal. Chim. Acta 2016, 940, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Thompson, V.S.; Maragos, C.M. Fiber-optic immunosensor for the detection of fumonisin B1. J. Agric. Food Chem. 1996, 44, 1041–1046. [Google Scholar] [CrossRef]
- Urraca, J.L.; Benito-Peña, E.; Pérez-Conde, C.; Moreno-Bondi, M.C.; Pestka, J.J. Analysis of zearalenone in cereal and swine feed samples using an automated flow-through immunosensor. J. Agric. Food Chem. 2005, 53, 3338–3344. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Mi, T.; Oliveri Conti, G.; Yu, Q.; Wen, K.; Shen, J.; Ferrante, M.; Wang, Z. Development of a screening fluorescence polarization immunoassay for the simultaneous detection of fumonisins B1 and B2 in maize. J. Agric. Food Chem. 2015, 63, 4940–4946. [Google Scholar] [CrossRef] [PubMed]
- Beloglazova, N.V.; Speranskaya, E.S.; Wu, A.; Wang, Z.; Sanders, M.; Goftman, V.V.; Zhang, D.; Goryacheva, I.Y.; De Saeger, S. Novel multiplex fluorescent immunoassays based on quantum dot nanolabels for mycotoxins determination. Biosens. Bioelectron. 2014, 62, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Rhouati, A.; Bulbul, G.; Latif, U.; Hayat, A.; Li, Z.-H.; Marty, J.L. Nano-aptasensing in mycotoxin analysis: Recent updates and progress. Toxins 2017, 9, 349. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Yang, C.; Rhouati, A.; Marty, J. Recent advances and achievements in nanomaterial-based, and structure switchable aptasensing platforms for ochratoxin A detection. Sensors 2013, 13, 15187–15208. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Ren, J.; Miao, Y.; Wang, J.; Wang, E. Pvp-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Biosens. Bioelectron. 2011, 26, 3494–3499. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Ren, J.; Wang, J.; Wang, E. Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. Talanta 2011, 85, 2517–2521. [Google Scholar] [CrossRef] [PubMed]
- Duan, N.; Wu, S.-J.; Wang, Z.-P. An aptamer-based fluorescence assay for ochratoxin A. Chin. J. Anal. Chem. 2011, 39, 300–304. [Google Scholar] [CrossRef]
- Chen, J.; Fang, Z.; Liu, J.; Zeng, L. A simple and rapid biosensor for ochratoxin A based on a structure-switching signaling aptamer. Food Control 2012, 25, 555–560. [Google Scholar] [CrossRef]
- Duan, N.; Wu, S.; Ma, X.; Chen, X.; Huang, Y.; Wang, Z. Gold nanoparticle-based fluorescence resonance energy transfer aptasensor for ochratoxin A detection. Anal. Lett. 2012, 45, 714–723. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Yang, G.; Chen, J.; Wang, S. A signal-on fluorescent aptasensor based on Tb3+ and structure-switching aptamer for label-free detection of ochratoxin A in wheat. Biosens. Bioelectron. 2013, 41, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, J.; Wang, X.; Duan, Y. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Biosens. Bioelectron. 2015, 65, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, X.; Cai, S.; Wu, D.; Chen, M.; Wang, S.; Zhang, J. A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Biosens. Bioelectron. 2014, 57, 226–231. [Google Scholar] [CrossRef] [PubMed]
- McKeague, M.; Velu, R.; Hill, K.; Bardóczy, V.; Mészáros, T.; DeRosa, M. Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A. Toxins 2014, 6, 2435–2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayat, A.; Mishra, R.K.; Catanante, G.; Marty, J.L. Development of an aptasensor based on a fluorescent particles-modified aptamer for ochratoxin A detection. Anal. Bioanal. Chem. 2015, 407, 7815–7822. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Hayat, A.; Mishra, R.; Catanante, G.; Bhand, S.; Marty, J. Titanium dioxide nanoparticles (TiO2) quenching based aptasensing platform: Application to ochratoxin A detection. Toxins 2015, 7, 3771–3784. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Hayat, A.; Mishra, R.K.; Catanante, G.; Shahid, S.A.; Bhand, S.; Marty, J.L. Design of a fluorescence aptaswitch based on the aptamer modulated nano-surface impact on the fluorescence particles. RSC Adv. 2016, 6, 65579–65587. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Pang, G.; Zhang, Y.; Guo, S. Tuning the aggregation/disaggregation behavior of graphene quantum dots by structure-switching aptamer for high-sensitivity fluorescent ochratoxin A sensor. Anal. Chem. 2017, 89, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tan, R.; Chen, D. Fluorescence method for quickly detecting ochratoxin A in flour and beer using nitrogen doped carbon dots and silver nanoparticles. Talanta 2018, 182, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Rhouati, A.; Nasir, M.; Marty, J.-L.; Hayat, A. Photoinduced discharge of electrons stored in a TiO2-mwcnt composite to an analyte: Application to the fluorometric determination of hydrogen peroxide, glucose and aflatoxin B1. Microchim. Acta 2018, 185, 26. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Chen, X.; Wang, Y.; Zheng, X.; Li, C.M. Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchim. Acta 2015, 182, 571–578. [Google Scholar] [CrossRef]
- Sharma, A.; Catanante, G.; Hayat, A.; Istamboulie, G.; Ben Rejeb, I.; Bhand, S.; Marty, J.L. Development of structure switching aptamer assay for detection of aflatoxin M1 in milk sample. Talanta 2016, 158, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Goud, K.Y.; Sharma, A.; Hayat, A.; Catanante, G.; Gobi, K.V.; Gurban, A.M.; Marty, J.L. Tetramethyl-6-carboxyrhodamine quenching-based aptasensing platform for aflatoxin B1: Analytical performance comparison of two aptamers. Anal. Biochem. 2016, 508, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Tayebi, M.; Tavakkoli Yaraki, M.; Ahmadieh, M.; Tahriri, M.; Vashaee, D.; Tayebi, L. Determination of total aflatoxin using cysteamine-capped CdS quantum dots as a fluorescence probe. Colloid Polym. Sci. 2016, 294, 1453–1462. [Google Scholar] [CrossRef]
- Sabet, F.S.; Hosseini, M.; Khabbaz, H.; Dadmehr, M.; Ganjali, M.R. Fret-based aptamer biosensor for selective and sensitive detection of aflatoxin B1 in peanut and rice. Food Chem. 2017, 220, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wen, F.; Li, M.; Guo, X.; Li, S.; Zheng, N.; Wang, J. A simple aptamer-based fluorescent assay for the detection of aflatoxin B1 in infant rice cereal. Food Chem. 2017, 215, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Bhatt, P.; Manonmani, H.K. Fluorescent competitive aptasensor for detection of aflatoxin B1. J. Mol. Recognit. 2017, 30, e2650. [Google Scholar] [CrossRef] [PubMed]
- Yugender Goud, K.; Hayat, A.; Satyanarayana, M.; Sunil Kumar, V.; Catanante, G.; Vengatajalabathy Gobi, K.; Marty, J.L. Aptamer-based zearalenone assay based on the use of a fluorescein label and a functional graphene oxide as a quencher. Microchim. Acta 2017, 184, 4401–4408. [Google Scholar] [CrossRef]
S. No. | Method/Principle | Matrix | Linearity (ng mL−1) | LOD (ng mL−1) | Reference |
---|---|---|---|---|---|
1. | Fluorescence polarization competitive immunoassay (FPIA) | Barley | 5.0 × 103–200.0 × 103 | 3.0 × 103 | [36] |
2. | Fluorescence | Coffee and wine | 3.8–100 | 7–38 | [37] |
3. | Fluorescence | Corn | - | 15 | [38] |
4. | FPIA | Wine | 2.0–5.0 | 0.7 | [39] |
5. | Florescence resonance energy transfer (FRET) | Wheat | 20–100 | 1 | [40] |
6. | Fluorescence | Wine and Corn | - | 12 × 10−4 | [41] |
7. | MIPSE-FLD | Wheat | 3–18 | 1.2 | [42] |
8. | Fluorescence coupled ELISA | Corn | 0.0024–0.625 | 0.0022 | [43] |
9. | Fluorescence quenching | Wheat, corn and rice | 5 × 10−5–1 × 10−4 | 5 × 10−5 | [44] |
10. | Fluorescence quenching | Wine and grape | 0.08–5.0 | 0.06 | [45] |
S. No. | Analyte | Method/Principle | Matrix | Linearity (ng mL−1) | LOD (ng mL−1) | Reference |
---|---|---|---|---|---|---|
1. | Aflatoxin M1 (AFM1) | Surface plasmon-enhanced fluorescence (SPFS) | Milk | 10−6–1.0 | 6 × 10−4 | [46] |
2. | Aflatoxin B1 (AFB1) | Fluorescence
| Peanut | 0.5–7 0.5–30 | 0.2 0.1 | [47] |
3. | AFB1 | FRET | Human serum | 0.031–0.187 | 0.006 | [48] |
4. | AFB1 | FRET | Rice | 0.06–5 | 0.04 | [49] |
5. | AFB1 | Time resolved fluorescence (TRF) based immunosensor | Peanut, corn, vegetable oil | 0.2–60 | 0.06 to 0.12 | [50] |
6. | AFB1 | Fluorescence polarization immunoassay (FPIA) | Beer sample | - | 1 | [51] |
7. | AFM1 | Total internal reflection fluorescence (TIRF) | - | 0.073–0.400 | 0.045 | [52] |
8. | AFM1 | Fluorescence | Milk | - | 5 | [53] |
9. | Fumonisin B1 (FB1) | Fluorescence | Corn | 10–1000 | 10 | [54] |
10. | Deoxynivalenol (DON) | Fluorescence | Corn | - | 150 | [38] |
11. | Zearalenone (ZEN) | SAM and DAM-FLISA | Cereals | - | 0.6 and 1.8 | [57] |
12. | FB1 and FB2 | FPIA | Maize | - | 157.4 (FB1) and 290.6 (FB2) | [56] |
S. No. | Principle/Material | Linearity (ng mL−1) | LOD (ng mL−1) | Matrix | Reference |
---|---|---|---|---|---|
1. | Graphene oxide—bare graphene PVP coated graphene oxide | 8.01 × 10−1–14.133 × 10−3 20.19–201.9 | 0.767 0.955 | Beer | [60] |
2. | Single-walled carbon nanotubes (SWCNTs) | 10.09–80.76 | 9.73 | Beer | [61] |
3. | Structure switching aptamer assay | 0.002–10 | 0.001 | Corn | [62] |
4. | Structure switching aptamer assay | 1–100 | 0.8 | Corn | [63] |
5. | GNP-based FRET | 0.005–5 | 0.002 | Maize | [64] |
6. | Terbium (Tb3+) | 0.1–1 | 0.02 | Wheat | [65] |
7. | Nanographite (Amplified fluorescent aptasensor) | - | 8.07 | Red wine | [66] |
8. | DNA-scaffolded silver-nanoclusters | 0–30 | 0.002 | Wheat | [67] |
9. | Fluorescence | 3.63–40.38 | 3.63 | - | [68] |
10. |
| 0.04–60.57 0.08–56.53 0.10–20.19 | 0.002 0.085 0.092 | Beer | [69] |
11. | Titanium dioxide nanoparticles (TiO2-NPs) | 0.60–403.8 | 0.60 | Beer | [70] |
12. | TiO2-NPs | 6.86–2020 | 0.55 | Beer | [71] |
13. | Cademium-telluirde (CdTe) QDs-MoS2 nanosheets | 1–1000 | 1 | Red wine | [19] |
14. | Graphene quantum dots (GQDs) | 0–1 | 0.013 | Red wine | [72] |
15. | Nitrogen doped carbon dots and silver nanoparticles | 4.04–2020 | 3.53 | Flour and beer | [73] |
S.No | Analyte | Principle | Matrix | Linearity (ng mL−1) | LOD (ng mL−1) | Reference |
---|---|---|---|---|---|---|
1. | AFB1 | Fluorescence | Buffer peanut oil | 0.99–6250 4.99 × 10−1–49.96 × 10−4 | 0.31 0.44 | [75] |
2. | AFM1 | Fluorescence | Milk | 0.001–2.0 | 0.005 | [76] |
3. | AFB1 | Fluorescence | Beer and wine | 0.25–32 | 0.2 | [77] |
4. | AFB1 | Fluorescence | Peanut and corn | 0.005–2.00 | 0.005 | [29] |
5. | AFB1, AFB2, AFG1, AFG2 | Fluorescence | - | 2.4–48 | 0.05 | [78] |
6. | AFB1 | Fluorescence | Rice and peanut | 3.12–124.91 | 1.06 | [79] |
7. | AFB1 | Fluorescence | Infant Rice cereal | 5–100 | 1.6 | [80] |
8. | AFB1 | Fluorescence | Dried red chilies, groundnut, and whole pepper | 0.05–50 | 0.01 | [81] |
9. | FB1 | FRET | Maize | 0.1–500 | 0.1 | [20] |
10. | ZEN | FRET | Beer and wine | 0.5–64 | 0.5 | [82] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, A.; Khan, R.; Catanante, G.; Sherazi, T.A.; Bhand, S.; Hayat, A.; Marty, J.L. Designed Strategies for Fluorescence-Based Biosensors for the Detection of Mycotoxins. Toxins 2018, 10, 197. https://doi.org/10.3390/toxins10050197
Sharma A, Khan R, Catanante G, Sherazi TA, Bhand S, Hayat A, Marty JL. Designed Strategies for Fluorescence-Based Biosensors for the Detection of Mycotoxins. Toxins. 2018; 10(5):197. https://doi.org/10.3390/toxins10050197
Chicago/Turabian StyleSharma, Atul, Reem Khan, Gaelle Catanante, Tauqir A. Sherazi, Sunil Bhand, Akhtar Hayat, and Jean Louis Marty. 2018. "Designed Strategies for Fluorescence-Based Biosensors for the Detection of Mycotoxins" Toxins 10, no. 5: 197. https://doi.org/10.3390/toxins10050197
APA StyleSharma, A., Khan, R., Catanante, G., Sherazi, T. A., Bhand, S., Hayat, A., & Marty, J. L. (2018). Designed Strategies for Fluorescence-Based Biosensors for the Detection of Mycotoxins. Toxins, 10(5), 197. https://doi.org/10.3390/toxins10050197