Effects of Nano-Composite Adsorbents on the Growth Performance, Serum Biochemistry, and Organ Weights of Broilers Fed with Aflatoxin-Contaminated Feed
Abstract
:1. Introduction
2. Results
2.1. Growth Performance
2.2. Broiler Chicken Organ Weights
2.3. Biochemical and Haematological Parameters
2.4. Levels of Aflatoxins Recovered from Duodenal Contents
2.5. Hepatic Histopathology
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Aflatoxin Production in PKC
5.2. Sample Preparation and Determination of Aflatoxin in the Feed
5.3. Synthesis of Nano-Composite Modified Adsorbents
5.4. Broiler Chickens and Diets
5.5. Sampling Procedures
5.6. Hepatic Morphology
5.7. Aflatoxins Recovered from Duodenal Content
5.8. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gourama, H.; Bullerman, L.B. Aspergillus flavus and Aspergillus parasiticus: Aflatoxigenic fungi of concern in foods and feeds: A review. J. Food Prot. 1995, 58, 1395–1404. [Google Scholar] [CrossRef]
- Pasha, T.; Farooq, M.; Khattak, F.; Jabbar, M.; Khan, A. Effectiveness of sodium bentonite and two commercial products as aflatoxin absorbents in diets for broiler chickens. Anim. Feed Sci. Technol. 2007, 132, 103–110. [Google Scholar] [CrossRef]
- Nilipour, A. Mycotoxins, an insidious global concern. World Poult. 2002, 2, 18–20. [Google Scholar]
- Kubena, L.; Harvey, R.; Phillips, T.; Clement, B. Effect of hydrated sodium calcium aluminosilicates on aflatoxicosis in broiler chicks. Poult. Sci. 1993, 72, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Huff, W.; Harvey, R.; Kubena, L.; Rottinghaus, G. Toxic synergism between aflatoxin and T-2 toxin in broiler chickens. Poult. Sci. 1988, 67, 1418–1423. [Google Scholar] [CrossRef] [PubMed]
- Pappas, A.; Tsiplakou, E.; Georgiadou, M.; Anagnostopoulos, C.; Markoglou, A.; Liapis, K.; Zervas, G. Bentonite binders in the presence of mycotoxins: Results of in vitro preliminary tests and an in vivo broiler trial. Appl. Clay Sci. 2014, 99, 48–53. [Google Scholar] [CrossRef]
- Chang, C.F.; Hamilton, P.B. Mycotoxicosis. In Disease of Poultry, 9th ed.; Calnek, B.W., Ed.; Wolfe Publishing Ltd.: London, UK, 1991; pp. 893–897. [Google Scholar]
- Yibadatihan, S.; Jinap, S.; Mahyudin, N. Simultaneous determination of multi-mycotoxins in palm kernel cake (PKC) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Food Addit. Contam. Part A 2014, 31, 2071–2079. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Available online: http://ec.europa.eu/environment/waste/sludge/index.htm (accessed on 21 March 2018).
- Shi, Y.; Xu, Z.; Sun, Y.; Wang, C.; Feng, J. Effects of two different types of montmorillonite on growth performance and serum profiles of broiler chicks during aflatoxicosis. Turk. J. Vet. Anim. Sci. 2009, 33, 15–20. [Google Scholar]
- Liu, Y.; Meng, G.; Wang, H.; Zhu, H.; Hou, Y.; Wang, W.; Ding, B. Effect of three mycotoxin adsorbents on growth performance, nutrient retention and meat quality in broilers fed on mould-contaminated feed. Br. Poult. Sci. 2011, 52, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Che, Z.; Liu, Y.; Wang, H.; Zhu, H.; Hou, Y.; Ding, B. The protective effects of different mycotoxin adsorbents against blood and liver pathological changes induced by mold-contaminated feed in broilers. Asian-Australas. J. Anim. Sci. 2011, 24, 250–257. [Google Scholar] [CrossRef]
- Deng, J.-H.; Zhang, X.-R.; Zeng, G.-M.; Gong, J.-L.; Niu, Q.-Y.; Liang, J. Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem. Eng. J. 2013, 226, 189–200. [Google Scholar] [CrossRef]
- Pirouz, A.A. Development of Chitosan and Graphene Oxide-Based Adsorbent for Reduction of Mycotoxin in Palm Kernal Cake. Ph.D. Thesis, Universiti Putra Malaysia, Seri Kembangan, Malaysia, 2017. [Google Scholar]
- Pirouz, A.; Selamat, J.; Iqbal, S.; Mirhosseini, H.; Karjiban, R.A.; Bakar, F.A. The use of innovative and efficient nanocomposite (magnetic graphene oxide) for the reduction on of Fusarium mycotoxins in palm kernel cake. Sci. Rep. 2017, 7, 12453. [Google Scholar] [CrossRef] [PubMed]
- Monson, M.S.; Coulombe, R.A.; Reed, K.M. Aflatoxicosis: Lessons from toxicity and responses to aflatoxin B1 in poultry. Agriculture 2015, 5, 742–777. [Google Scholar] [CrossRef]
- Hanif, N.; Muhammad, G.; Siddique, M.; Khanum, A.; Ahmed, T.; Gadahai, J.; Kaukab, G. Clinico-pathomorphological, serum biochemical and histological studies in broilers fed ochratoxin A and a toxin deactivator (Mycofix® Plus). Br. Poult. Sci. 2008, 49, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Teleb, H.M.; Hegazy, A.A.; Hussein, Y.A. Efficiency of kaolin and activated charcoal to reduce the toxicity of low level of aflatoxin in broilers. Sci. J. King Faisal Univ. 2004, 5, 14–25. [Google Scholar]
- Mishra, H.; Das, C. A review on biological control and metabolism of aflatoxin. Crit. Rev. Food Sci. Nutr. 2003, 43, 245–264. [Google Scholar] [CrossRef] [PubMed]
- Gowda, N.K.; Ledoux, D.R.; Rottinghaus, G.E.; Bermudez, A.J.; Chen, Y.C. Antioxidant efficacy of curcuminoids from turmeric (Curcuma longa L.) powder in broiler chickens fed diets containing aflatoxin B1. Br. J. Nutr. 2009, 102, 1629–1634. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Li, Y.; Fan, Y.; Zhao, L.; Wei, H.; Ji, C.; Zhang, J. Molecular mechanisms of lipoic acid protection against aflatoxin B1-induced liver oxidative damage and inflammatory responses in broilers. Toxins 2015, 7, 5435–5447. [Google Scholar] [CrossRef] [PubMed]
- Aravind, K.; Patil, V.; Devegowda, G.; Umakantha, B.; Ganpule, S. Efficacy of esterified glucomannan to counteract mycotoxicosis in naturally contaminated feed on performance and serum biochemical and hematological parameters in broilers. Poult. Sci. 2003, 82, 571–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tung, H.-T.; Cook, F.; Wyatt, R.; Hamilton, P. The anemia caused by aflatoxin. Poult. Sci. 1975, 54, 1962–1969. [Google Scholar] [CrossRef] [PubMed]
- Kubena, L.; Edrington, T.; Harvey, R.; Buckley, S.; Phillips, T.; Rottinghaus, G.; Casper, H. Individual and combined effects of fumonisin B1 present in Fusarium moniliforme culture material and T-2 toxin or deoxynivalenol in broiler chicks. Poult. Sci. 1997, 76, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Mathur, S.; Constable, P.D.; Eppley, R.M.; Tumbleson, M.E.; Smith, G.W.; Tranquilli, W.J.; Morin, D.E.; Haschek, W.M. Fumonisin B1 increases serum sphinganine concentration but does not alter serum sphingosine concentration or induce cardiovascular changes in milk-fed calves. Toxicol. Sci. 2001, 60, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Selim, K.M.; El-hofy, H.; Khalil, R.H. The efficacy of three mycotoxin adsorbents to alleviate aflatoxin B1-induced toxicity in Oreochromis niloticus. Aquac. Int. 2014, 22, 523–540. [Google Scholar] [CrossRef]
- Abo-Norag, M.; Edrington, T.; Kubena, L.; Harvey, R.; Phillips, T. Influence of a hydrated sodium calcium aluminosilicate and virginiamycin on aflatoxicosis in broiler chicks. Poult. Sci. 1995, 74, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Boudergue, C.; Burel, C.; Dragacci, S.; Favrot, M.C.; Fremy, J.M.; Massimi, C.; Prigent, P.; Debongnie, P.; Pussemier, L.; Boudra, H. Review of mycotoxin-detoxifying agents used as feed additives: Mode of action, efficacy and feed/food safety. EFSA Support. Publ. 2009, 6, 22E. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Arlington, VA, USA, 2000. [Google Scholar]
- Afsah-Hejri, L.; Jinap, S.; Arzandeh, S.; Mirhosseini, H. Optimization of HPLC conditions for quantitative analysis of aflatoxins in contaminated peanut. Food Control 2011, 22, 381–388. [Google Scholar] [CrossRef]
- Jinap, S.; De Rijk, T.; Arzandeh, S.; Kleijnen, H.; Zomer, P.; Van der Weg, G.; Mol, J. Aflatoxin determination using in-line immunoaffinity chromatography in foods. Food Control 2012, 26, 42–48. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Chandra, S.; Bahadur, D. Structural, magnetic, and textural properties of iron oxide-reduced graphene oxide hybrids and their use for the electrochemical detection of chromium. Carbon 2012, 50, 4209–4219. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques; Elsevier Health Sciences: New York, NY, USA, 2008. [Google Scholar]
Age (d) | Broiler Weight (g) | |||||||
---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T6 | SEM | p-Value | |
0 | 45 | 45 | 47 | 47 | 45 | 44 | 0.27 | 0.132 |
7 | 188 | 185 | 182 | 185 | 189 | 180 | 1.59 | 0.898 |
14 | 487 | 486 | 487 | 487 | 487 | 472 | 2.96 | 0.091 |
21 | 886 a | 849 b,c | 870 a,b | 878 a | 872 a,b | 836 c | 5.81 | <0.05 |
28 | 1463 a | 1457 a | 1432 a,b | 1390 c | 1403 b,c | 1337 d | 9.54 | <0.05 |
35 | 2065 a | 2033 a | 2067 a | 2014 a | 2047 a | 1895 b | 12.50 | <0.05 |
Parameter | Treatment | |||||||
---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T6 | SEM | p-Value | |
Feed intake (g) | ||||||||
1 to 21 days | 1275.44 | 1268.12 | 1278.11 | 1276.57 | 1279.01 | 1274.12 | 2.206 | 0.79 |
22 to 35 days | 2064.29 a,b | 2046.19 a,b | 2182.67 a,b | 2238.10 a | 2048.57 a,b | 1984.52 b | 29.782 | <0.05 |
1 to 35 days | 3339.73 a,b | 3314.31 a,b | 3459.78 a,b | 3514.70 a | 3327.58 a,b | 3258.65 b | 30.513 | <0.05 |
Weight gain (g) | ||||||||
1 to 21 days | 840.86 a | 805.27 a,b | 822.71 a,b | 827.08 a,b | 830.94 a | 791.51 b | 5.329 | <0.05 |
22 to 35 days | 1179.28 a | 1183.08 a | 1217.67 a | 1175.34 a | 1176.14 a | 1059.36 b | 15.269 | <0.05 |
1 to 35 days | 2020.14 a | 1988.35 a | 2022.38 a | 1972.41 a | 2007.08 a | 1850.87 b | 17.259 | <0.05 |
Feed conversion ratio (FCR) (g/g) | ||||||||
1 to 21 days | 1.52 b | 1.58 a,b | 1.55 a,b | 1.54 a,b | 1.55 a,b | 1.61 a | 0.0103 | <0.05 |
22 to 35 days | 1.75 a,b | 1.73 b | 1.79 a,b | 1.91 a | 1.79 a,b | 1.88 a,b | 0.0229 | <0.05 |
1 to 35 days | 1.67 b | 1.68 b | 1.70 b | 1.72 a,b | 1.68 b | 1.76 a | 0.0133 | <0.05 |
Mortality (%) | ||||||||
1 to 35 days | 4 | 8 | 4 | 4 | 6 | 10 | 1.1517 | 0.387 |
Treatment | ||||||||
---|---|---|---|---|---|---|---|---|
Organ Weight (g/100 g Body Weight) | T1 | T2 | T3 | T4 | T5 | T6 | SEM | p-Value |
Gizzard | 1.797 | 1.652 | 1.662 | 1.791 | 1.831 | 1.815 | 0.027 | 0.236 |
Liver | 2.018 | 2.202 | 2.011 | 1.942 | 2.138 | 1.955 | 0.038 | 0.292 |
Heart | 0.449 | 0.466 | 0.473 | 0.487 | 0.487 | 0.485 | 0.006 | 0.489 |
Pancreas | 0.211 | 0.216 | 0.200 | 0.193 | 0.208 | 0.198 | 0.204 | 0.604 |
Spleen | 0.110 b | 0.113 b | 0.116 b | 0.126 a,b | 0.113 b | 0.134 a | 0.009 | <0.05 |
Kidney | 0.173 b | 0.200 a | 0.198 a | 0.194 a | 0.191 a | 0.205 a | 0.004 | <0.05 |
Proventriculus | 0.479 | 0.450 | 0.454 | 0.523 | 0.483 | 0.475 | 0.009 | 0.365 |
Bursa of Fabricius | 0.090 | 0.110 | 0.120 | 0.110 | 0.100 | 0.095 | 0.008 | 0.467 |
Treatment | ||||||||
---|---|---|---|---|---|---|---|---|
Serum Profile | T1 | T2 | T3 | T4 | T5 | T6 | SEM | p-Value |
SGOT/AST 1 (IU L−1) | 311.0 | 281.2 | 319.5 | 295.0 | 282.0 | 271.2 | 7.639 | 0.421 |
SGPT/ALT 2 (IU L−1) | 6.40 a | 4.70 a,b | 3.50 b | 3.80 b | 4.10 a,b | 3.20 b | 0.259 | <0.05 |
Urea nitrogen (mmol L−1) | 0.220 | 0.270 | 0.300 | 0.300 | 0.210 | 0.240 | 0.019 | 0.649 |
γ-GT 3 (IU L−1) | 18.70 | 20.20 | 21.30 | 21.30 | 17.40 | 17.70 | 0.627 | 0.267 |
Alkaline phosphatase (IU L−1) | 2765.9 a | 2114.8 a,b | 2766.4 a | 1952.1 b | 2174.7 a,b | 1784.9 b | 83.34 | <0.05 |
Cholesterol (mmol L−1) | 2.960 | 2.930 | 3.300 | 3.310 | 3.190 | 3.010 | 0.060 | 0.241 |
Total proteins (g L−1) | 29.02 | 27.99 | 29.59 | 30.12 | 27.19 | 27.07 | 0.567 | 0.537 |
Albumins (g L−1) | 10.55 a | 9.84 a,b | 10.31 a,b | 9.35 b | 9.39 b | 9.49 b | 0.186 | <0.05 |
Globulins (g L−1) | 19.07 | 18.15 | 19.28 | 19.07 | 17.80 | 17.58 | 0.413 | 0.769 |
Albumins/globulins | 0.529 | 0.548 | 0.540 | 0.583 | 0.530 | 0.547 | 0.546 | 0.330 |
Hematocrit (%) | 27.67 | 28.10 | 26.25 | 28.30 | 32.00 | 29.62 | 3.03 | 0.546 |
Ingredient (g/kg Unless Stated Otherwise) | Starter (1 to 21 Days) | Grower (22 to 35 Days) |
---|---|---|
Ground yellow corn | 521.2 | 460.0 |
Soybean meal | 347.0 | 249.5 |
Palm kernel cake (PKE) | 50.0 | 200.0 |
Dicalcium phosphate | 17.0 | 13.0 |
Salt (NaCl) | 3.0 | 3.5 |
Vitamin Premix 1 | 0.5 | 0.5 |
Mineral Premix 2 | 1.0 | 1.0 |
Corn oil | 44.0 | 60.0 |
Limestone | 11.0 | 8.0 |
Choline | 0.5 | 0.5 |
L-Lysine HCl | 3.2 | 2.5 |
DL-methionine | 1.6 | 1.5 |
Total | 1000.0 | 1000.0 |
Calculated chemical analysis | ||
Metabolisable energy (Mcal/kg) | 2.99 | 2.94 |
Crude protein (CP) | 208.0 | 184.0 |
Fat | 63.1 | 52.2 |
Fiber | 39.0 | 36.5 |
Methionine | 4.8 | 4.4 |
Lysine | 13.0 | 10.2 |
Calcium | 9.2 | 7.2 |
Phosphorus | 4.2 | 3.3 |
Treatment | Presence of Adsorbent [Added to Feed (g kg−1)] | Presence of Mycotoxin (µg/kg) 1 | ||||
---|---|---|---|---|---|---|
AFB1 | AFB2 | AFG1 | AFG2 | Total AF | ||
T1 | No | ND | ND | ND | ND | ND |
T2 | Yes (2.5 g kg−1) | ND | ND | ND | ND | ND |
T3 | Yes (5.0 g kg−1) | ND | ND | ND | ND | ND |
T4 | Yes (2.5 g kg−1) | 21.0 ± 0.12 | 5.0 ± 0.81 | 12.0 ± 0.16 | 3.0 ± 0.11 | 41.0 ± 0.15 |
T5 | Yes (5.0 g kg−1) | 19.0 ± 0.23 | 4.0 ± 0.50 | 11.0 ± 0.51 | 4.0 ± 0.18 | 38.0 ± 0.31 |
T6 | No | 22.0 ± 0.11 | 4.0 ± 0.62 | 8.0 ± 0.30 | 4.0 ± 0.22 | 38.0 ± 0.16 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saminathan, M.; Selamat, J.; Abbasi Pirouz, A.; Abdullah, N.; Zulkifli, I. Effects of Nano-Composite Adsorbents on the Growth Performance, Serum Biochemistry, and Organ Weights of Broilers Fed with Aflatoxin-Contaminated Feed. Toxins 2018, 10, 345. https://doi.org/10.3390/toxins10090345
Saminathan M, Selamat J, Abbasi Pirouz A, Abdullah N, Zulkifli I. Effects of Nano-Composite Adsorbents on the Growth Performance, Serum Biochemistry, and Organ Weights of Broilers Fed with Aflatoxin-Contaminated Feed. Toxins. 2018; 10(9):345. https://doi.org/10.3390/toxins10090345
Chicago/Turabian StyleSaminathan, Mookiah, Jinap Selamat, Atena Abbasi Pirouz, Norhani Abdullah, and Idrus Zulkifli. 2018. "Effects of Nano-Composite Adsorbents on the Growth Performance, Serum Biochemistry, and Organ Weights of Broilers Fed with Aflatoxin-Contaminated Feed" Toxins 10, no. 9: 345. https://doi.org/10.3390/toxins10090345
APA StyleSaminathan, M., Selamat, J., Abbasi Pirouz, A., Abdullah, N., & Zulkifli, I. (2018). Effects of Nano-Composite Adsorbents on the Growth Performance, Serum Biochemistry, and Organ Weights of Broilers Fed with Aflatoxin-Contaminated Feed. Toxins, 10(9), 345. https://doi.org/10.3390/toxins10090345