Evolutionary Features in the Structure and Function of Bacterial Toxins
Abstract
:1. Introduction
- (a)
- Toxins targeting actin cytoskeleton components.
- (b)
- Toxins targeting ubiquitin and ubiquitin-like signaling.
- (c)
- Toxins targeting cell translational machinery.
- (d)
- Toxins affecting secondary messengers and signaling components.
- (e)
- Toxins disrupting the membrane integrity.
- (f)
- Toxins with enzymatic activity.
- (g)
- Toxins targeting DNA and inducing endoplasmic reticulum stress.
2. Toxin Structures and Their Role in Defining Macromolecular Structure and Functions
2.1. Induced Folding of Bacterial Toxins
2.2. How Disorder Can Impact Substrate Binding
2.3. Toxins Containing Disordered Regions in Their Native State
3. The Uniqueness of Enzymatic Function
4. Symphony of Enzyme-Substrate Interactions for Harmonious Function
5. Other Protein—Protein Interaction of Bacterial Toxins
6. Evolution of Bacterial Toxins
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, B.R.; Kumar, R.; Cai, S. Molecular mechanism and effects of clostridial neurotoxins. In Handbook of Neurotoxicity; Kostrzewa, R.M., Ed.; Springer: New York, NY, USA, 2014; pp. 513–551. [Google Scholar]
- Rudkin, J.K.; McLoughlin, R.M.; Preston, A.; Massey, R.C. Bacterial toxins: Offensive, defensive, or something else altogether? PLoS Pathog. 2017, 13, e1006452. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, G.; van der Goot, F.G. The bacterial toxin toolkit. Nat. Rev. Mol. Cell Boil. 2001, 2, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Antignani, A.; Fitzgerald, D. Immunotoxins: The role of the toxin. Toxins 2013, 5, 1486–1502. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.; Holmgren, J. Cholera toxin—A foe & a friend. Indian J. Med. Res. 2011, 133, 153–163. [Google Scholar] [PubMed]
- Melton-Celsa, A.R. Shiga toxin (stx) classification, structure, and function. Microbiol. Spectr. 2014, 2, 37–53. [Google Scholar] [CrossRef]
- Ma, Y. Recent advances in nontoxic escherichia coli heat-labile toxin and its derivative adjuvants. Expert Rev. Vaccines 2016, 15, 1361–1371. [Google Scholar] [CrossRef]
- Weiglmeier, P.R.; Rosch, P.; Berkner, H. Cure and curse: E. Coli heat-stable enterotoxin and its receptor guanylyl cyclase C. Toxins 2010, 2, 2213–2229. [Google Scholar] [CrossRef] [PubMed]
- Holmes, R.K. Biology and molecular epidemiology of diphtheria toxin and the tox gene. J. Infect. Dis. 2000, 181 (Suppl. 1), S156–S167. [Google Scholar] [CrossRef]
- Wolf, P.; Elsasser-Beile, U. Pseudomonas exotoxin a: From virulence factor to anti-cancer agent. Int. J. Med Microbiol. 2009, 299, 161–176. [Google Scholar] [CrossRef]
- Locht, C.; Coutte, L.; Mielcarek, N. The ins and outs of pertussis toxin. FEBS J. 2011, 278, 4668–4682. [Google Scholar] [CrossRef] [Green Version]
- Young, J.A.; Collier, R.J. Anthrax toxin: Receptor binding, internalization, pore formation, and translocation. Annu. Rev. Biochem. 2007, 76, 243–265. [Google Scholar] [CrossRef] [PubMed]
- Ladhani, S.; Joannou, C.L.; Lochrie, D.P.; Evans, R.W.; Poston, S.M. Clinical, microbial, and biochemical aspects of the exfoliative toxins causing staphylococcal scalded-skin syndrome. Clin. Microbiol. Rev. 1999, 12, 224–242. [Google Scholar] [CrossRef] [PubMed]
- Carbonetti, N.H. Pertussis toxin and adenylate cyclase toxin: Key virulence factors of bordetella pertussis and cell biology tools. Future Microbiol. 2010, 5, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Niilo, L. Clostridium perfringens in animal disease: A review of current knowledge. Can. Vet. J. 1980, 21, 141–148. [Google Scholar]
- Pinchuk, I.V.; Beswick, E.J.; Reyes, V.E. Staphylococcal enterotoxins. Toxins 2010, 2, 2177–2197. [Google Scholar] [CrossRef] [PubMed]
- Bhakdi, S.; Tranum-Jensen, J. Alpha-toxin of staphylococcus aureus. Microbiol. Rev. 1991, 55, 733–751. [Google Scholar] [PubMed]
- Spaulding, A.R.; Salgado-Pabon, W.; Kohler, P.L.; Horswill, A.R.; Leung, D.Y.; Schlievert, P.M. Staphylococcal and streptococcal superantigen exotoxins. Clin. Microbiol. Rev. 2013, 26, 422–447. [Google Scholar] [CrossRef]
- Stach, C.S.; Herrera, A.; Schlievert, P.M. Staphylococcal superantigens interact with multiple host receptors to cause serious diseases. Immunol. Res. 2014, 59, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.; Cai, S.; Singh, B.R. Current strategies for designing antidotes against botulinum neurotoxins. Expert Opin. Drug Discov. 2014, 9, 319–333. [Google Scholar] [CrossRef]
- Singh, B.R.; Li, B.; Read, D. Botulinum versus tetanus neurotoxins: Why is botulinum neurotoxin but not tetanus neurotoxin a food poison? Toxicon 1995, 33, 1541–1547. [Google Scholar] [CrossRef]
- Dunker, A.K.; Obradovic, Z. The protein trinity--linking function and disorder. Nat. Biotechnol. 2001, 19, 805–806. [Google Scholar] [CrossRef] [PubMed]
- Wright, P.E.; Dyson, H.J. Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. J. Mol. Boil. 1999, 293, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N. Unusual biophysics of intrinsically disordered proteins. Biochim. Biophys. Acta 2013, 1834, 932–951. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.W.; Romero, P.; Uversky, V.N.; Dunker, A.K. Conservation of intrinsic disorder in protein domains and families: II. Functions of conserved disorder. J. Proteome Res. 2006, 5, 888–898. [Google Scholar] [CrossRef] [PubMed]
- Heller, G.T.; Aprile, F.A.; Vendruscolo, M. Methods of probing the interactions between small molecules and disordered proteins. Cell. Mol. Life Sci. 2017, 74, 3225–3243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosol, S.; Contreras-Martos, S.; Cedeno, C.; Tompa, P. Structural characterization of intrinsically disordered proteins by nmr spectroscopy. Molecules 2013, 18, 10802–10828. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N. Intrinsically disordered proteins from A to Z. Int. J. Biochem. Cell Boil. 2011, 43, 1090–1103. [Google Scholar] [CrossRef]
- Obradovic, Z.; Peng, K.; Vucetic, S.; Radivojac, P.; Brown, C.J.; Dunker, A.K. Predicting intrinsic disorder from amino acid sequence. Proteins 2003, 53 (Suppl. 6), 566–572. [Google Scholar] [CrossRef] [Green Version]
- Tompa, P. The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 2005, 579, 3346–3354. [Google Scholar] [CrossRef] [Green Version]
- Hemmings, H.C., Jr.; Greengard, P.; Tung, H.Y.; Cohen, P. Darpp-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 1984, 310, 503–505. [Google Scholar] [CrossRef]
- Marin, M.; Uversky, V.N.; Ott, T. Intrinsic disorder in pathogen effectors: Protein flexibility as an evolutionary hallmark in a molecular arms race. Plant Cell 2013, 25, 3153–3157. [Google Scholar] [CrossRef] [PubMed]
- Dyson, H.J.; Wright, P.E. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Boil. 2002, 12, 54–60. [Google Scholar] [CrossRef]
- Receveur-Brechot, V.; Bourhis, J.M.; Uversky, V.N.; Canard, B.; Longhi, S. Assessing protein disorder and induced folding. Proteins 2006, 62, 24–45. [Google Scholar] [CrossRef] [PubMed]
- Tompa, P.; Schad, E.; Tantos, A.; Kalmar, L. Intrinsically disordered proteins: Emerging interaction specialists. Curr. Opin. Struct. Boil. 2015, 35, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, C.J.; Meng, J.; Yang, J.Y.; Yang, M.Q.; Uversky, V.N.; Dunker, A.K. Flexible nets: Disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genom. 2008, 9 (Suppl. 1), S1. [Google Scholar] [CrossRef] [PubMed]
- Wright, P.E.; Dyson, H.J. Linking folding and binding. Curr. Opin. Struct. Boil. 2009, 19, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammes, G.G.; Chang, Y.C.; Oas, T.G. Conformational selection or induced fit: A flux description of reaction mechanism. Proc. Natl. Acad. Sci. USA 2009, 106, 13737–13741. [Google Scholar] [CrossRef] [Green Version]
- Tompa, P. Intrinsically disordered proteins: A 10-year recap. Trends Biochem. Sci. 2012, 37, 509–516. [Google Scholar] [CrossRef]
- Romero, P.; Obradovic, Z.; Kissinger, C.R.; Villafranca, J.E.; Garner, E.; Guilliot, S.; Dunker, A.K. Thousands of proteins likely to have long disordered regions. In Proceedings of the Pacific Symposium on Biocomputing, Maui, HI, USA, 4–9 January 1998; pp. 437–448. [Google Scholar]
- Shoemaker, B.A.; Portman, J.J.; Wolynes, P.G. Speeding molecular recognition by using the folding funnel: The fly-casting mechanism. Proc. Natl. Acad. Sci. USA 2000, 97, 8868–8873. [Google Scholar] [CrossRef] [Green Version]
- Feltrup, T.M.; Patel, K.; Kumar, R.; Cai, S.; Singh, B.R. A novel role of c-terminus in introducing a functionally flexible structure critical for the biological activity of botulinum neurotoxin. Sci. Rep. 2018, 8, 8884. [Google Scholar] [CrossRef]
- Kukreja, R.; Singh, B. Biologically active novel conformational state of botulinum, the most poisonous poison. J. Boil. Chem. 2005, 280, 39346–39352. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N.; Dave, V.; Iakoucheva, L.M.; Malaney, P.; Metallo, S.J.; Pathak, R.R.; Joerger, A.C. Pathological unfoldomics of uncontrolled chaos: Intrinsically disordered proteins and human diseases. Chem. Rev. 2014, 114, 6844–6879. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Montiel, A.V.; Canaves, J.M.; DasGupta, B.R.; Wilson, M.C.; Montal, M. Tyrosine phosphorylation modulates the activity of clostridial neurotoxins. J. Boil. Chem. 1996, 271, 18322–18325. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Maditz, R.; Kuo, C.L.; Fishman, P.S.; Shoemaker, C.B.; Oyler, G.A.; Weissman, A.M. Targeting botulinum neurotoxin persistence by the ubiquitin-proteasome system. Proc. Natl. Acad. Sci. USA 2010, 107, 16554–16559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raiborg, C.; Stenmark, H. The escrt machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 2009, 458, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Montal, M. Botulinum neurotoxin: A marvel of protein design. Annu. Rev. Biochem. 2010, 79, 591–617. [Google Scholar] [CrossRef]
- Feltrup, T.M.; Kumar, R.; Singh, B.R. Relevance of Intrinsic Disorder in Protein Structure and Function; Springer: Cham, Switzerland, 2016. [Google Scholar]
- O’Brien, D.P.; Hernandez, B.; Durand, D.; Hourdel, V.; Sotomayor-Perez, A.C.; Vachette, P.; Ghomi, M.; Chamot-Rooke, J.; Ladant, D.; Brier, S.; et al. Structural models of intrinsically disordered and calcium-bound folded states of a protein adapted for secretion. Sci. Rep. 2015, 5, 14223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uversky, V.N.; Segel, D.J.; Doniach, S.; Fink, A.L. Association-induced folding of globular proteins. Proc. Natl. Acad. Sci. USA 1998, 95, 5480–5483. [Google Scholar] [CrossRef] [Green Version]
- Babu, M.M.; van der Lee, R.; de Groot, N.S.; Gsponer, J. Intrinsically disordered proteins: Regulation and disease. Curr. Opin. Struct. Boil. 2011, 21, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, D.; Szabo, B.; Pancsa, R.; Tompa, P. Intrinsically disordered proteins undergo and assist folding transitions in the proteome. Arch. Biochem. Biophys. 2013, 531, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Vamvaca, K.; Vogeli, B.; Kast, P.; Pervushin, K.; Hilvert, D. An enzymatic molten globule: Efficient coupling of folding and catalysis. Proc. Natl. Acad. Sci. USA 2004, 101, 12860–12864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tompa, P. Intrinsically unstructured proteins evolve by repeat expansion. BioEssays 2003, 25, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Sotomayor-Perez, A.C.; Ladant, D.; Chenal, A. Calcium-induced folding of intrinsically disordered repeat-in-toxin (rtx) motifs via changes of protein charges and oligomerization states. J. Boil. Chem. 2011, 286, 16997–17004. [Google Scholar] [CrossRef] [PubMed]
- Welch, R.A. Rtx toxin structure and function: A story of numerous anomalies and few analogies in toxin biology. Curr. Top. Microbiol. Immunol. 2001, 257, 85–111. [Google Scholar]
- Linhartova, I.; Bumba, L.; Masin, J.; Basler, M.; Osicka, R.; Kamanova, J.; Prochazkova, K.; Adkins, I.; Hejnova-Holubova, J.; Sadilkova, L.; et al. Rtx proteins: A highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 2010, 34, 1076–1112. [Google Scholar] [CrossRef]
- Sears, C.L. The toxins of bacteroides fragilis. Toxicon 2001, 39, 1737–1746. [Google Scholar] [CrossRef]
- Wu, S.; Powell, J.; Mathioudakis, N.; Kane, S.; Fernandez, E.; Sears, C.L. Bacteroides fragilis enterotoxin induces intestinal epithelial cell secretion of interleukin-8 through mitogen-activated protein kinases and a tyrosine kinase-regulated nuclear factor-kappab pathway. Infect. Immun. 2004, 72, 5832–5839. [Google Scholar] [CrossRef]
- Goulas, T.; Arolas, J.L.; Gomis-Ruth, F.X. Structure, function and latency regulation of a bacterial enterotoxin potentially derived from a mammalian adamalysin/adam xenolog. Proc. Natl. Acad. Sci. USA 2011, 108, 1856–1861. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, R.; Batra, S. Anthrax toxin. Crit. Rev. Microbiol. 2001, 27, 167–200. [Google Scholar] [CrossRef] [PubMed]
- Friebe, S.; van der Goot, F.G.; Burgi, J. The ins and outs of anthrax toxin. Toxins 2016, 8, 69. [Google Scholar] [CrossRef]
- Bromberg-White, J.; Lee, C.S.; Duesbery, N. Consequences and utility of the zinc-dependent metalloprotease activity of anthrax lethal toxin. Toxins 2010, 2, 1038–1053. [Google Scholar] [CrossRef]
- Xu, Q.; Gohler, A.K.; Kosfeld, A.; Carlton, D.; Chiu, H.J.; Klock, H.E.; Knuth, M.W.; Miller, M.D.; Elsliger, M.A.; Deacon, A.M.; et al. The structure of mlc titration factor a (mtfa/yeei) reveals a prototypical zinc metallopeptidase related to anthrax lethal factor. J. Bacteriol. 2012, 194, 2987–2999. [Google Scholar] [CrossRef] [PubMed]
- Lebeda, F.J.; Cer, R.Z.; Mudunuri, U.; Stephens, R.; Singh, B.R.; Adler, M. The zinc-dependent protease activity of the botulinum neurotoxins. Toxins 2010, 2, 978–997. [Google Scholar] [CrossRef] [PubMed]
- Cornille, F.; Martin, L.; Lenoir, C.; Cussac, D.; Roques, B.P.; Fournie-Zaluski, M.C. Cooperative exosite-dependent cleavage of synaptobrevin by tetanus toxin light chain. J. Boil. Chem. 1997, 272, 3459–3464. [Google Scholar] [CrossRef]
- Washbourne, P.; Pellizzari, R.; Baldini, G.; Wilson, M.C.; Montecucco, C. Botulinum neurotoxin types a and e require the snare motif in snap-25 for proteolysis. FEBS Lett. 1997, 418, 1–5. [Google Scholar] [CrossRef]
- Rossetto, O.; Schiavo, G.; Montecucco, C.; Poulain, B.; Deloye, F.; Lozzi, L.; Shone, C.C. Snare motif and neurotoxins. Nature 1994, 372, 415–416. [Google Scholar] [CrossRef] [PubMed]
- Pellizzari, R.; Rossetto, O.; Lozzi, L.; Giovedi, S.; Johnson, E.; Shone, C.C.; Montecucco, C. Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type b and g neurotoxins. J. Boil. Chem. 1996, 271, 20353–20358. [Google Scholar] [CrossRef]
- Pellizzari, R.; Mason, S.; Shone, C.C.; Montecucco, C. The interaction of synaptic vesicle-associated membrane protein/synaptobrevin with botulinum neurotoxins d and f. FEBS Lett. 1997, 409, 339–342. [Google Scholar] [CrossRef]
- Hua, S.Y.; Charlton, M.P. Activity-dependent changes in partial vamp complexes during neurotransmitter release. Nat. Neurosci. 1999, 2, 1078–1083. [Google Scholar] [CrossRef]
- Li, L.; Singh, B.R. Structure-function relationship of clostridial neurotoxins. J. Toxicol. Toxin Rev. 1999, 18, 95–112. [Google Scholar] [CrossRef]
- Sikorra, S.; Henke, T.; Galli, T.; Binz, T. Substrate recognition mechanism of vamp/synaptobrevin-cleaving clostridial neurotoxins. J. Boil. Chem. 2008, 283, 21145–21152. [Google Scholar] [CrossRef] [PubMed]
- Breidenbach, M.A.; Brunger, A.T. Substrate recognition strategy for botulinum neurotoxin serotype a. Nature 2004, 432, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Hall, C.; Barbieri, J.T. Substrate recognition of vamp-2 by botulinum neurotoxin b and tetanus neurotoxin. J. Boil. Chem. 2008, 283, 21153–21159. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Chen, S. Unique substrate recognition mechanism of the botulinum neurotoxin d light chain. J. Boil. Chem. 2013, 288, 27881–27887. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Binz, T.; Swaminathan, S. Structural analysis of botulinum neurotoxin serotype f light chain: Implications on substrate binding and inhibitor design. Biochemistry 2005, 44, 11758–11765. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Schmidt, J.J.; Stafford, R.G.; Swaminathan, S. Mode of vamp substrate recognition and inhibition of clostridium botulinum neurotoxin f. Nat. Struct. Mol. Boil. 2009, 16, 789–794. [Google Scholar] [CrossRef]
- Locht, C.; Antoine, R. A proposed mechanism of adp-ribosylation catalyzed by the pertussis toxin s1 subunit. Biochimie 1995, 77, 333–340. [Google Scholar] [CrossRef]
- Simon, N.C.; Aktories, K.; Barbieri, J.T. Novel bacterial adp-ribosylating toxins: Structure and function. Nat. Rev. Microbiol. 2014, 12, 599–611. [Google Scholar] [CrossRef]
- Sun, J.; Maresso, A.W.; Kim, J.J.; Barbieri, J.T. How bacterial adp-ribosylating toxins recognize substrates. Nat. Struct. Mol. Boil. 2004, 11, 868–876. [Google Scholar] [CrossRef]
- Bell, C.E.; Eisenberg, D. Crystal structure of nucleotide-free diphtheria toxin. Biochemistry 1997, 36, 481–488. [Google Scholar] [CrossRef]
- Bennett, M.J.; Eisenberg, D. Refined structure of monomeric diphtheria toxin at 2.3 a resolution. Protein Sci. 1994, 3, 1464–1475. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.E.; Eisenberg, D. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. Biochemistry 1996, 35, 1137–1149. [Google Scholar] [CrossRef]
- Spangler, B.D. Structure and function of cholera toxin and the related escherichia coli heat-labile enterotoxin. Microbiol. Rev. 1992, 56, 622–647. [Google Scholar] [PubMed]
- O’Neal, C.J.; Jobling, M.G.; Holmes, R.K.; Hol, W.G. Structural basis for the activation of cholera toxin by human arf6-gtp. Science 2005, 309, 1093–1096. [Google Scholar] [CrossRef]
- Wilson, B.A.; Ho, M. Recent insights into pasteurella multocida toxin and other g-protein-modulating bacterial toxins. Future Microbiol. 2010, 5, 1185–1201. [Google Scholar] [CrossRef]
- Tsuge, H.; Yoshida, T.; Tsurumura, T. Conformational plasticity is crucial for c3-rhoa complex formation by artt-loop. Pathog. Dis. 2015, 73, ftv094. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Eswaramoorthy, S.; Kumaran, D.; Dunn, J.J.; Swaminathan, S. Cloning, high level expression, purification, and crystallization of the full length clostridium botulinum neurotoxin type e light chain. Protein Expr. Purif. 2004, 34, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Swaminathan, S. Snap-25 substrate peptide (residues 180-183) binds to but bypasses cleavage by catalytically active clostridium botulinum neurotoxin e. J. Boil. Chem. 2008, 283, 25944–25951. [Google Scholar] [CrossRef]
- Silvaggi, N.R.; Boldt, G.E.; Hixon, M.S.; Kennedy, J.P.; Tzipori, S.; Janda, K.D.; Allen, K.N. Structures of clostridium botulinum neurotoxin serotype a light chain complexed with small-molecule inhibitors highlight active-site flexibility. Chem. Boil. 2007, 14, 533–542. [Google Scholar] [CrossRef]
- Kumaran, D.; Rawat, R.; Ahmed, S.A.; Swaminathan, S. Substrate binding mode and its implication on drug design for botulinum neurotoxin a. PLoS Pathog. 2008, 4, e1000165. [Google Scholar] [CrossRef]
- Breidenbach, M.A.; Brunger, A.T. 2.3 a crystal structure of tetanus neurotoxin light chain. Biochemistry 2005, 44, 7450–7457. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Singh, B.R. Role of the disulfide cleavage induced molten globule state of type a botulinum neurotoxin in its endopeptidase activity. Biochemistry 2001, 40, 15327–15333. [Google Scholar] [CrossRef] [PubMed]
- Eden, E.; Geva-Zatorsky, N.; Issaeva, I.; Cohen, A.; Dekel, E.; Danon, T.; Cohen, L.; Mayo, A.; Alon, U. Proteome half-life dynamics in living human cells. Science 2011, 331, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Ratts, R.; Zeng, H.; Berg, E.A.; Blue, C.; McComb, M.E.; Costello, C.E.; vanderSpek, J.C.; Murphy, J.R. The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J. Cell Boil. 2003, 160, 1139–1150. [Google Scholar] [CrossRef] [PubMed]
- Haug, G.; Leemhuis, J.; Tiemann, D.; Meyer, D.K.; Aktories, K.; Barth, H. The host cell chaperone hsp90 is essential for translocation of the binary clostridium botulinum c2 toxin into the cytosol. J. Boil. Chem. 2003, 278, 32266–32274. [Google Scholar] [CrossRef]
- Haug, G.; Aktories, K.; Barth, H. The host cell chaperone hsp90 is necessary for cytotoxic action of the binary iota-like toxins. Infect. Immun. 2004, 72, 3066–3068. [Google Scholar] [CrossRef] [PubMed]
- Dmochewitz, L.; Lillich, M.; Kaiser, E.; Jennings, L.D.; Lang, A.E.; Buchner, J.; Fischer, G.; Aktories, K.; Collier, R.J.; Barth, H. Role of cypa and hsp90 in membrane translocation mediated by anthrax protective antigen. Cell. Microbiol. 2011, 13, 359–373. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, E.; Pust, S.; Kroll, C.; Barth, H. Cyclophilin a facilitates translocation of the clostridium botulinum c2 toxin across membranes of acidified endosomes into the cytosol of mammalian cells. Cell. Microbiol. 2009, 11, 780–795. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, E.; Kroll, C.; Ernst, K.; Schwan, C.; Popoff, M.; Fischer, G.; Buchner, J.; Aktories, K.; Barth, H. Membrane translocation of binary actin-adp-ribosylating toxins from clostridium difficile and clostridium perfringens is facilitated by cyclophilin a and hsp90. Infect. Immun. 2011, 79, 3913–3921. [Google Scholar] [CrossRef] [PubMed]
- Colasante, C.; Rossetto, O.; Morbiato, L.; Pirazzini, M.; Molgo, J.; Montecucco, C. Botulinum neurotoxin type a is internalized and translocated from small synaptic vesicles at the neuromuscular junction. Mol. Neurobiol. 2013, 48, 120–127. [Google Scholar] [CrossRef]
- Bellisola, G.; Fracasso, G.; Ippoliti, R.; Menestrina, G.; Rosen, A.; Solda, S.; Udali, S.; Tomazzolli, R.; Tridente, G.; Colombatti, M. Reductive activation of ricin and ricin a-chain immunotoxins by protein disulfide isomerase and thioredoxin reductase. Biochem. Pharmacol. 2004, 67, 1721–1731. [Google Scholar] [CrossRef] [PubMed]
- Bustelo, X.R.; Sauzeau, V.; Berenjeno, I.M. Gtp-binding proteins of the rho/rac family: Regulation, effectors and functions in vivo. BioEssays 2007, 29, 356–370. [Google Scholar] [CrossRef] [PubMed]
- Just, I.; Selzer, J.; Wilm, M.; von Eichel-Streiber, C.; Mann, M.; Aktories, K. Glucosylation of rho proteins by clostridium difficile toxin b. Nature 1995, 375, 500–503. [Google Scholar] [CrossRef]
- Ishida, H.; Zhang, X.; Erickson, K.; Ray, P. Botulinum toxin type a targets rhob to inhibit lysophosphatidic acid-stimulated actin reorganization and acetylcholine release in nerve growth factor-treated pc12 cells. J. Pharmacol. Exp. Ther. 2004, 310, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Ribet, D.; Cossart, P. Post-translational modifications in host cells during bacterial infection. FEBS Lett. 2010, 584, 2748–2758. [Google Scholar] [CrossRef] [Green Version]
- Shoemaker, C.B.; Oyler, G.A. Persistence of botulinum neurotoxin inactivation of nerve function. Curr. Top. Microbiol. Immunol. 2013, 364, 179–196. [Google Scholar]
- Fernandez-Salas, E.; Steward, L.E.; Ho, H.; Garay, P.E.; Sun, S.W.; Gilmore, M.A.; Ordas, J.V.; Wang, J.; Francis, J.; Aoki, K.R. Plasma membrane localization signals in the light chain of botulinum neurotoxin. Proc. Natl. Acad. Sci. USA 2004, 101, 3208–3213. [Google Scholar] [CrossRef]
- Wang, J.; Zurawski, T.H.; Meng, J.; Lawrence, G.; Olango, W.M.; Finn, D.P.; Wheeler, L.; Dolly, J.O. A dileucine in the protease of botulinum toxin a underlies its long-lived neuroparalysis: Transfer of longevity to a novel potential therapeutic. J. Boil. Chem. 2011, 286, 6375–6385. [Google Scholar] [CrossRef]
- Vagin, O.; Tokhtaeva, E.; Garay, P.E.; Souda, P.; Bassilian, S.; Whitelegge, J.P.; Lewis, R.; Sachs, G.; Wheeler, L.; Aoki, R.; et al. Recruitment of septin cytoskeletal proteins by botulinum toxin a protease determines its remarkable stability. J. Cell Sci. 2014, 127, 3294–3308. [Google Scholar] [CrossRef]
- Dal Peraro, M.; van der Goot, F.G. Pore-forming toxins: Ancient, but never really out of fashion. Nat. Rev. Microbiol. 2016, 14, 77–92. [Google Scholar] [CrossRef]
- Satchell, K.J. Structure and function of martx toxins and other large repetitive rtx proteins. Annu. Rev. Microbiol. 2011, 65, 71–90. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, S.K.; O’Riordan, M.X. More than a pore: The cellular response to cholesterol-dependent cytolysins. Toxins 2013, 5, 618–636. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.R. Intimate details of the most poisonous poison. Nat. Struct. Boil. 2000, 7, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, B.R. Protein Toxins in Modeling Biochemistry; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Casas, V.; Maloy, S. Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens. Future Microbiol. 2011, 6, 1461–1473. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.; Ahlinder, J.; Mathisen, P.; Hagglund, M.; Backman, S.; Nilsson, E.; Sjodin, A.; Thelaus, J. Predators and nutrient availability favor protozoa-resisting bacteria in aquatic systems. Sci. Rep. 2018, 8, 8415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallen, M.J.; Wren, B.W. Bacterial pathogenomics. Nature 2007, 449, 835–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouwer, M.S.; Roberts, A.P.; Hussain, H.; Williams, R.J.; Allan, E.; Mullany, P. Horizontal gene transfer converts non-toxigenic clostridium difficile strains into toxin producers. Nat. Commun. 2013, 4, 2601. [Google Scholar] [CrossRef]
- Lacey, J.A.; Keyburn, A.L.; Ford, M.E.; Portela, R.W.; Johanesen, P.A.; Lyras, D.; Moore, R.J. Conjugation-mediated horizontal gene transfer of clostridium perfringens plasmids in the chicken gastrointestinal tract results in the formation of new virulent strains. Appl. Environ. Microbiol. 2017, 83, e01814–e01817. [Google Scholar] [CrossRef]
- de Maagd, R.A.; Bravo, A.; Berry, C.; Crickmore, N.; Schnepf, H.E. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu. Rev. Genet. 2003, 37, 409–433. [Google Scholar] [CrossRef]
- DasGupta, B.R. Botulinum neurotoxins: Perspective on their existence and as polyproteins harboring viral proteases. J. Gen. Appl. Microbiol. 2006, 52, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Chang, T.W.; Singh, B.R. Evolutionary Traits of Toxins; Springer: Heidelberg, Germany, 2017. [Google Scholar]
- Cordes, M.H.; Binford, G.J. Lateral gene transfer of a dermonecrotic toxin between spiders and bacteria. Bioinformatics 2006, 22, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, N.D.; Barrett, A.J.; Finn, R. Twenty years of the merops database of proteolytic enzymes, their substrates and inhibitors. Nucl. Acids Res. 2016, 44, D343–D350. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Masuyer, G.; Zhang, J.; Shen, Y.; Lundin, D.; Henriksson, L.; Miyashita, S.I.; Martinez-Carranza, M.; Dong, M.; Stenmark, P. Identification and characterization of a novel botulinum neurotoxin. Nat. Commun. 2017, 8, 14130. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, M.J.; Adams, J.B.; Doxey, A.C. Botulinum neurotoxin homologs in non-clostridium species. FEBS Lett. 2015, 589, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Lebreton, F.; Mansfield, M.J.; Miyashita, S.I.; Zhang, J.; Schwartzman, J.A.; Tao, L.; Masuyer, G.; Martinez-Carranza, M.; Stenmark, P.; et al. Identification of a botulinum neurotoxin-like toxin in a commensal strain of enterococcus faecium. Cell Host Microbe 2018, 23, 169–176. [Google Scholar] [CrossRef]
- Mansfield, M.J.; Wentz, T.G.; Zhang, S.; Lee, E.J.; Dong, M.; Sharma, S.K.; Doxey, A.C. Newly identified relatives of botulinum neurotoxins shed light on their molecular evolution. bioRxiv 2017. [Google Scholar] [CrossRef]
- Mansfield, M.J.; Doxey, A.C. Genomic insights into the evolution and ecology of botulinum neurotoxins. Pathog. Dis. 2018, 76, fty040. [Google Scholar] [CrossRef]
- Chang, T.W. Sequence Analyses and Novel Antidotes Development of Botulinum Neurotoxin. Ph.D. Thesis, University of Massachusetts Dartmouth, Dartmouth, MA, USA, 2011. [Google Scholar]
- Marsh, J.A.; Hernandez, H.; Hall, Z.; Ahnert, S.E.; Perica, T.; Robinson, C.V.; Teichmann, S.A. Protein complexes are under evolutionary selection to assemble via ordered pathways. Cell 2013, 153, 461–470. [Google Scholar] [CrossRef]
- Mertaoja, A.M.G.; Henriques, A.O.; Korkeala, H.; Lindstrom, M. First glance into single-cell-level neurotoxin gene expression suggests phenotypic heterogeneity in clostridium botulinum cultures. In Proceedings of the 53rd Annual Interagency Botulism Research Coordinating Committee (IBRCC), Atlanta, GA, USA, 23–26 October 2016. [Google Scholar]
Toxin | Biological Activity | Ref. |
---|---|---|
Cholera Toxin | Activation of adenylate cyclase; increasing intracellular cAMP, fluid and electrolytes secretion in intestinal epithelium leading to diarrhea | [5] |
Shiga Toxin | Inactivates 60S ribosomal subunit, inhibition of protein synthesis | [6] |
E. coli heat-labile toxin LT | Similar to cholera toxin | [7] |
E. coli ST toxin | Binding to heat-stable enterotoxins (ST) to a guanylate cyclase receptor leading to an increase in cyclic GMP (cGMP), affect electrolyte reflux. | [8] |
Diphtheria toxin | Inhibition of protein synthesis | [9] |
Pseudomonas Exotoxin A | Inhibition of protein synthesis | [10] |
Pertussis toxin | Adenylate cyclase inhibition, increase in the level of cAMP in phagocytes, affect on hormonal activity and reduction of phagocytic activity | [11] |
Anthrax toxin | Induction of cytokine release and death of target cells | [12] |
Staphylococcus aureus Exfoliating B | Separation of stratum granulosum of the epidermis | [13] |
Bordetella pertussis AC toxin | Increase in cAMP in phagocytosis resulting in the inhibition of phagocytosis by neutrophilis and macrophages, also cause hemolysis and leukolysis | [14] |
Perfringens enterotoxin | Stimulation of adenylate cyclase activity resulting in increase of cAMP in epithelial cells. | [15] |
Staphylococcus enterotoxins | Immune system activation, including lymphocytes and macrophages | [16] |
Staphylococcus aureus alpha toxin | Cell membrane pore formation | [17] |
Staphylococcus aureus toxic shock syndrome toxin (TSST) | Action on the vascular system causing inflammation, fever and shock. | [18] |
Staphylococcus aureus Erythrogenic toxin (SPE) | Similar to TSST | [19] |
Botulinum Toxin | Inhibition of presynaptic acetylcholine release in PNS | [20] |
Tetanus Toxin | Inhibition of neurotransmitter release in CNS | [21] |
Protein | t1/2 (Half-Life) |
---|---|
Antibodies | |
Murine IgG2a | ~8.4 days |
Human IgG1 Fab fragment | ~9 days |
Human IgG1 | ~14 days |
Endogenous Proteins | |
Ornithine Decarboxylase | ~11 min |
Occludin | ~2 h |
Tyrosine Amino transferase | ~3–4 h |
Endogenous DISC1 protein | ~6 h |
Anti-apoptotic protein Bcl-2 | ~20 h |
Na, K-ATPase 1 | ~40 h. |
Arginase | ~4 days |
Albumin | ~19 days |
Nicotinamide adenine dinucleotide glycohydrolase | ~20 days |
Bacterial Toxins | |
Staphylococcus enterotoxins | ~2 h. |
Cholera Toxin | ~5 h |
Shiga Toxin | ~4 days |
Diphtheria Toxin | >2 days |
Tetanus Toxin | ~5–6 days |
Botulinum Toxin | ~30–180 days |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Feltrup, T.M.; Kukreja, R.V.; Patel, K.B.; Cai, S.; Singh, B.R. Evolutionary Features in the Structure and Function of Bacterial Toxins. Toxins 2019, 11, 15. https://doi.org/10.3390/toxins11010015
Kumar R, Feltrup TM, Kukreja RV, Patel KB, Cai S, Singh BR. Evolutionary Features in the Structure and Function of Bacterial Toxins. Toxins. 2019; 11(1):15. https://doi.org/10.3390/toxins11010015
Chicago/Turabian StyleKumar, Raj, Thomas M. Feltrup, Roshan V. Kukreja, Kruti B. Patel, Shuowei Cai, and Bal Ram Singh. 2019. "Evolutionary Features in the Structure and Function of Bacterial Toxins" Toxins 11, no. 1: 15. https://doi.org/10.3390/toxins11010015
APA StyleKumar, R., Feltrup, T. M., Kukreja, R. V., Patel, K. B., Cai, S., & Singh, B. R. (2019). Evolutionary Features in the Structure and Function of Bacterial Toxins. Toxins, 11(1), 15. https://doi.org/10.3390/toxins11010015