Calcination Enhances the Aflatoxin and Zearalenone Binding Efficiency of a Tunisian Clay
Abstract
:1. Introduction
2. Results
2.1. Chemical Characterization
2.2. Infrared Spectroscopy Characterization (FTIR-ATR)
2.3. X-Ray Diffraction (XRD)
2.4. Cation Exchange Capacity (CEC)
2.5. BET Surface Analysis
2.6. Point of Zero Charge (PZC)
2.7. Mycotoxin Binding Efficiency
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemical Products and Reagents
5.2. Source and Preparation of Clay
5.3. Physico-Chemical Characterization of Clays
5.3.1. X-Ray Fluorescence (XRF)
5.3.2. X-Ray Diffraction (XRD)
5.3.3. Fourier Transformed Infrared Spectroscopy (FTIR-ATR)
5.3.4. Point of Zero Charge (PZC)
5.3.5. Cation Exchange Capacity (CEC)
5.3.6. BET Surface Analysis
5.4. Mycotoxin Adsorption
5.5. Calculation of Mycotoxin Adsorption Rate (%)
5.6. Calculation of the Binding Efficiency
5.7. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bryden, W.L. Mycotoxins in the food chain: Human health implications. Asia Pac. J. Clin. Nutr. 2007, 16 (Suppl. 1), 95–101. [Google Scholar]
- Jard, G.; Liboz, T.; Mathieu, F.; Guyonvarch, A.; Lebrihi, A. Review of mycotoxin reduction in food and feed: From prevention in the field to detoxification by adsorption or transformation. Food Addit. Contam. Part A 2011, 28, 1590–1609. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.X.; Marchal, J.L.M.; Van der Poel, A.F.B. Strategies to prevent and reduce mycotoxins for compound feed manufacturing. Anim. Feed Sci. Technol. 2018, 237, 129–153. [Google Scholar] [CrossRef]
- Rawal, S.; Kim, J.E.; Coulombe, R., Jr. Research in Veterinary Science Aflatoxin B 1 in poultry: Toxicology, metabolism and prevention. Res. Vet. Sci. 2010, 89, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Wacoo, A.P.; Wendiro, D.; Vuzi, P.C.; Hawumba, J.F. Methods for Detection of Aflatoxins in Agricultural Food Crops. J. Appl. Chem. 2014, 12, 1–15. [Google Scholar] [CrossRef]
- Scheidegger, K.A.; Payne, G.A. Unlocking the Secrets Behind Secondary Metabolism: A Review of Aspergillus flavus from Pathogenicity to Functional Genomics. J. Toxicol. Toxin Rev. 2003, 22, 423–459. [Google Scholar] [CrossRef]
- Phillips, T.D.; Williams, J.; Huebner, H.; Ankrah, N.; Jolly, P.; Johnson, N.; Taylor, J.; Xu, L.; Wang, J. Reducing human exposure to aflatoxin through the use of clay: A review. Food Addit. Contam. Part A 2008, 25, 134–145. [Google Scholar] [CrossRef]
- Bhatti, S.A.; Khan, M.; Kashif, M.; Saqib, M. Aflatoxicosis and Ochratoxicosis in Broiler Chicks and their Amelioration with Locally Available Bentonite Clay. Pak. Vet. J. 2016, 36, 68–72. [Google Scholar]
- Khanian, M.; Allameh, A. Alleviation of aflatoxin-related oxidative damage to liver and improvement of growth performance in broiler chickens consumed Lactobacillus plantarum 299v for entire growth period. Toxicon 2018, 158, 57–62. [Google Scholar] [CrossRef]
- Ma, Q.; Li, Y.; Fan, Y.; Zhao, L.; Wei, H.; Ji, C.; Zhang, J. Molecular Mechanisms of Lipoic Acid Protection against Aflatoxin B 1 -Induced Liver Oxidative Damage and Inflammatory Responses in Broilers. Toxins 2015, 7, 5435–5447. [Google Scholar] [CrossRef]
- Wogan, G.N. Chemical Nature and Biological Effects of the Aflatoxins. Am. Soc. Microbiol. 1966, 30, 460–470. [Google Scholar]
- Dutton, F. Cellular Interactions and Metabolism of Aflatoxin: An Update. Pharmacol. Ther. 1995, 65, 163–192. [Google Scholar]
- Antonissen, G.; Martel, A.; Pasmans, F.; Ducatelle, R.; Verbrugghe, E.; Vandenbroucke, V.; Li, S.; Haesebrouck, F.; Van Immerseel, F.; Croubels, S. The impact of Fusarium Mycotoxins on human and animal host susceptibility to infectious diseases. Toxins 2014, 6, 430–452. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Mochizuki, N.; Nagatomi, Y.; Harayama, K.; Toriba, A.; Hayakawa, K. A method for simultaneous determination of 20 fusarium toxins in cereals by high-resolution liquid chromatography-orbitrap mass spectrometry with a pentafluorophenyl column. Toxins 2015, 7, 1664–1682. [Google Scholar] [CrossRef]
- Kolosova, A.; Stroka, J. Substances for reduction of the contamination of feed by mycotoxins: A review. World Mycotoxin J. 2011, 4, 225–256. [Google Scholar] [CrossRef]
- Aiko, V.; Mehta, A. Occurrence, detection and detoxification of mycotoxins. J. Biosci. 2015, 40, 943–954. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef]
- De Mil, T.; Devreese, M.; Bagane, M.; Van Ranst, E.; Eeckhout, M.; De Backer, P.; Croubels, S. Characterization of 27 Mycotoxin Binders and the Relation with in Vitro Zearalenone Adsorption at a Single Concentration. Toxins 2015, 7, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Huwig, A.; Freimund, S.; Käppeli, O.; Dutler, H. Mycotoxin detoxication of animal feed by different adsorbents. Toxicol. Lett. 2001, 122, 179–188. [Google Scholar] [CrossRef]
- Bocarov-Stancic, A.; Adamovic, M.; Salma, N.; Bodroza-Solarov, M.; Vuckovic, J.; Pantic, V. In vitro efficacy of mycotoxins adsorption by natural mineral adsorbents. Biotechnol. Anim. Husb. 2011, 27, 1241–1251. [Google Scholar] [CrossRef]
- Prapapanpong, J.; Udomkusonsri, P.; Mahavorasirikul, W.; Choochuay, S.; Tansakul, N. In Vitro Studies on Gastrointestinal Monogastric and Avian Models to Evaluate the Binding Efficacy of Mycotoxin adsorbents by Liquid Chromatography-Tandem Mass Spectrometry. J. Adv. Vet. Anim. Res. 2019, 6, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Mutua, F.; Lindahl, J.; Grace, D. Availability and use of mycotoxin binders in selected urban and Peri-urban areas of Kenya. Food Secur. 2019, 11, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Clarke, L.C.; Sweeney, T.; Curley, E.; Duffy, S.K.; Vigors, S.; Rajauria, G.; O’Doherty, J.V. Mycotoxin binder increases growth performance, nutrient digestibility and digestive health of finisher pigs offered wheat based diets grown under different agronomical conditions. Anim. Feed Sci. Technol. 2018, 240, 52–65. [Google Scholar] [CrossRef]
- Barrientos-velázquez, A.L.; Arteaga, S.; Dixon, J.B.; Deng, Y. The effects of pH, pepsin, exchange cation, and vitamins on a fl atoxin adsorption on smectite in simulated gastric fl uids. Appl. Clay Sci. 2016, 120, 17–23. [Google Scholar] [CrossRef]
- Jouany, J.P. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Anim. Feed Sci. Technol. 2007, 137, 342–362. [Google Scholar] [CrossRef]
- Kang’Ethe, E.K.; Sirma, A.J.; Murithi, G.; Mburugu-Mosoti, C.K.; Ouko, E.O.; Korhonen, H.J.; Nduhiu, G.J.; Mungatu, J.K.; Joutsjoki, V.; Lindfors, E.; et al. Occurrence of mycotoxins in food, feed, and milk in two counties from different agro-ecological zones and with historical outbreak of aflatoxins and fumonisins poisonings in Kenya. Food Qual. Saf. 2017, 1, 161–169. [Google Scholar] [CrossRef]
- Papaioannou, D.; Katsoulos, P.D.; Panousis, N.; Karatzias, H. The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases: A review. Microporous Mesoporous Mater. 2005, 84, 161–170. [Google Scholar] [CrossRef]
- Avantaggiato, G.; Solfrizzo, M.; Visconti, A. Recent advances on the use of adsorbent materials for detoxification of Fusarium mycotoxins. Food Addit. Contam. 2005, 22, 379–388. [Google Scholar] [CrossRef]
- Mallmann, C.A.; Dilkin, P. Brazilian mycotoxin experiences. Int. Pig Top. 2002, 27, 28–30. [Google Scholar]
- Zaviezo, D. Brazilian experiences with mycotoxins. Int. Poult. Prod. 2009, 17, 2–3. [Google Scholar]
- Cheknane, B.; Bouras, O.; Baudu, M.; Basly, J.P.; Cherguielaine, A. Granular inorgano-organo pillared clays (GIOCs): Preparation by wet granulation, characterization and application to the removal of a Basic dye (BY28) from aqueous solutions. Chem. Eng. J. 2010, 158, 528–534. [Google Scholar] [CrossRef]
- Sassi, H.; Lafaye, G.; Ben Amor, H.; Gannouni, A.; Jeday, M.R. Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation. Front. Environ. Sci. Eng. 2018, 12, 2. [Google Scholar] [CrossRef]
- Tlili, A.; Saidi, R.; Fourati, A.; Ammar, N.; Jamoussi, F. Mineralogical study and properties of natural and flux calcined porcelanite from Gafsa-Metlaoui basin compared to diatomaceous filtration aids. Appl. Clay Sci. 2012, 62, 47–57. [Google Scholar] [CrossRef]
- Jaynes, W.F.; Zartman, R.E. Aflatoxin Toxicity Reduction in Feed by Enhanced Binding to Surface-Modified Clay Additives. Toxin 2011, 3, 551–565. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhao, J.; Zhong, A.; Jin, Y. Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue. Chem. Eng. J. 2011, 174, 143–150. [Google Scholar] [CrossRef]
- Kuang, W.; Facey, G.A.; Detellier, C. Dehydration and rehydration of palygorskite and the influence of water on the nanopores. Clays Clay Miner. 2004, 52, 635–642. [Google Scholar] [CrossRef]
- Wang, W.; Chen, H.; Wang, A. Adsorption characteristics of Cd(II) from aqueous solution onto activated palygorskite. Sep. Purif. Technol. 2007, 55, 157–164. [Google Scholar] [CrossRef]
- Chen, T.; Liu, H.; Li, J.; Chen, D.; Chang, D.; Kong, D.; Frost, R.L. Effect of thermal treatment on adsorption-desorption of ammonia and sulfur dioxide on palygorskite: Change of surface acid-alkali properties. Chem. Eng. J. 2011, 166, 1017–1021. [Google Scholar] [CrossRef]
- Vieira, M.G.A.; Neto, A.F.A.; Gimenes, M.L.; da Silva, M.G.C. Removal of nickel on Bofe bentonite calcined clay in porous bed. J. Hazard. Mater. 2010, 176, 109–118. [Google Scholar] [CrossRef]
- Nones, J.; Nones, J.; Gracher, H.; Poli, A.; Gonçalves, A.; Cabral, N. Thermal treatment of bentonite reduces aflatoxin b1 adsorption and affects stem cell death. Mater. Sci. Eng. C 2015, 55, 530–537. [Google Scholar] [CrossRef]
- Felhi, M.; Tlili, A.; Gaied, M.E.; Montacer, M. Mineralogical study of kaolinitic clays from Sidi El Bader in the far north of Tunisia. Appl. Clay Sci. 2008, 39, 208–217. [Google Scholar] [CrossRef]
- Hajjaji, M.; Kacim, S.; Alami, A.; El Bouadili, A.; El Mountassir, M. Chemical and mineralogical characterization of a clay taken from the Moroccan Meseta and a study of the interaction between its fine fraction and methylene blue. Appl. Clay Sci. 2001, 20, 1–12. [Google Scholar] [CrossRef]
- Gan, F.; Hang, X.; Huang, Q.; Deng, Y. Assessing and modifying China bentonites for aflatoxin adsorption. Appl. Clay Sci. 2019, 168, 348–354. [Google Scholar] [CrossRef]
- Sdiri, A.; Higashi, T.; Hatta, T. Mineralogical and spectroscopic characterization, and potential environmental use of limestone from the Abiod formation, Tunisia. Environ. Earth Sci. 2010, 61, 1275–1287. [Google Scholar] [CrossRef]
- Sdiri, A.; Higashi, T.; Hatta, T.; Jamoussi, F.; Tase, N. Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems. Chem. Eng. J. 2011, 172, 37–46. [Google Scholar] [CrossRef]
- Chaari, I.; Fakhfakh, E.; Chakroun, S.; Bouzid, J.; Boujelben, N. Lead removal from aqueous solutions by a Tunisian smectitic clay. J. Hazard. Mater. 2008, 156, 545–551. [Google Scholar] [CrossRef]
- Temuujin, J.; Jadambaa, T.; Burmaa, G.; Erdenechimeg, S.; Amarsanaa, J. Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia). Ceram. Int. 2004, 30, 251–255. [Google Scholar] [CrossRef]
- Bouguerra, S.; Neji Mahmoud Trabelsi, M.H.F. Activation d’une argile smectite Tunisienne à l’acide sulfurique: Catalytique de l’acide adsorbé par l’argile. J. De La Société Chim. De Tunis. 2009, 11, 191–203. [Google Scholar]
- Madejová, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Gannouni, A.; Amari, A.; Bellagi, A. Activation acide de quelques argiles du sud tunisien: II. Préparation de terres décolorantes pour huiles minérales usagées. J. Société Chim. Tunis. 2011, 13, 157–171. [Google Scholar]
- Khalfa, L.; Cervera, M.L.; Souissi-Najjar, S.; Bagane, M. Removal of Fe(III) from synthetic wastewater into raw and modified clay: Experiments and models fitting. Sep. Sci. Technol. 2017, 52, 1–11. [Google Scholar] [CrossRef]
- Eloussaief, M.; Hamza, W.; Kallel, N.; Benzina, M. Wastewaters Decontamination: Mechanisms of Pb ( II), Zn (II), and Cd (II) Competitive Adsorption on Tunisian Smectite in Single and Multi-Solute Systems. Environ. Prog. Sustain. Energy 2012, 32, 229–238. [Google Scholar] [CrossRef]
- Önal, M. Swelling and cation exchange capacity relationship for the samples obtained from a bentonite by acid activations and heat treatments. Appl. Clay Sci. 2007, 37, 74–80. [Google Scholar] [CrossRef]
- Bojemueller, E.; Nennemann, A.; Lagaly, G. Enhanced pesticide adsorption by thermally modified bentonites. Appl. Clay Sci. 2001, 18, 277–284. [Google Scholar] [CrossRef]
- Phillips, T.D. Dietary Clay in the Chemoprevention of Aflatoxin-Induced Disease. Toxicol. Sci. 1999, 52, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Valchev, I.; Marutsova, V.; Zarkov, I.; Ganchev, A.; Nikolov, Y. Effects of aflatoxin B 1 alone or co-administered with mycotox NG on performance and humoral immunity of Turkey broilers. Bulg. J. Vet. Med. 2017, 20, 38–50. [Google Scholar] [CrossRef]
- Bhatti, S.A.; Khan, M.Z.; Kashif, M.; Saqib, M.; Khan, A. Protective role of bentonite against aflatoxin B1- and ochratoxin A-induced immunotoxicity in broilers. J. Immunotoxicol. 2017, 14, 66–76. [Google Scholar] [CrossRef]
- Danner, T.; Norden, G.; Justnes, H. Characterisation of calcined raw clays suitable as supplementary cementitious materials. Appl. Clay Sci. 2018, 162, 391–402. [Google Scholar] [CrossRef]
- Ayo, E.M.; Matemu, A.; Laswai, G.H.; Kimanya, M.E. An In Vitro Evaluation of the Capacity of Local Tanzanian Crude Clay and Ash-Based Materials in Binding Aflatoxins in Solution. Toxins 2018, 10, 510. [Google Scholar] [CrossRef]
- Gu, B.X.; Wang, L.M.; Minc, L.D.; Ewing, R.C. Temperature effects on the radiation stability and ion exchange capacity of smectites. J. Nucl. Mater. 2001, 297, 345–354. [Google Scholar] [CrossRef]
- Gurgel, M. Cu (II) Adsorption on Modified Bentonitic Clays: Different Isotherm Behaviors in Static and Dynamic Systems. Mater. Res. 2012, 15, 114–124. [Google Scholar]
- He, C.; Makovicky, E.; Osbæck, B. Thermal stability and pozzolanic activity of raw and calcined mixed-layer mica/smectite. Appl. Clay Sci. 2000, 17, 141–161. [Google Scholar] [CrossRef]
- Cótica, L.F.; Freitas, V.F.; Santos, I.A.; Barabach, M.; Anaissi, F.J.; Miyahara, R.Y.; Sarvezuk, P.W.C. Cobalt-modified Brazilian bentonites: Preparation, characterisation, and thermal stability. Appl. Clay Sci. 2011, 51, 187–191. [Google Scholar] [CrossRef]
- Li, L.; Dong, J.; Lee, R. Preparation of α-alumina-supported mesoporous bentonite membranes for reverse osmosis desalination of aqueous solutions. J. Colloid Interface Sci. 2004, 273, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Daković, A.; Kragović, M.; Rottinghaus, G.E.; Sekulić, Ž.; Milićević, S.; Milonjić, S.K.; Zarić, S. Influence of natural zeolitic tuff and organozeolites surface charge on sorption of ionizable fumonisin B1. Colloids Surf. B Biointerfaces 2010, 76, 272–278. [Google Scholar] [CrossRef]
- Gulicovski, J.J.; Čerović, L.S.; Milonjić, S.K. Point of zero charge and isoelectric point of alumina. Mater. Manuf. Process. 2008, 23, 615–619. [Google Scholar] [CrossRef]
- Arfaouia, S.; Hamdia, N.; Frini-Srasrab, N.; Srasra, E. Determination of point of zero charge of PILCS with single and mixed oxide pillars prepared from Tunisian-smectite. Geochem. Int. 2012, 50, 447–454. [Google Scholar] [CrossRef]
- Daković, A.; Tomašević-Čanović, M.; Dondur, V.; Rottinghaus, G.E.; Medaković, V.; Zarić, S. Adsorption of mycotoxins by organozeolites. Colloids Surf. B Biointerfaces 2005, 46, 20–25. [Google Scholar] [CrossRef]
- Sabater-vilar, M.; Malekinejad, H.; Selman, M.H.J.; Fink-gremmels, J. In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses. Mycopathologia 2007, 163, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Denli, M.; Blandon, J.C.; Guynot, M.E.; Salado, S.; Pérez, J.F. Efficacy of activated diatomaceous clay in reducing the toxicity of zearalenone in rats and piglets. J. Anim. Sci. 2015, 93, 637–645. [Google Scholar] [CrossRef]
- Jiang, S.Z.; Yang, Z.B.; Yang, W.R.; Wang, S.J.; Liu, F.X.; Johnston, L.A.; Chi, F.; Wang, Y. Effect of purified zearalenone with or without modified montmorillonite on nutrient availability, genital organs and serum hormones in post-weaning piglets. Livest. Sci. 2012, 144, 110–118. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, R.; Liu, M.; Yan, C.; Shan, A. Adsorption of modified halloysite nanotubes in vitro and the protective effect in rats exposed to zearalenone. Arch. Anim. Nutr. 2014, 68, 320–335. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Shan, M.; Du, H.; Han, X.; Xu, Z. In vitro adsorption of zearalenone by cetyltrimethyl ammonium bromide-modified montmorillonite nanocomposites. Microporous Mesoporous Mater. 2008, 113, 99–105. [Google Scholar] [CrossRef]
- Deng, Y.; Velázquez, A.L.B.; Billes, F.; Dixon, J.B. Bonding mechanisms between aflatoxin B1 and smectite. Appl. Clay Sci. 2010, 50, 92–98. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, L.; Velá Zquez, A.L.B.; Dixon, J.B. The determinative role of the exchange cation and layer-charge density of smectite on aflatoxin adsorption. Clays Clay Miner. 2012, 60, 374–386. [Google Scholar] [CrossRef]
- Jaynes, W.F.; Zartman, R.E.; Hudnall, W.H. Aflatoxin B1 adsorption by clays from water and corn meal. Appl. Clay Sci. 2007, 36, 197–205. [Google Scholar] [CrossRef]
- Nordine, N.; El Bahri, Z.; Sehil, H.; Fertout, R.I.; Rais, Z.; Bengharez, Z. Lead removal kinetics from synthetic effluents using Algerian pine, beech and fir sawdust’s: Optimization and adsorption mechanism. Appl. Water Sci. 2016, 349–358. [Google Scholar] [CrossRef]
- Hendershot, W.H.; Duquette, M. A Simple Barium Chloride Method for Determining Cation Exchange Capacity and Exchangeable Cations. Soil Sci. Soc. Am. J. 1986, 50, 605–608. [Google Scholar] [CrossRef]
- di Mavungu, J.D.; Monbaliu, S.; Scippo, M.L.; Maghuin-Rogister, G.; Schneider, Y.J.; Larondelle, Y.; Callebaut, A.; Robbens, J.; van Peteghem, C.; de Saeger, S. LC-MS/MS multi-analyte method for mycotoxin determination in food supplements. Food Addit. Contam. Part A 2009, 26, 885–895. [Google Scholar] [CrossRef] [Green Version]
- Monbaliu, S.; Van Poucke, C.; Van Peteghem, C.; Van Poucke, K.; Heungens, K.; De Saeger, S. Development of a multi-mycotoxin liquid chromatography/tandem mass spectrometry method for sweet pepper analysis. Rapid Commun. Mass Spectrom. 2009, 23, 3–11. [Google Scholar] [CrossRef]
Oxide Composition of the Clays (%) | ||
---|---|---|
CP | CC | |
SiO2 | 42.04 | 43.62 |
Al2O3 | 14.60 | 15.67 |
CaO | 13.34 | 13.78 |
Fe2O3 | 11.03 | 9.69 |
K2O | 1.12 | 1.17 |
MgO | 1.74 | 1.78 |
Na2O | 0.18 | 0.18 |
SO3 | 0.18 | 0.16 |
Clay Samples | Ca (mg/L) | K (mg/L) | Mg (mg/L) | Na (mg/L) | CEC (Cmol(+)(kg−1)) |
---|---|---|---|---|---|
CP | 126.18 | 14.1 | 24.44 | 17.94 | 12.266 |
CC | 88.56 | 25.56 | 19 | 11.54 | 9.287 |
Clay Samples | SBET (m2/g) | Pore Volume (cm3/g) | Pore Size (Å) |
---|---|---|---|
CP | 64.06 | 0.05 | 57.03 |
CC | 44.42 | 0.05 | 66.72 |
Binding Capacity (%) | |||
---|---|---|---|
Mycotoxins | CP | CC | p-Value |
AFB1 | 100 ± 0 | 100 ± 0 | NS |
AFB2 | 88 ± 1 | 100 ± 0 * | <0.001 |
AFG1 | 96 ± 1 | 100 ± 0 * | <0.001 |
AFG2 | 76 ± 2 | 99 ± 1 * | <0.001 |
ZEN | 0±0 | 75 ± 3 * | <0.001 |
Binding Capacity (%) | |||
---|---|---|---|
Mycotoxins | CP | CC | p-Value |
AFB1 | 94 ± 3 | 99 ± 0 * | 0.031 |
AFB2 | 86 ± 8 | 99 ± 1 * | 0.048 |
AFG1 | 60 ± 17 | 98 ± 2 * | 0.019 |
AFG2 | 30 ± 29 | 96 ± 2 * | 0.017 |
ZEN | 1 ± 1 | 41 ± 12 * | 0.026 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rejeb, R.; Antonissen, G.; De Boevre, M.; Detavernier, C.; Van de Velde, M.; De Saeger, S.; Ducatelle, R.; Hadj Ayed, M.; Ghorbal, A. Calcination Enhances the Aflatoxin and Zearalenone Binding Efficiency of a Tunisian Clay. Toxins 2019, 11, 602. https://doi.org/10.3390/toxins11100602
Rejeb R, Antonissen G, De Boevre M, Detavernier C, Van de Velde M, De Saeger S, Ducatelle R, Hadj Ayed M, Ghorbal A. Calcination Enhances the Aflatoxin and Zearalenone Binding Efficiency of a Tunisian Clay. Toxins. 2019; 11(10):602. https://doi.org/10.3390/toxins11100602
Chicago/Turabian StyleRejeb, Roua, Gunther Antonissen, Marthe De Boevre, Christ’l Detavernier, Mario Van de Velde, Sarah De Saeger, Richard Ducatelle, Madiha Hadj Ayed, and Achraf Ghorbal. 2019. "Calcination Enhances the Aflatoxin and Zearalenone Binding Efficiency of a Tunisian Clay" Toxins 11, no. 10: 602. https://doi.org/10.3390/toxins11100602
APA StyleRejeb, R., Antonissen, G., De Boevre, M., Detavernier, C., Van de Velde, M., De Saeger, S., Ducatelle, R., Hadj Ayed, M., & Ghorbal, A. (2019). Calcination Enhances the Aflatoxin and Zearalenone Binding Efficiency of a Tunisian Clay. Toxins, 11(10), 602. https://doi.org/10.3390/toxins11100602