Identification of Crucial Residues in α-Conotoxin EI Inhibiting Muscle Nicotinic Acetylcholine Receptor
Abstract
:1. Introduction
2. Results
2.1. Peptide Synthesis and Oxidative Folding of α-Conotoxin EI and its Analogues
2.2. Ala-SCAN of the Inter-Cysteine Loops Revealed Key Residues for EI Activity
2.3. N-Terminal Amino Acids in EI Influence the Activity of Peptide for α1β1δε nAChR
2.4. Circular Dichroism Analysis
3. Discussion
4. Materials and Methods
4.1. Synthesis and Purification of EI and Analogues
4.2. cRNA Preparation
4.3. Oocyte Isolation and Microinjection
4.4. Electrophysiological Recordings
4.5. Data Analysis
4.6. Circular Dichroism Spectroscopy
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lewis, R.J.; Dutertre, S.; Vetter, I.; Christie, M.J. Conus venom peptide pharmacology. Pharmacol. Rev. 2012, 64, 259–298. [Google Scholar] [CrossRef] [PubMed]
- Lebbe, E.K.; Peigneur, S.; Wijesekara, I.; Tytgat, J. Conotoxins targeting nicotinic acetylcholine receptors: An overview. Mar. Drugs 2014, 12, 2970–3004. [Google Scholar] [CrossRef] [PubMed]
- Abraham, N.; Lewis, R.J. Neuronal Nicotinic Acetylcholine Receptor Modulators from Cone Snails. Mar. Drugs 2018, 16, 208. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, E.X.; Pereira, E.F.; Alkondon, M.; Rogers, S.W. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol. Rev. 2009, 89, 73–120. [Google Scholar] [CrossRef]
- Kalamida, D.; Poulas, K.; Avramopoulou, V.; Fostieri, E.; Lagoumintzis, G.; Lazaridis, K.; Sideri, A.; Zouridakis, M.; Tzartos, S.J. Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J. 2007, 274, 3799–3845. [Google Scholar] [CrossRef]
- Mott, M.; Luna, V.M.; Park, J.Y.; Downes, G.B.; Epley, K.; Ono, F. Expressing acetylcholine receptors after innervation suppresses spontaneous vesicle release and causes muscle fatigue. Sci. Rep. 2017, 7, 1674. [Google Scholar] [CrossRef] [Green Version]
- Saxena, A.; Stevens, J.; Cetin, H.; Koneczny, I.; Webster, R.; Lazaridis, K.; Tzartos, S.; Vrolix, K.; Nogales-Gadea, G.; Machiels, B.; et al. Characterization of an anti-fetal AChR monoclonal antibody isolated from a myasthenia gravis patient. Sci. Rep. 2017, 7, 14426. [Google Scholar] [CrossRef]
- Shelukhina, I.V.; Zhmak, M.N.; Lobanov, A.V.; Ivanov, I.A.; Garifulina, A.I.; Kravchenko, I.N.; Rasskazova, E.A.; Salmova, M.A.; Tukhovskaya, E.A.; Rykov, V.A.; et al. Azemiopsin, a Selective Peptide Antagonist of Muscle Nicotinic Acetylcholine Receptor: Preclinical Evaluation as a Local Muscle Relaxant. Toxins (Basel) 2018, 10, 34. [Google Scholar] [CrossRef]
- Utkin, Y.N. Last decade update for three-finger toxins: Newly emerging structures and biological activities. World J. Biol. Chem. 2019, 10, 17–27. [Google Scholar] [CrossRef]
- Muttenthaler, M.; Akondi, K.B.; Alewood, P.F. Structure-Activity Studies on Alpha-Conotoxins. Curr. Pharm. Des. 2011, 17, 4226–4241. [Google Scholar] [CrossRef]
- Dutertre, S.; Nicke, A.; Tsetlin, V.I. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017, 127, 196–223. [Google Scholar] [CrossRef] [PubMed]
- Akondi, K.B.; Muttenthaler, M.; Dutertre, S.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem. Rev. 2014, 114, 5815–5847. [Google Scholar] [CrossRef] [PubMed]
- Olivera, B.M.; Rivier, J.; Clark, C.; Ramilo, C.A.; Corpuz, G.P.; Abogadie, F.C.; Mena, E.E.; Woodward, S.R.; Hillyard, D.R.; Cruz, L.J. Diversity of Conus Neuropeptides. Science 1990, 249, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.S.; Olivera, B.M.; Gray, W.R.; Craig, A.G.; Groebe, D.R.; Abramson, S.N.; McIntosh, J.M. α-Conotoxin EI, a New Nicotinic Acetylcholine Receptor Antagonist with Novel Selectivity. Biochemistry 1995, 34, 14519–14526. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Vera, E.; Aguilar, M.B.; Schiavon, E.; Marinzi, C.; Ortiz, E.; Restano Cassulini, R.; Batista, C.V.; Possani, L.D.; Heimer de la Cotera, E.P.; Peri, F.; et al. Novel alpha-conotoxins from Conus spurius and the alpha-conotoxin EI share high-affinity potentiation and low-affinity inhibition of nicotinic acetylcholine receptors. FEBS J. 2007, 274, 3972–3985. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Suk, J.E.; Jacobsen, R.; Gray, W.R.; McIntosh, J.M.; Han, K.H. Solution conformation of alpha-conotoxin EI, a neuromuscular toxin specific for the alpha 1/delta subunit interface of torpedo nicotinic acetylcholine receptor. J. Biol. Chem. 2001, 276, 49028–49033. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Marl, F. Three-dimensional structure of α-conotoxin EI determined by 1H NMR spectroscopy. Lett. Pept. Sci. 1999, 6, 199–207. [Google Scholar] [CrossRef]
- Eustache, S.; Leprince, J.; Tuffery, P. Progress with peptide scanning to study structure-activity relationships: The implications for drug discovery. Expert Opin. Drug Dis. 2016, 11, 771–784. [Google Scholar] [CrossRef]
- Janes, R.W. Alpha-Conotoxins as selective probes for nicotinic acetylcholine receptor subclasses. Curr. Opin. Pharmacol. 2005, 5, 280–292. [Google Scholar] [CrossRef]
- Jacobsen, R.B.; DelaCruz, R.G.; Grose, J.H.; Michael McIntosh, J.; Yoshikami, D.; Olivera, B.M. Critical Residues Influence the Affinity and Selectivity of α-Conotoxin MI for Nicotinic Acetylcholine Receptors. Biochemistry 1999, 38, 13310–13315. [Google Scholar] [CrossRef]
- Groebe, D.R.; Gray, W.R.; Abramson, S.N. Determinants Involved in the Affinity of α-Conotoxins GI and SI for the Muscle Subtype of Nicotinic Acetylcholine Receptors. Biochemistry 1997, 36, 6469–6474. [Google Scholar] [CrossRef] [PubMed]
- Nicke, A.; Wonnacott, S.; Lewis, R.J. Alpha-conotoxins as tools for the elucidation of structure and function of neuronal nicotinic acetylcholine receptor subtypes. Eur. J. Biochem. 2004, 271, 2305–2319. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Kompella, S.N.; Akondi, K.B.; Melaun, C.; Daly, N.L.; Luetje, C.W.; Alewood, P.F.; Craik, D.J.; Adams, D.J.; Mari, F. RegIIA: An alpha4/7-conotoxin from the venom of Conus regius that potently blocks alpha3beta4 nAChRs. Biochem. Pharmacol. 2012, 83, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Nicke, A.; Loughnan, M.L.; Millard, E.L.; Alewood, P.F.; Adams, D.J.; Daly, N.L.; Craik, D.J.; Lewis, R.J. Isolation, structure, and activity of GID, a novel alpha 4/7-conotoxin with an extended N-terminal sequence. J. Biol. Chem. 2003, 278, 3137–3144. [Google Scholar] [CrossRef]
- Dowell, C.; Olivera, B.M.; Garrett, J.E.; Staheli, S.T.; Watkins, M.; Kuryatov, A.; Yoshikami, D.; Lindstrom, J.M.; McIntosh, J.M. α-Conotoxin PIA Is Selective for α6 Subunit-Containing Nicotinic Acetylcholine Receptors. J. Neurosci. 2003, 23, 8445–8452. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, C.; Liu, Z.; Wang, X.; Liu, N.; Du, W.; Dai, Q. Structural and Functional Characterization of a Novel alpha-Conotoxin Mr1.7 from Conus marmoreus Targeting Neuronal nAChR alpha3beta2, alpha9alpha10 and alpha6/alpha3beta2beta3 Subtypes. Mar. Drugs 2015, 13, 3259–3275. [Google Scholar] [CrossRef] [PubMed]
- Millard, E.L.; Nevin, S.T.; Loughnan, M.L.; Nicke, A.; Clark, R.J.; Alewood, P.F.; Lewis, R.J.; Adams, D.J.; Craik, D.J.; Daly, N.L. Inhibition of neuronal nicotinic acetylcholine receptor subtypes by alpha-Conotoxin GID and analogues. J. Biol. Chem. 2009, 284, 4944–4951. [Google Scholar] [CrossRef]
- Hone, A.J.; Ruiz, M.; Scadden, M.; Christensen, S.; Gajewiak, J.; Azam, L.; McIntosh, J.M. Positional scanning mutagenesis of alpha-conotoxin PeIA identifies critical residues that confer potency and selectivity for alpha6/alpha3beta2beta3 and alpha3beta2 nicotinic acetylcholine receptors. J. Biol. Chem. 2013, 288, 25428–25439. [Google Scholar] [CrossRef]
- Clark, R.J.; Fischer, H.; Nevin, S.T.; Adams, D.J.; Craik, D.J. The synthesis, structural characterization, and receptor specificity of the alpha-conotoxin Vc1.1. J. Biol. Chem. 2006, 281, 23254–23263. [Google Scholar] [CrossRef]
- Armishaw, C.; Jensen, A.A.; Balle, T.; Clark, R.J.; Harpsoe, K.; Skonberg, C.; Liljefors, T.; Stromgaard, K. Rational design of alpha-conotoxin analogues targeting alpha7 nicotinic acetylcholine receptors: Improved antagonistic activity by incorporation of proline derivatives. J. Biol. Chem. 2009, 284, 9498–9512. [Google Scholar] [CrossRef]
- Wu, Y.; Zhangsun, D.; Zhu, X.; Kaas, Q.; Zhangsun, M.; Harvey, P.J.; Craik, D.J.; McIntosh, J.M.; Luo, S. alpha-Conotoxin [S9A]TxID Potently Discriminates between alpha3beta4 and alpha6/alpha3beta4 Nicotinic Acetylcholine Receptors. J. Med. Chem. 2017, 60, 5826–5833. [Google Scholar] [CrossRef] [PubMed]
- Pucci, L.; Grazioso, G.; Dallanoce, C.; Rizzi, L.; De Micheli, C.; Clementi, F.; Bertrand, S.; Bertrand, D.; Longhi, R.; De Amici, M.; et al. Engineering of alpha-conotoxin MII-derived peptides with increased selectivity for native alpha6beta2* nicotinic acetylcholine receptors. FEBS J. 2011, 25, 3775–3789. [Google Scholar]
- Gongora-Benitez, M.; Tulla-Puche, J.; Albericio, F. Handles for Fmoc solid-phase synthesis of protected peptides. ACS Comb. Sci. 2013, 15, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Zhangsun, D.; Zhu, X.; Wu, Y.; Hu, Y.; Christensen, S.; Harvey, P.J.; Akcan, M.; Craik, D.J.; McIntosh, J.M. Characterization of a novel alpha-conotoxin TxID from Conus textile that potently blocks rat alpha3beta4 nicotinic acetylcholine receptors. J. Med. Chem. 2013, 56, 9655–9663. [Google Scholar] [CrossRef]
Peptide Number | Name | Sequences |
---|---|---|
1 | EI | RDOCCYHPTCNMSNPQIC * |
2 | [R1A] EI | ADOCCYHPTCNMSNPQIC * |
3 | [D2A] EI | RAOCCYHPTCNMSNPQIC * |
4 | [O3A] EI | RDACCYHPTCNMSNPQIC * |
5 | [Y6A] EI | RDOCCAHPTCNMSNPQIC * |
6 | [H7A] EI | RDOCCYAPTCNMSNPQIC * |
7 | [P8A] EI | RDOCCYHATCNMSNPQIC * |
8 | [T9A] EI | RDOCCYHPACNMSNPQIC * |
9 | [N11A] EI | RDOCCYHPTCAMSNPQIC * |
10 | [M12A] EI | RDOCCYHPTCNASNPQIC * |
11 | [S13A] EI | RDOCCYHPTCNMANPQIC * |
12 | [N14A] EI | RDOCCYHPTCNMSAPQIC * |
13 | [P15A] EI | RDOCCYHPTCNMSNAQIC * |
14 | [Q16A] EI | RDOCCYHPTCNMSNPAIC * |
15 | [I17A] EI | RDOCCYHPTCNMSNPQAC * |
16 | △1 EI | DOCCYHPTCNMSNPQIC * |
17 | △1–2 EI | OCCYHPTCNMSNPQIC * |
18 | △1–3 EI | CCYHPTCNMSNPQIC * |
mα1β1δε nAChR | rα3β2 nAChR | rα3β4 nAChR | |||||||
---|---|---|---|---|---|---|---|---|---|
Peptides | IC50 (nM) | nH | a Ratio | IC50 (nM) | nH | a Ratio | IC50 (nM) | nH | a Ratio |
1 | 65.9 (58.5–74.2) | 1.3 | 1 | 7297 (3748–14,200) | 0.8 | 1 | 6444 (5443–7628) | 1.4 | 1 |
2 | 302 (265–346) | 1.0 | 4.6 | >10,000 | >10,000 | ||||
3 | 64.8 (57.1–73.6) | 1.5 | 1.0 | >10,000 | >10,000 | ||||
4 | 104 (91–119) | 1.5 | 1.6 | >10,000 | >10,000 | ||||
5 | 278 (239–324) | 0.9 | 4.2 | ~10,000 | 547 (435–687) | 1.1 | 0.08 | ||
6 | 1688 (1407–2025) | 1.0 | 25.6 | >10,000 | >10,000 | ||||
7 | 401 (338–477) | 1.2 | 6.1 | >10,000 | >10,000 | ||||
8 | 191 (173–211) | 1.2 | 2.9 | 65.3 (56.2–76.0) | 1.3 | 0.009 | 603 (510–714) | 1.3 | 0.09 |
9 | 239 (213–268) | 1.4 | 3.6 | >10,000 | >10,000 | ||||
10 | 477 (441–517) | 1.4 | 7.3 | >10,000 | >10,000 | ||||
11 | 34.6 (28.2–42.4) | 1.2 | 0.5 | >10,000 | >10,000 | ||||
12 | 349 (315–386) | 1.3 | 5.3 | >10,000 | >10,000 | ||||
13 | 12,510 (9311–16,810) | 0.9 | 190 | ~10,000 | >10,000 | ||||
14 | 60.6 (52.9–69.4) | 1.1 | 0.9 | ~10,000 | >10,000 | ||||
15 | 129 (110–151) | 1.1 | 2.0 | >10,000 | >10,000 | ||||
16 | 716 (566–907) | 1.1 | 11 | >10,000 | >10,000 | ||||
17 | 13,020 (10,300–16,440) | 1.3 | 198 | >10,000 | >10,000 | ||||
18 | 12,190 (9394–15,810) | 1.3 | 185 | >10,000 | >10,000 |
α-CTx | Sequences | Target | Reference |
---|---|---|---|
EI | RDOCCYHPTCNMSNPQIC * | muscle, α3β4, α3β2 | [15] |
PIA | RDPCCSNPVCTVHNPQIC * | α6/α3β2β3, α6/α3β4, α3β4, α3β2 | [25] |
GID | IRDγCCSNPACRVNNPHVC | α4β2, α3β2, α7 | [24] |
LoIa | EGCCSNPACRTNHPEVCD | α7, α3β4, muscle | [2] |
Mr1.7 | PECCTHPACHVSHPELC * | α3β2, α9α10 | [26] |
RegIIA | GCCSHPACNVNNPHIC * | α3β4, α3β2, α7 | [23] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, J.; Ren, J.; Xiong, Y.; Wu, Y.; Zhangsun, M.; Zhangsun, D.; Zhu, X.; Luo, S. Identification of Crucial Residues in α-Conotoxin EI Inhibiting Muscle Nicotinic Acetylcholine Receptor. Toxins 2019, 11, 603. https://doi.org/10.3390/toxins11100603
Ning J, Ren J, Xiong Y, Wu Y, Zhangsun M, Zhangsun D, Zhu X, Luo S. Identification of Crucial Residues in α-Conotoxin EI Inhibiting Muscle Nicotinic Acetylcholine Receptor. Toxins. 2019; 11(10):603. https://doi.org/10.3390/toxins11100603
Chicago/Turabian StyleNing, Jiong, Jie Ren, Yang Xiong, Yong Wu, Manqi Zhangsun, Dongting Zhangsun, Xiaopeng Zhu, and Sulan Luo. 2019. "Identification of Crucial Residues in α-Conotoxin EI Inhibiting Muscle Nicotinic Acetylcholine Receptor" Toxins 11, no. 10: 603. https://doi.org/10.3390/toxins11100603
APA StyleNing, J., Ren, J., Xiong, Y., Wu, Y., Zhangsun, M., Zhangsun, D., Zhu, X., & Luo, S. (2019). Identification of Crucial Residues in α-Conotoxin EI Inhibiting Muscle Nicotinic Acetylcholine Receptor. Toxins, 11(10), 603. https://doi.org/10.3390/toxins11100603