Toxicity of Bacillus thuringiensis-Derived Pesticidal Proteins Cry1Ab and Cry1Ba against Asian Citrus Psyllid, Diaphorina citri (Hemiptera)
Abstract
:1. Introduction
2. Results
2.1. Bt Strain-Derived Toxins with Activity against Asian Citrus Psyllid (ACP)
2.2. Toxicity Correlated with Reduced Feeding
2.3. Toxin Proteolytic Profiles
2.4. Bt israelensis Strains
2.5. Identification of Toxins Expressed by IBL-00200
2.6. Toxicity of Individual Toxins to ACP
2.7. Toxicity Correlates with Damage to the ACP Gut Epithelium
3. Discussion
4. Materials and Methods
4.1. Bacillus thuringiensis (Bt) Strains and Toxins
4.2. Solubilization, Trypsin Activation and Toxin Profiles of Bt Strains
4.3. Screening of Bt Accessions for Toxicity to Adult ACP
4.4. Identification of Toxins Produced by IBL-00200
4.5. Expression and Purification of Cry1Ab and Cry1Ba
4.6. Screening of Individual Bt Endotoxins for Toxicity to Adult ACP
4.7. Transmission Electron Microscopy
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Gottwald, T.R. Current epidemiological understanding of citrus Huanglongbing. Annu. Rev. Phytopathol. 2010, 48, 119–139. [Google Scholar] [CrossRef] [PubMed]
- Gottwald, T.R.; da Graca, J.V. Citrus Huanglongbing: The Pathogen and Its Impact. 2007. Available online: http://www.plantmanagementnetwork.org/sub/php/review/2007/huanglongbing/ (accessed on 5 June 2017).
- Halbert, S.E.; Manjunath, K.L. Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida. Fla. Entomol. 2004, 87, 330–353. [Google Scholar] [CrossRef]
- Manjunath, K.L.; Halbert, S.E.; Ramadugu, C.; Webb, S.; Lee, R.F. Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of Citrus huanglongbing in Florida. Phytopathology 2008, 98, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.G.; Richardson, M.L.; Ammar, E.; Halbert, S.E. Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease. Entomol. Exp. Appl. 2013, 146, 207–223. [Google Scholar] [CrossRef]
- Tiwari, S.; Clayson, P.J.; Kuhns, E.H.; Stelinski, L.L. Effects of buprofezin and diflubenzuron on various developmental stages of Asian citrus psyllid, Diaphorina citri. Pest Manag. Sci. 2012, 68, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Stelinski, L.L.; Rogers, M.E. Biochemical basis of organophosphate and carbamate resistance in Asian Citrus Psyllid. J. Econ. Entomol. 2012, 105, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Christou, P.; Capell, T.; Kohli, A.; Gatehouse, J.A.; Gatehouse, A.M. Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci. 2006, 11, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Shelton, A.M.; Zhao, J.Z.; Roush, R.T. Economic, ecological, food safety, and social consequences of the deployment of bt transgenic plants. Annu. Rev. Entomol. 2002, 47, 845–881. [Google Scholar] [CrossRef]
- Palma, L.; Munoz, D.; Berry, C.; Murillo, J.; Caballero, P. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins 2014, 6, 3296–3325. [Google Scholar] [CrossRef]
- Vachon, V.; Laprade, R.; Schwartz, J.-L. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. J. Invertebr. Pathol. 2012, 111, 1–12. [Google Scholar] [CrossRef]
- Chougule, N.P.; Bonning, B.C. Toxins for transgenic resistance to hemipteran pests. Toxins 2012, 4, 405–429. [Google Scholar] [CrossRef]
- Baum, J.; Flasinski, S.; Heck, G.R.; Penn, S.R.; Sukuru, U.R.; Shi, X. Novel Hemipteran and Coleopteran Active Toxin Proteins from Bacillus thuringiensis. U.S. Patent US20100064394A1, 11 March 2010. [Google Scholar]
- Baum, J.A.; Sukuru, U.R.; Penn, S.R.; Meyer, S.E.; Subbarao, S.; Shi, X.; Flasinski, S.; Heck, G.R.; Brown, R.S.; Clark, T.L. Cotton plants expressing a hemipteran-active Bacillus thuringiensis crystal protein impact the development and survival of Lygus hesperus (Hemiptera: Miridae) nymphs. J. Econ. Entomol. 2012, 105, 616–624. [Google Scholar] [CrossRef]
- Hajeri, S.; Killiny, N.; El-Mohtar, C.; Dawson, W.O.; Gowda, S. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). J. Biotechnol. 2014, 176, 42–49. [Google Scholar] [CrossRef]
- Chougule, N.P.; Li, H.; Liu, S.; Linz, L.B.; Narva, K.E.; Meade, T.; Bonning, B.C. Retargeting of the Bacillus thuringiensis toxin Cyt2Aa against hemipteran insect pests. Proc. Natl. Acad. Sci. USA 2013, 110, 8465–8470. [Google Scholar] [CrossRef] [PubMed]
- Schnepf, H.E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. R. 1998, 62, 775–806. [Google Scholar]
- Ammar, E.; Hall, D.G. A new method for short-term rearing of citrus psyllids (Hemiptera: Pysillidae) and for collecting their honeydew excretions. Fla. Entomol. 2011, 94, 340–342. [Google Scholar] [CrossRef]
- Fernandez-Luna, M.T.; Tabashnik, B.E.; Lanz-Mendoza, H.; Bravo, A.; Soberon, M.; Miranda-Rios, J. Single concentration tests show synergism among Bacillus thuringiensis subsp. israelensis toxins against the malaria vector mosquito Anopheles albimanus. J. Invertebr. Pathol. 2010, 104, 231–233. [Google Scholar] [CrossRef]
- Bacillus thuringiensis Toxin Nomenclature. Available online: http://www.btnomenclature.info (accessed on 22 October 2017).
- Walters, F.S.; English, L.H. Toxicity of Bacillus thurigiensis delta endotoxins toward the potato aphid in an artificial diet bioassay. Entomol. Exp. Appl. 1995, 77, 211–216. [Google Scholar] [CrossRef]
- Porcar, M.; Grenier, A.M.; Federici, B.; Rahbe, Y. Effects of Bacillus thuringiensis delta-endotoxins on the pea aphid (Acyrthosiphon pisum). Appl. Environ. Microbiol. 2009, 75, 4897–4900. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Y.; Shu, C.; Lin, K.; Song, F.; Bravo, A.; Soberon, M.; Zhang, J. Cry64Ba and Cry64Ca, Two ETX/MTX2-type Bacillus thuringiensis insecticidal proteins active against hemipteran pests. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef]
- Gowda, A.; Rydel, T.J.; Wollacott, A.M.; Brown, R.S.; Akbar, W.; Clark, T.L.; Flasinski, S.; Nageotte, J.R.; Read, A.C.; Shi, X.; et al. A transgenic approach for controlling Lygus in cotton. Nat. Commun. 2016, 7, 12213. [Google Scholar] [CrossRef] [PubMed]
- Crickmore, N.; Zeigler, D.R.; Feitelson, J.; Schnepf, H.E.; Van Rie, J.; Lereclus, D.; Baum, J.; Dean, D.H. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. R. 1998, 62, 807–813. [Google Scholar]
- Tabashnik, B.E. Evaluation of synergism among Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 1992, 58, 3343–3346. [Google Scholar] [PubMed]
- El-Mohtar, C.; Dawson, W.O. Exploring the limits of vector construction based on Citrus tristeza virus. Virology 2014, 448, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Travers, R.S.; Martin, P.A.W.; Reichelderfer, C.F. Selective process for efficient isolation of soil Bacillus spp. Appl. Environ. Microbiol. 1987, 53, 1263–1266. [Google Scholar]
- Geiser, M.; Schweitzer, S.; Grimm, C. The hypervariable region in the genes coding for entomopathogenic crystal proteins of Bacillus thuringiensis: Nucleotide sequence of the kurhd1 gene of subsp. kurstaki HD1. Gene 1986, 48, 109–118. [Google Scholar] [CrossRef]
- Brizzard, B.L.; Whiteley, H.R. Nucleotide sequence of an additional crystal protein gene cloned from Bacillus thuringiensis subsp. thuringiensis. Nucleic Acids Res. 1988, 16, 2723–2724. [Google Scholar] [CrossRef] [PubMed]
- Thorne, C.B. Transducing bacteriophage for Bacillus cereus. J. Virol. 1968, 2, 657–662. [Google Scholar]
- Bradford, M.M. A dye binding assay for protein. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Hall, D.G.; Shatters, R.G.; Carpenter, J.E.; Shapiro, J.P. Research toward an artificial diet for adult asian citrus psyllid. Ann. Entomol. Soc. Am. 2010, 103, 611–617. [Google Scholar] [CrossRef]
- Hall, D.G.; George, J.; Lapointe, S.L. Further investigations on colonization of Poncirus trifoliata by the Asian citrus psyllid. Crop Protection 2015, 72, 112–118. [Google Scholar] [CrossRef]
- Westbrook, C.J.; Hall, D.G.; Stover, E.; Duan, Y.P. Colonization of citrus and citrus- related germplasm by Diaphorina citri (Hemiptera: Psyllidae). Hortscience 2011, 47, 997–1005. [Google Scholar] [CrossRef]
- Skelley, L.H.; Hoy, M.A. A synchronous rearing method for the Asian citrus psyllid and its parasitoids in quarantine. Biol. Control 2004, 29, 14–23. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA 6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Hua, G.; Andacht, T.; Adang, M. A 106-kDa Aminopeptidase is a putative receptor for Bacillus thuringiensis Cry11Ba toxin in the mosquito Anopheles gambiae. Biochemistry 2008, 47, 11263–11272. [Google Scholar] [CrossRef]
- de Maagd, R.A.; Weemen-Hendriks, M.; Stiekema, W.; Bosch, D. Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids. Appl. Environ. Microbiol. 2000, 66, 1559–1563. [Google Scholar] [CrossRef]
- Langdon, K.; Rogers, M. Neonicotinoid-induced mortality of Diaphorina Citri (Hemiptera: Liviidae) is affected by route of exposure. J. Econ. Entomol. 2017, 110, 2229–2234. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: London, UK, 1971; p. 333. [Google Scholar]
Toxic | Non-Toxic |
---|---|
IBL-00048 † | IBL-00024 |
IBL-00068 | IBL-00055 |
IBL-00200 | IBL-00071 |
IBL-00365 | IBL-00090 |
IBL-00681 | IBL-00098 |
IBL-00829 | IBL-00192 |
Cry1Ab | IBL-00217 |
Cry1Ba | IBL-00438 |
IBL-00937 | |
IBL-01306 | |
IBL-01313 | |
IBL-03792 | |
Cry4A | |
Cry11A |
Band | Accession Number | Identified Cry Toxin | Coverage (%) | Amino Acid Identity (%) | Score A4 |
---|---|---|---|---|---|
A | EEM92927.1 | Cry1Bb | 21.93 | 99.9 | 360.29 |
B | EEM92947.1 | Cry1Ja | 32.39 | 99 | 674.73 |
C | EEM92934.1 | Cry1Ab | 30.59 | 96 | 698.91 |
Accession Numbers | Previous Designation | Expression in IBL-00200 and Designation Based on Bt Database | Locus_tag |
---|---|---|---|
EEM93105.1 | cry11Bb | ND | |
EEM93049.1 | cry2Ad | ND | |
EEM93050.1 | cry2Ad | ND | |
EEM93051.1 | cry1Ae | ND | |
EEM93055.1 | cry2Ad | ND | |
EEM93056.1 | cry1Ae | ND | |
EEM92924.1 | cry1Ae | cry1Hb | |
EEM92927.1 | cry1Bc | cry1Bb | bthur0013_56890 |
EEM92934.1 | cry1Ae | cry1Ab | bthur0013_56960 |
EEM92941.1 | cry1Bc | ND | |
EEM92947.1 | cry1Ae | cry1Ja | bthur0013_57090 |
EEM92952.1 | cry1Bc | ND | |
EEM92953.1 | cry1Ae | cry1Da | |
EEM92570.1 | cry8Ba | ND |
Toxin | LC50 (µg/mL or ppm) | 95% Fiducial CI | Mean LC50 | Standard Error | |
---|---|---|---|---|---|
Lower | Upper | ||||
Cry1Ab | 123 | 56 | 272 | 118 | 17.1 |
149 | 89 | 250 | |||
102 | 51 | 206 | |||
Cry1Ba | 95 | 29 | 310 | 125 | 13.6 |
108 | 58 | 202 | |||
152 | 77 | 300 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez-Luna, M.T.; Kumar, P.; Hall, D.G.; Mitchell, A.D.; Blackburn, M.B.; Bonning, B.C. Toxicity of Bacillus thuringiensis-Derived Pesticidal Proteins Cry1Ab and Cry1Ba against Asian Citrus Psyllid, Diaphorina citri (Hemiptera). Toxins 2019, 11, 173. https://doi.org/10.3390/toxins11030173
Fernandez-Luna MT, Kumar P, Hall DG, Mitchell AD, Blackburn MB, Bonning BC. Toxicity of Bacillus thuringiensis-Derived Pesticidal Proteins Cry1Ab and Cry1Ba against Asian Citrus Psyllid, Diaphorina citri (Hemiptera). Toxins. 2019; 11(3):173. https://doi.org/10.3390/toxins11030173
Chicago/Turabian StyleFernandez-Luna, Maria Teresa, Pavan Kumar, David G. Hall, Ashaki D. Mitchell, Michael B. Blackburn, and Bryony C. Bonning. 2019. "Toxicity of Bacillus thuringiensis-Derived Pesticidal Proteins Cry1Ab and Cry1Ba against Asian Citrus Psyllid, Diaphorina citri (Hemiptera)" Toxins 11, no. 3: 173. https://doi.org/10.3390/toxins11030173
APA StyleFernandez-Luna, M. T., Kumar, P., Hall, D. G., Mitchell, A. D., Blackburn, M. B., & Bonning, B. C. (2019). Toxicity of Bacillus thuringiensis-Derived Pesticidal Proteins Cry1Ab and Cry1Ba against Asian Citrus Psyllid, Diaphorina citri (Hemiptera). Toxins, 11(3), 173. https://doi.org/10.3390/toxins11030173