Nasal Colonization of Humans with Occupational Exposure to Raw Meat and to Raw Meat Products with Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus
Abstract
:1. Introduction
2. Results
2.1. Characteristics of The Sample
2.2. S. aureus Nasal Carriage
2.3. Antibiotic Resistance
2.4. Results from Typing
3. Discussion
4. Materials and Methods
4.1. Study Participants
4.2. Sampling and Primary Diagnostics
4.3. Typing and Further Characterization
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cuny, C.; Friedrich, A.; Kozytska, S.; Layer, F.; Nübel, U.; Ohlsen, K.; Strommenger, B.; Walther, B.; Wieler, L.; Witte, W. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int. J. Med. Microbiol. 2010, 300, 109–117. [Google Scholar] [CrossRef]
- Fitzgerald, J.R. Livestock-associated Staphylococcus aureus: Origin, evolution and public health threat. Trends Microbiol. 2012, 20, 192–198. [Google Scholar] [CrossRef]
- Sung, J.M.; Lloyd, D.H.; Lindsay, J.A. Staphylococcus aureus host specificity: Comparative genomics of human versus animal isolates by multistrain microarray. Microbiology 2008, 154, 1949–1959. [Google Scholar] [CrossRef]
- Lowder, B.V.; Guinane, C.M.; Ben Zakour, N.L.; Weinert, L.A.; Conway-Morris, A.; Cartwright, R.A.; Simpson, A.J.; Rambaut, A.; Nübel, U.; Fitzgerald, J.R. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2009, 106, 19545–19550. [Google Scholar] [CrossRef]
- Resch, G.; François, P.; Morisset, D.; Stojanov, M.; Bonetti, E.J.; Schrenzel, J.; Sakwinska, O.; Moreillon, P. Human-to-bovine jump of Staphylococcus aureus CC8 is associated with the loss of a β-hemolysin converting prophage and the acquisition of a new staphylococcal cassette chromosome. PLoS ONE 2013, 8, e58187. [Google Scholar] [CrossRef]
- Stegger, M.; Liu, C.M.; Larsen, J.; Soldanova, K.; Aziz, M.; Contente-Cuomo, T.; Petersen, A.; Vandendriessche, S.; Jiménez, J.N.; Mammina, C.; et al. Rapid differentiation between livestock-associated and livestock-independent Staphylococcus aureus CC398 clades. PLoS ONE 2013, 14. [Google Scholar] [CrossRef]
- Cuny, C.; Wieler, L.H.; Witte, W. Livestock-Associated MRSA: The impact on humans. Antibiotics 2015, 4, 521–543. [Google Scholar] [CrossRef]
- Pantosti, A. Methicillin-Resistant Staphylococcus aureus associated with animals and Its relevance to human health. Front. Microbiol. 2012. [Google Scholar] [CrossRef]
- Smith, T.C.; Thapaliya, D.; Bhatta, S.; Mackey, S.; Engohang-Ndong, J.; Carrel, M. Geographic distribution of livestock-associated Staphylococcus aureus in the United States. Microbes Infect. 2018, 20, 323–327. [Google Scholar] [CrossRef]
- Chuang, Y.Y.; Huang, Y.C. Livestock-associated meticillin-resistant Staphylococcus aureus in Asia: An emerging issue? Int. J. Antimicrob. Agents. 2015, 45, 334–340. [Google Scholar] [CrossRef]
- Kluytmans, J.A. Methicillin-resistant Staphylococcus aureus in food products: Cause for concern or case for complacency? Clin. Microbiol. Infect. 2010, 16, 11–15. [Google Scholar] [CrossRef]
- Beneke, B.; Klees, S.; Stührenberg, B.A.; Kraushaar, B.; Tenhagen, B.A. Prevalence of methicillin-resistant Staphylococcus aureus in a fresh meat pork production chain. J. Food Prot. 2011, 74, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Vossenkuhl, B.; Brandt, J.; Fetsch, A.; Käsbohrer, A.; Kraushaar, B.; Alt, K.; Tenhagen, B.A. Comparison of spa types, SCCmec types and antimicrobial resistance profiles of MRSA Isolated from turkeys at farm, Ssaughter and from retail meat indicates transmission along the production chain. PLoS ONE 2014, 9, e96308. [Google Scholar] [CrossRef] [PubMed]
- Cuny, C.; Layer, F.; Witte, W. Staphylococcus aureus and MRSA in thawing liquid of broiler chicken carcasses and their relation to clonal lineages from humans. Intern. J. Med. Microbiol. 2011, 301, 117. [Google Scholar]
- Argudín, M.A.; Tenhagen, B.A.; Fetsch, A.; Sachsenröder, J.; Käsbohrer, A.; Schroeter, A.; Hammerl, J.A.; Hertwig, S.; Helmuth, R.; Bräunig, J.; et al. Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources. Appl. Environ. Microbiol. 2011, 77, 3052–3060. [Google Scholar]
- Klous, G.; Huss, A.; Heederik, D.J.; Coutinho, R.A. Human-livestock contacts and their relationship to transmission of zoonotic pathogens, a systematic review of literature. One Health 2016, 2, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Köck, R.; Loth, B.; Köksal, M.; Schulte-Wülwer, J.; Harlizius, J.; Friedrich, A.W. Persistence of nasal colonization with livestock-associated methicillin-resistant Staphylococcus aureus in pig farmers after holidays from pig exposure. Appl. Environ. Microbiol. 2012, 78, 4046–4047. [Google Scholar] [CrossRef]
- Walter, J.; Espelage, W.; Adlhoch, C.; Cuny, C.; Schink, S.; Jansen, A.; Witte, W.; Eckmanns, T.; Hermes, J. Persistence of nasal colonisation with methicillin resistant Staphylococcus aureus CC398 among participants of veterinary conferences and occurrence among their household members: A prospective cohort study, Germany 2008-2014. Vet. Microbiol. 2017, 200, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Cuny, C.; Nathaus, R.; Layer, F.; Strommenger, B.; Altmann, D.; Witte, W. Nasal colonization of humans with methicillin-resistant Staphylococcus aureus (MRSA) CC398 with and without exposure to pigs. PLoS ONE 2009, 4, e6800. [Google Scholar] [CrossRef]
- Becker, K.; Ballhausen, B.; Kahl, B.C.; Köck, R. The clinical impact of livestock-associated methicillin-resistant Staphylococcus aureus of the clonal complex 398 for humans. Vet. Microbiol. 2017, 200, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Deiters, C.; Günnewig, V.; Friedrich, A.W.; Mellmann, A.; Köck, R. Are cases of Methicillin-resistant Staphylococcus aureus clonal complex (CC) 398 among humans still livestock-associated? Int. J. Med. Microbiol. 2015, 305, 110–113. [Google Scholar] [CrossRef]
- Ho, J.; O’Donoghue, M.M.; Boost, M.V. Occupational exposure to raw meat: A newly-recognized risk factor for Staphylococcus aureus nasal colonization amongst food handlers. Int. J. Hyg. Environ. Health 2014, 217, 47–53. [Google Scholar] [CrossRef]
- Boost, M.; Ho, J.; Guardabassi, L.; O’Donoghue, M. Colonization of butchers with livestock-associated methicillin-resistant Staphylococcus aureus. Zoonoses Public Health 2013, 60, 572–576. [Google Scholar] [CrossRef]
- De Jonge, R.; Verdier, J.E.; Havelaar, A.H. Prevalence of methicillin-resistant Staphylococcus aureus amongst professional meat handlers in the Netherlands, March-July 2008. Euro Surveill. 2010, 15, 19712. [Google Scholar] [CrossRef]
- Krupa, P.; Bystroń, J.; Bania, J.; Podkowik, M.; Empel, J.; Mroczkowska, A. Genotypes and oxacillin resistance of Staphylococcus aureus from chicken and chicken meat in Poland. Poult. Sci. 2014, 93, 3179–3186. [Google Scholar] [CrossRef]
- Becker, K.; Schaumburg, F.; Fegeler, C.; Friedrich, A.W.; Köck, R. Staphylococcus aureus from the German general population is highly diverse. Int. J. Med. Microbiol. 2017, 307, 21–27. [Google Scholar] [CrossRef]
- Mehraj, J.; Akmatov, M.K.; Strömpl, J.; Gatzemeier, A.; Layer, F.; Werner, G.; Pieper, D.H.; Medina, E.; Witte, W.; Pessler, F.; et al. Methicillin-sensitive and methicillin-resistant Staphylococcus aureus nasal carriage in a random sample of non-hospitalized adult population in northern Germany. PLoS ONE 2014. [Google Scholar] [CrossRef]
- Holtfreter, S.; Grumann, D.; Balau, V.; Barwich, A.; Kolata, J.; Goehler, A.; Weiss, S.; Holtfreter, B.; Bauerfeind, S.S.; Döring, P.; et al. Molecular Epidemiology of Staphylococcus aureus in the General Population in Northeast Germany: Results of the Study of Health in Pomerania (SHIP-TREND-0). J. Clin. Microbiol. 2016, 54, 2774–2785. [Google Scholar] [CrossRef] [PubMed]
- Sollid, J.U.; Furberg, A.S.; Hanssen, A.M.; Johannessen, M. Staphylococcus aureus: Determinants of human carriage. Infect. Genet. Evol. 2014, 21, 531–541. [Google Scholar] [CrossRef]
- Sakr, A.; Brégeon, F.; Mège, J.L.; Rolain, J.M.; Blin, O. Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Front. Microbiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Wertheim, H.F.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762. [Google Scholar] [CrossRef]
- Ho, J.; Boost, M.V.; O’Donoghue, M.M. Tracking sources of Staphylococcus aureus hand contamination in food handlers by spa typing. Am. J. Infect. Control. 2015, 43, 759–761. [Google Scholar] [CrossRef]
- Miller, R.R.; Walker, A.S.; Godwin, H.; Fung, R.; Votintseva, A.; Bowden, R. Dynamics of acquisition and loss of carriage of Staphylococcus aureus strains in the community: The effect of clonal complex. J. Infect. 2014, 68, 426–439. [Google Scholar] [CrossRef]
- Köck, R.; Werner, P.; Friedrich, A.W.; Fegeler, C.; Becker, K. Prevalence of Multiresistant Microorganisms (PMM) Study Group. New Microbes New Infect. 2015, 9, 24–34. [Google Scholar] [CrossRef]
- Holden, M.T.; Hsu, L.Y.; Kurt, K.; Weinert, L.A.; Mather, A.E.; Harris, S.R.; Strommenger, B.; Layer, F.; Witte, W.; de Lencastre, H.; et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 2013, 23, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Layer, F.; Stromenger, B.; Cuny, C.; Werner, G. Eigenschaften, Häufigkeit und Verbreitung von MRSA in Deutschland—Update 2013/2014. Epidemiol. Bull. 2015. Available online: https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2015/31/Art_01.html (accessed on 21 March 2019).
- Tavares, A.; Miragaia, M.; Rolo, J.; Coelho, C.; de Lencastre, H. High prevalence of hospital-associated methicillin-resistant Staphylococcus aureus in the community in Portugal: Evidence for the blurring of community-hospital boundaries. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 1269–1283. [Google Scholar] [CrossRef]
- Weese, J.; Avery, B.; Reid Smith, R. Detection and quantification of methicillin resistant Staphylococcus aureus (MRSA) clones in retail meat products. Lett. Appl. Microbiol. 2010, 51, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Thapaliya, D.; Forshey, B.M.; Kadariya, J.; Quick, M.K.; Farina, S.; O’ Brien, A.; Nair, R.; Nworie, A.; Hanson, B.; Kates, A.; et al. Prevalence and molecular characterization of Staphylococcus aureus in commercially available meat over a one-year period in Iowa, USA. Food Microbiol. 2017, 65, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Van Rijen, M.M.; Kluytmans-van den Bergh, M.F.; Verkade, E.J.; Ten Ham, P.B.; Feingold, B.J.; Kluytmans, J.A.; CAM Study Group. Lifestyle-Associated Risk Factors for Community-Acquired Methicillin-Resistant Staphylococcus aureus Carriage in the Netherlands: An Exploratory Hospital-Based Case-Control Study. PLoS ONE 2013. [Google Scholar] [CrossRef] [PubMed]
- ARS—Antibiotika-Resistenz-Surveillance. Available online: https://ars.rki.de (accessed on 21 March 2019).
- Armand-Lefevre, L.; Ruimy, R.; Andremont, A. Clonal comparison of Staphylococcus aureus isolates from healthy pig-farmers, human controls, and pigs. Emerg. Infect. Dis. 2005, 11, 711–714. [Google Scholar] [CrossRef]
- Van der Wolf, P.J.; Rothkamp, A.; Junker, K.; de Neeling, A.J. Staphylococcus aureus (MSSA) and MRSA (CC398) isolated from post-mortem samples from pigs. Vet. Microbiol. 2012, 158, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Nemati, M.; Hermans, K.; Lipinska, U.; Denis, O.; Deplano, A.; Struelens, M.; Devriese, L.; Pasmans, F.; Haesebrouck, F. Antimicrobial resistance of old and recent Staphylococcus aureus isolates from poultry: First detection of livestock-associated methicillin-resistant strain ST398. Antimicrob. Agents Chemother. 2008, 52, 3817–3819. [Google Scholar] [CrossRef]
- Akmatov, M.K.; Mehraj, J.; Gatzemeier, A.; Strömp, J.; Witte, W.; Krause, G.; Pessler, F. Serial home-based self-collection of anterior nasal swabs to detect Staphylococcus aureus carriage in a randomized population-based study in Germany. Int. J. Infect. Dis. 2014, 25, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Martineau, F.; Picard, F.J.; Ke, D.; Paradis, S.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Development of a PCR assay for identification of staphylococci at genus ans species levels. J. Clin. Microbiol. 2001, 39, 2541–2547. [Google Scholar] [CrossRef]
- Cuny, C.; Abdelbary, M.; Layer, F.; Werner, G.; Witte, W. Prevalence of the immune evasion gene cluster in Staphylococcus aureus CC398. Vet. Microbiol. 2015, 177, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Strommenger, B.; Kehrenberg, C.; Kettlitz, C.; Cuny, C.; Verspohl, J.; Witte, W.; Schwarz, S. Molecular characterization of methicillin-resistant Staphylococcus aureus strains from pet animals and their relationship to human isolates. J. Antimicrob. Chemother. 2006, 57, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Cuny, C.; Layer, F.; Strommenger, B.; Witte, W. Rare occurrence of methicillin-resistant Staphylococcus aureus CC130 with a novel mecA homologue in humans in Germany. PLoS ONE 2011, 6, e24360. [Google Scholar] [CrossRef] [PubMed]
- Schlotter, K.; Ehricht, R.; Hotzel, H.; Monecke, S.; Pfeffer, M.; Donat, K. Leukocidin genes lukF-P83 and lukM are associated with Staphylococcus aureus clonal complexes 151, 479 and 133 isolated from bovine udder infections in Thuringia, Germany. Vet. Res. 2012. [Google Scholar] [CrossRef] [PubMed]
- Jarraud, S.; Mougel, C.; Thioulouse, J.; Lina, G.; Meugnier, H.; Forey, F.; Nesme, X.; Etienne, J.; Vandenesch, F. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect. Immun. 2002, 70, 631–641. [Google Scholar] [CrossRef] [PubMed]
All (n = 605) | Butchers, Meat Sellers (n = 286) | Cooks (n = 319) | p1 | ||||||
---|---|---|---|---|---|---|---|---|---|
Sex | female | 394 | 65.1% | 195 | 68.2% | 199 | 62.4% | ||
male | 211 | 34.8% | 91 | 31.8% | 120 | 37.6% | 0.158 | ||
Age groups | <20 | 12 | 2% | 9 | 3.1% | 3 | 0.9% | 0.0986 | |
21–30 | 81 | 13.4% | 33 | 11.50% | 48 | 15.0% | 0.211 | ||
31–40 | 116 | 19.2% | 41 | 14.30% | 75 | 23.5% | 0.058 | ||
41–50 | 150 | 24.8% | 80 | 30.0% | 70 | 22.0% | 0.169 | ||
51–60 | 182 | 30.0% | 92 | 32.2% | 90 | 28.2% | 0.313 | ||
>61 | 64 | 10.6% | 31 | 10.8% | 33 | 10.3% | 0.042 | ||
Hospital stay | 37 | 6.1% | 8 | 2.8% | 29 | 9.0% | 0.022 | ||
Antibiotic prescription | 60 | 9.9% | 22 | 7.6% | 38 | 11.0% | 0.11 | ||
Diabetes mellitus | 23 | 3.8% | 12 | 4.2% | 11 | 3.4% | 0.789 | ||
Skin disorders | 27 | 4.5% | 19 | 6.6% | 8 | 2.5% | 0.023 | ||
Pet animal contact | 326 | 53.90% | 176 | 61.5% | 150 | 47.0% | 0.0004 |
Antibiotic Resistance Phenotypes | Frequency | Resistance to Singular Antibiotics in MSSA (n = 128) | Frequency |
---|---|---|---|
Susceptible | 56 (43.0%) | ||
PEN | 55 (42.3%) | PEN | 64 (50.0%) |
PEN, ERY | 7 (5.4%) | ERY | 13 (10.1%) |
PEN, TET | 1 (0.77%) | CLI | 1 (0.8%) |
PEN, CIP | 1 (0.77%) | TET | 2 (1.6%) |
PEN, OXA, CIP, MFL | 1 (0.77%) | CIP | 3 (2.3%) |
PEN, OXA, ERY, CLI, CIP | 1 (0.77%) | ||
ERY | 5 (3.9%) | ||
TET | 1 (0.77%) | ||
CIP | 2 (0.15%) |
spa-CC | spa-Types (No. Isolates) | No. Isolates | Attribution to CC (ST) |
---|---|---|---|
Singleton | t127(3) | 3 | CC1 3 (2.3%) |
spa-CC002 | t002(5), t1265(1), t1794(1) | 7 | CC5 7 (5.4%) |
spa-CC084/346 | t091(14), t1943(1) | 15 | CC7 16 (12.3%) |
Non typeable | t2932(1) | 1 | |
spa-CC121 | t008(9), t121(2), t190(1), t292(1) | 13 | CC8 13 (10.0%) |
Singleton | t209(1) | 1 | CC9 1 (0.8%) |
spa-CC084/346 | t084(14), t346(4), t499(2), t491(1) | 21 | CC15 25 (19.2%) |
Non typeable | 15546(1), t15664(1), t15712(1) | 3 | |
Excluded | t5497(1) | 1 | |
spa-CC005 | t005(12), t006(1), t032(2) 1, t223(1) t310(1), t449(1), t17201(1) | 19 | CC22 21 (16.2%) |
Singletons | t417(1), t420(1) | 2 | |
spA-CC012 | t012(6), t018(2), t021(2), t122(1), t253(1), t338(1), t789(1) | 14 | CC30 15 (11.5%) |
Singleton | t1827(1) | 1 | |
No founder | t136(1), t166(1) | 2 | CC34 4 (3.0%) |
Singleton | t089(2) | 2 | |
spa-CC015 | t015(7), t073(4), t331(1), t505(1), t15726(1) | 14 | CC45 16 (12.3%) |
Singletons | t004(1), t1460(1) | 2 | |
Singleton | t056(2) | 2 | CC101 2 (1.5%) |
Singleton | t159(2) | 2 | CC121 2 (1.5%) |
Singleton | t493(1) | 1 | ST182 1 (0.8%) |
No founder | t571(2), t1451(2) | 4 | CC398 4 (3.0%) |
Total | 130 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuny, C.; Layer, F.; Hansen, S.; Werner, G.; Witte, W. Nasal Colonization of Humans with Occupational Exposure to Raw Meat and to Raw Meat Products with Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus. Toxins 2019, 11, 190. https://doi.org/10.3390/toxins11040190
Cuny C, Layer F, Hansen S, Werner G, Witte W. Nasal Colonization of Humans with Occupational Exposure to Raw Meat and to Raw Meat Products with Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus. Toxins. 2019; 11(4):190. https://doi.org/10.3390/toxins11040190
Chicago/Turabian StyleCuny, Christiane, Franziska Layer, Sonja Hansen, Guido Werner, and Wolfgang Witte. 2019. "Nasal Colonization of Humans with Occupational Exposure to Raw Meat and to Raw Meat Products with Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus" Toxins 11, no. 4: 190. https://doi.org/10.3390/toxins11040190
APA StyleCuny, C., Layer, F., Hansen, S., Werner, G., & Witte, W. (2019). Nasal Colonization of Humans with Occupational Exposure to Raw Meat and to Raw Meat Products with Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus. Toxins, 11(4), 190. https://doi.org/10.3390/toxins11040190