Yellow Mealworm Larvae (Tenebrio molitor) Fed Mycotoxin-Contaminated Wheat—A Possible Safe, Sustainable Protein Source for Animal Feed?
Abstract
:1. Introduction
2. Results
2.1. Fusarium Species Identification and Mycotoxin Levels
2.2. Feeding Trial and Yield Performance
2.3. Chemical Nutritional Analysis
2.4. Breeding and Preference Trials
3. Discussion
3.1. Mycotoxin Analysis
3.2. Mealworm Performance
3.3. Chemical Nutritional Analysis
3.4. Breeding and Preference Trials
4. Materials and Methods
4.1. Wheat Sources
4.2. Fusarium Species Identification
4.3. Yellow Mealworm Colony
4.4. Feeding Trial
4.5. Breeding Trial
4.6. Preference Trial
4.7. Mycotoxin Analysis
4.8. Chemical Nutritional Analysis of Larvae
4.9. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gräfenhan, T.; Patrick, S.K.; Roscoe, M.; Trelka, R.; Gaba, D.; Chan, J.M.; McKendry, T.; Clear, R.M.; Tittlemier, S.A. Fusarium damage in cereal grains from Western Canada. 1. Phylogenetic analysis of moniliformin-producing Fusarium species and their natural occurrence in mycotoxin-contaminated wheat, oats, and rye. J. Agric. Food Chem. 2013, 61, 5425–5437. [Google Scholar] [CrossRef]
- Dill-Macky, R.; Jones, R.K. The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant. Dis. 2000, 84, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Canadian Grain Comission. Available online: https://grainscanada.gc.ca/en/grain-research/statistics/exports-grain-wheat-flour/ (accessed on 5 May 2019).
- Canadian Food Inspection Agency. 2017. Available online: http://www.inspection.gc.ca/animals/feeds/regulatory-guidance/rg-8/eng/1347383943203/1347384015909?chap=1 (accessed on 24 January 2018).
- Kautzman, M.E.; Wickstrom, M.L.; Scott, T.A. The use of near infrared transmittance kernel sorting technology to salvage high quality grain from grain downgraded due to Fusarium damage. Anim. Nutr. J. 2015, 1, 4–46. [Google Scholar] [CrossRef] [PubMed]
- Karlovsky, P. Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Appl. Microbiol. Biotechnol. 2011, 91, 491–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Huis, A. Did early humans consume insects? J. Insects Food Feed 2017, 3, 161–163. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J.; González, E.A.; Hernández, A.R.; Pino, J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol. 2002, 95, 214–220. [Google Scholar] [CrossRef]
- Ravzanaadii, N.; Kim, S.-H.; Choi, W.H.; Hong, S.-J.; Kim, N.J. Nutritional value of mealworm, Tenebrio molitor as food source. Int. J. Indust. Entomol. 2012, 25, 93–98. [Google Scholar] [CrossRef]
- Guo, Z.; Döll, K.; Dastjerdi, R.; Karlovsky, P.; Dehne, H.W.; Altincicek, B. Effect of fungal colonization of wheat grains with Fusarium spp. on food choice, weight gain and mortality of meal beetle larvae (Tenebrio molitor). PLoS ONE 2014, 9, 1–9. [Google Scholar] [CrossRef]
- Van Broekhoven, S.; Gutierrez, J.M.; De Rijk, T.C.; De Nijs, W.C.M.; Van Loon, J.J.A. Degradation and excretion of the Fusarium toxin deoxynivalenol by an edible insect, the yellow mealworm (Tenebrio molitor L.). World Mycotoxin J. 2017, 10, 163–169. [Google Scholar] [CrossRef]
- Camenzuli, L.; van Dam, R.; de Rijk, T.; Andriessen, R.; van Schelt, J.; van der Fels-Klerx, H.J.I. Tolerance and excretion of the mycotoxins aflatoxin B1, zearalenone, deoxynivalenol, and ochratoxin A by Alphitobius diaperinus and Hermetia illucens from contaminated substrates. Toxins 2018, 10, 91. [Google Scholar] [CrossRef]
- Genta, F.A.; Dillon, R.J.; Terra, W.R.; Ferreira, C. Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J. Insect Physiol 2006, 52, 593–601. [Google Scholar] [CrossRef]
- Ran, R.; Wang, C.; Han, Z.; Wu, A.; Zhang, D.; Shi, J. Determination of deoxynivalenol (DON) and its derivatives: Curr. status of analytical methods. Food Control 2013, 34, 138–148. [Google Scholar] [CrossRef]
- Van Broekhoven, S.; Oonincx, D.G.A.B.; Van Huis, A.; Van Loon, J.J.A. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ghaly, A.E.; Alkoaik, F.N. The yellow mealworm as a novel source of protein. Am. J. Agric. Biol. Sci. 2009, 4, 319–331. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; Van Broekhoven, S.; Van Huis, A.; Van Loon, J.J.A. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Frederich, M.; Megido, R.C.; Alabi, T.; Malik, P.; Uyttenbroeck, R.; Francis, F.; Blecker, C.; Haubruge, E.; Lognay, G.; et al. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J. Asia-Pac. Entomol. 2017, 20, 337–340. [Google Scholar] [CrossRef]
- Fasel, N.J.; Mene-Saffrane, L.; Ruczynski, I.; Komar, E.; Christe, P. Diet induced modifications of fatty-acid composition in mealworm larvae (Tenebrio molitor). Food Res. 2017, 6, 22–31. [Google Scholar] [CrossRef]
- Janssen, R.H.; Vincken, J.P.; Van Den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.A.; Gasco, L.; Chatzifotis, S.; Piccolo, G. Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Dev. Comp. Immunol. 2018, 81, 204–209. [Google Scholar] [CrossRef]
- Khempaka, S.; Chitsatchapong, C.; Molee, W. Effect of chitin and protein constituents in shrimp head meal on growth performance, nutrient digestibility, intestinal microbial populations, volatile fatty acids, and ammonia production in broilers. J. Appl. Poult. Res. 2011, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Finke, M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007, 26, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Marono, S.; Piccolo, G.; Loponte, R.; Di Meo, C.; Attia, Y.A.; Nizza, A.; Bovera, F. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital. J. Anim. Sci. 2015, 14, 338–343. [Google Scholar] [CrossRef]
- Finke, M.D. Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biol. 2015, 34, 554–564. [Google Scholar] [CrossRef] [Green Version]
- Weaver, D.K.; McFarlane, J.E. The effect of larval density on growth and development of Tenebrio molitor. J. Insect Physiol. 1990, 36, 531–536. [Google Scholar] [CrossRef]
- Gerlach, W.; Nirenberg, H. The genus Fusarium: A pictorial atlas. In Mitteilungen aus der Biologischen Bundesanstalt fur Land-und Forstwirtschaft Berlin-Dahlem; 1982; Volume 209, pp. 1–406. [Google Scholar] [CrossRef]
- Park, J.; Choi, W.H.; Kim, S.H.; Jin, H.J.; Han, Y.S.; Kim, N.J. Developmental characteristics of Tenebrio molitor larvae (Coleoptera: Tenebrionidae) in different instars. Int. J. Indust. Entomol. 2014, 28, 5–9. [Google Scholar] [CrossRef]
- Biselli, S.; Hartig, L.; Wegner, H.; Hummert, C. Analysis of Fusarium Toxins Using LC-MS-MS: Application to Various Food and Feed Matrices. Spectroscopy. 2005, 20, 20–26. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Gasco, L.; Henry, M.; Piccolo, G.; Marono, S.; Gai, F.; Renna, M.; Lussiana, C.; Antonopoulou, E.; Mola, P.; Chatzifotis, S. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim. Feed Sci. Technol. 2016, 220, 34–45. [Google Scholar] [CrossRef]
Mycotoxin | Treatments | Diets | Mealworm 1 | Frass 2 |
---|---|---|---|---|
DON | Control | 200 | 136 ± 40.5 | 131 |
Low | 2000 | 127 ± 30.5 | 324 | |
Medium | 10,000 | 122 ± 19.3 | 230 | |
High | 12,000 | 131 ± 23.6 | 742 | |
3-ADON | Control | <LOD | 66 * | 286 |
Low | 63 | 66 * | 323 | |
Medium | 52 | 66 * | 326 | |
High | 205 | 65 * | 280 | |
NIV | Control | <LOD | <LOD | 50 |
Low | <LOD | <LOD | <LOD | |
Medium | <LOD | <LOD | 51 | |
High | <LOD | <LOD | <LOD |
Parameter | Treatments 1 | SEM 2 | p Value | |||
---|---|---|---|---|---|---|
Control | Low | Medium | High | |||
Days to endpoint | 32.2 ± 4.0 | 33.6 ± 3.3 | 34.0 ± 2.7 | 34.0 ± 2.7 | 1.45 | 0.79 |
Survival (%) 3 | 96.4 ± 2.5 | 97.7 ± 0.8 | 96.7 ± 1.7 | 98.0 ± 1.9 | 2.43 | 0.47 |
Larval weight (mg) 4 | 93.3 ± 8.4 | 99.9 ± 9.8 | 101.9 ± 7.4 | 100.2 ± 10.4 | 4.05 | 0.47 |
ADG (mg/day) 4 | 1.9 ± 0.1 | 2.1 ± 0.1 | 2.1 ± 0.1 | 2.0 ± 0.1 | 0.04 | 0.17 |
FCR 4 | 2.1 ± 0.3 a | 2.9 ± 0.4 b | 2.7 ± 0.3 ab | 2.5 ± 0.1 ab | 0.13 | <0.01 |
ECI (%) 4 | 47.3 ± 6.0 a | 35.4 ± 4.8 b | 38.0 ± 4.1 b | 40.0 ± 2.0 ab | 2.01 | <0.01 |
PER 3 | 3.1 ± 0.4 | 3.2 ± 0.4 | 3.6 ± 0.4 | 3.7 ± 0.2 | 0.17 | 0.05 |
Parameter | Treatments | ||||
---|---|---|---|---|---|
ODL | FDL | ||||
Control | Control | Low | Medium | High | |
Dry Matter | 39.7 | 39.9 | 41.0 | 42.4 | 40.1 |
Crude Protein | 50.2 | 51.9 | 49.4 | 50.7 | 49.6 |
Crude Fat | 34.4 | 34.7 | 36.0 | 35.5 | 35.2 |
Ash | 3.2 | 3.6 | 3.4 | 3.4 | 3.5 |
ADF | 5.7 | 5.3 | 5.2 | 5.6 | 5.4 |
ADIN | 3.0 | 2.6 | 2.6 | 2.7 | 2.6 |
Chitin | 2.8 | 2.7 | 2.7 | 2.9 | 2.7 |
Fatty Acid | Treatments | ||||||
---|---|---|---|---|---|---|---|
ODL | FDL | ||||||
Common Name | Lipid Number | ω-n | Control | Control | Low | Medium | High |
Myristic acid | C14:0 | 7.0 | 5.6 | 5.2 | 5.3 | 5.3 | |
Palmitic acid | C16:0 | 20.4 | 16.9 | 18.1 | 18.2 | 18.6 | |
Oleic acid | C18: l | ω-9 | 55.1 | 56.9 | 55.5 | 55.0 | 55.3 |
Linoleic acid | C18:2 | ω-6 | 17.5 | 20.6 | 21.3 | 21.5 | 20.8 |
Amino Acid | Treatments | ||||
---|---|---|---|---|---|
ODL | FDL | ||||
Control | Control | Low | Medium | High | |
Aspartic Acid | 4.2 | 4.3 | 4.1 | 4.2 | 4.3 |
Threonine | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 |
Serine | 2.6 | 2.7 | 2.6 | 2.6 | 2.7 |
Glutamic Acid | 6.2 | 6.0 | 5.8 | 5.9 | 6.0 |
Proline | 3.3 | 3.4 | 3.3 | 3.4 | 3.4 |
Glycine | 2.7 | 2.8 | 2.8 | 2.8 | 2.8 |
Alanine | 4.0 | 4.1 | 4.1 | 4.1 | 4.2 |
Cysteine | 0.4 | 0.5 | 0.5 | 0.5 | 0.5 |
Valine | 3.0 | 2.9 | 3.0 | 3.0 | 3.0 |
Methionine | 0.6 | 0.7 | 0.6 | 0.7 | 0.7 |
Isoleucine | 2.0 | 2.0 | 2.1 | 2.1 | 2.1 |
Leucine | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 |
Tyrosine | 4.0 | 3.8 | 3.8 | 3.9 | 3.9 |
Phenylalanine | 1.9 | 1.9 | 1.8 | 1.9 | 1.9 |
Histidine | 4.8 | 5.0 | 4.8 | 4.8 | 5.1 |
Lysine | 2.6 | 2.7 | 2.7 | 2.8 | 2.7 |
Arginine | 2.6 | 2.7 | 2.7 | 2.7 | 2.7 |
NH3 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
Parameter | Treatments 1 | SEM 2 | p Value | |||
---|---|---|---|---|---|---|
Control | Low | Medium | High | |||
First generation | ||||||
Time to endpoint (days) | 36.6 ± 1.3 | 35.2 ± 0.5 | 35.0 ± 1.9 | 35.0 ± 2.4 | 0.74 | 0.38 |
Time to pupation (days) | 50.6 ± 2.1 | 52.4 ± 1.8 | 53.0 ± 1.9 | 50.4 ± 2.3 | 0.91 | 0.15 |
Larvae survival (%) | 98.4 ± 0.7 | 99.3 ± 1.1 | 99.0 ± 1.2 | 99.1 ± 1.3 | 0.49 | 0.61 |
Pupal survival (%) | 99.6 ± 0.6 a | 98.2 ± 0.7 b | 96.9 ± 0.9 b | 98.4 ± 0.9 b | 0.36 | <0.01 |
Adult survival (%) | 96.6 ± 3.8 | 96.6 ± 4.1 | 97.0 ± 2.1 | 97.8 ± 1.2 | 1.35 | 0.91 |
Pupal weight (%) | 125.5 ± 2.5 | 123.3 ± 5.0 | 123.7 ± 4.7 | 127.1 ± 3.3 | 1.93 | 0.41 |
Adult weight (mg) | 103.8 ± 8.1 | 101.5 ± 4.4 | 102.3 ± 5.4 | 105.4 ± 4.3 | 2.57 | 0.72 |
Second generation | ||||||
Larval weight (mg) | 121.3 ± 4.2 | 119.7 ± 4.0 | 116.1 ± 3.8 | 119.5 ± 5.4 | 1.97 | 0.33 |
Pupal weight (mg) | 109.6 ± 3.3 | 106.0 ± 6.9 | 105.2 ± 3.0 | 106.0 ± 7.8 | 2.53 | 0.62 |
Beetle weight (mg) | 88.0 ± 4.3 a | 77.8 ± 1.5 b | 80.2 ± 3.3 b | 76.0 ± 3.2 b | 1.45 | <0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochoa Sanabria, C.; Hogan, N.; Madder, K.; Gillott, C.; Blakley, B.; Reaney, M.; Beattie, A.; Buchanan, F. Yellow Mealworm Larvae (Tenebrio molitor) Fed Mycotoxin-Contaminated Wheat—A Possible Safe, Sustainable Protein Source for Animal Feed? Toxins 2019, 11, 282. https://doi.org/10.3390/toxins11050282
Ochoa Sanabria C, Hogan N, Madder K, Gillott C, Blakley B, Reaney M, Beattie A, Buchanan F. Yellow Mealworm Larvae (Tenebrio molitor) Fed Mycotoxin-Contaminated Wheat—A Possible Safe, Sustainable Protein Source for Animal Feed? Toxins. 2019; 11(5):282. https://doi.org/10.3390/toxins11050282
Chicago/Turabian StyleOchoa Sanabria, Carlos, Natacha Hogan, Kayla Madder, Cedric Gillott, Barry Blakley, Martin Reaney, Aaron Beattie, and Fiona Buchanan. 2019. "Yellow Mealworm Larvae (Tenebrio molitor) Fed Mycotoxin-Contaminated Wheat—A Possible Safe, Sustainable Protein Source for Animal Feed?" Toxins 11, no. 5: 282. https://doi.org/10.3390/toxins11050282
APA StyleOchoa Sanabria, C., Hogan, N., Madder, K., Gillott, C., Blakley, B., Reaney, M., Beattie, A., & Buchanan, F. (2019). Yellow Mealworm Larvae (Tenebrio molitor) Fed Mycotoxin-Contaminated Wheat—A Possible Safe, Sustainable Protein Source for Animal Feed? Toxins, 11(5), 282. https://doi.org/10.3390/toxins11050282