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Abstract: The fumonisins producing fungi, Fusarium spp., are ubiquitous in nature and contaminate
several food matrices that pose detrimental health hazards on humans as well as on animals. This
has necessitated profound research for the control and management of the toxins to guarantee better
health of consumers. This review highlights the chemistry and biosynthesis process of the fumonisins,
their occurrence, effect on agriculture and food, along with their associated health issues. In addition,
the focus has been put on the detection and management of fumonisins to ensure safe and healthy food.
The main focus of the review is to provide insights to the readers regarding their health-associated
food consumption and possible outbreaks. Furthermore, the consumers’ knowledge and an attempt
will ensure food safety and security and the farmers’ knowledge for healthy agricultural practices,
processing, and management, important to reduce the mycotoxin outbreaks due to fumonisins.

Keywords: Fumonisins; Fusarium spp.; food contamination; health issues; secondary metabolites

Key Contribution: This review gives insight into the occurrence of fumonisins, their outbreak and
effects on human health, and agriculture and food along with their management strategies.

1. Introduction

Fumonisins are secondary metabolites produced in cereals by pathogenic fungi, namely Fusarium
verticillioides, Fusarium proliferatum, and related species [1]. Moreover, Aspergillus nigri also produces
fumonisins in the crop plants of peanut, maize, and grape [2–6]. The maize and maize-based products
are most commonly infected with fumonisins besides their presence in several other grains (rice,
wheat, barley, maize, rye, oat, and millet) and grain products (tortillas, corn flask, chips) [7,8]
which have major influences on health. More than 15 fumonisin homologues have been known
and characterized as fumonisin A, B, C, and P [9,10]. Further among fumonisin B, FB1, FB2, and
FB3 are most abundant with FB1 being the most toxic form that can co-exists with other forms of
fumonisin, i.e., FB2 and FB3 [11]. These (FB1, FB2, and FB3) forms are the main food contaminants.
FB1 consists of a diester with propane-1,2,3-tricarboxylic acid (TCA) and 2-amino-12,16-dime
thyl-3,5,10,14,15-pentahydroxyleicosane where hydroxyl (OH-) groups at the C-14 and C-15 positions
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involved with the carboxyl groups (-COOH) of TCA to form an ester. On the other hand, FB2 and FB3
are actually the C-5 and C-10 dehydroxy analogues of FB1 [12].

The toxins are linked with several health issues like cancer of the esophagus as evident from
different regions of the world. Fumonisins are a very sensitive issue all around the world, which
occur in Europe (51%) and Asia (85%) [13]. The occurrence of fumonisins with other related toxins in
feed and food is reported in various countries like Argentina [14], Brazil [15], China [16], Italy [17],
Portugal [18], Spain [19], Tanzania [20], and Thailand [21]. They are also reported to have toxic effects
on the liver and nephron in all the tested animals [22]. In addition, FB1 is implicated with the incidences
of hepatocarcinoma, stimulation and suppression of the immune system, defects in the neural-tube,
nephrotoxicity, as well as other ailments. It is prominent as a promoter of hepatocarcinoma [23] where
its synergistic interactions with aflatoxin B1 (AFB1) has been exhibited in animal models (rainbow trout
and rats) for two stages, i.e., initiation and promotion of cancer [24–26]. The international agency for
Research on Cancer (IARC) characterized FB1 as a group 2B possible carcinogen for human. Besides
this, it can cause toxicity in several animals like rats, mice, and rabbits [27]. Further, a temporary
maximum tolerable daily intake for fumonisins has been set as 2 µg/kg bw/day based on the lack of any
observed adverse effects for nephrotoxicity in male rats by the joint Food and Agriculture Organization
(FAO) and World Health Organization (WHO) [28].

2. Major Source of Fumonisin

Fumonisins are mainly produced by F. verticillioides and F. proliferatum and other Fusarium spp.
The genus Fusarium, belonging to the family Nectriaceae, can be found as saprophytes in soil and plants
worldwide [29]. Fusarium spp. colonize to the rhizospheres of plants and then subsequently enter into
the plant system. Furthermore, F. verticillioides and F. proliferatum are known to be the most common
pathogens of maize (Zea mays) [30]. Not only the crops, but also many popular ornamental plants (e.g.,
aster begonia, carnation, chrysanthemum, gladiolus, etc.) are frequently attacked by different Fusarium
species, viz., F. oxysporum, F. foetens, F. hostae, and F. redolens at various stages of production [31].

Fusarium, on the other hand, infects orchids in both pathogenic and non-pathogenic forms.
The non-pathogenic forms are either decomposers [32] or in mutual relation where they help in the
germination of seeds and the color development of seedlings [33]. The non-pathogenic forms also
help to mitigate the infection of Fusarium wilt on various crops [34]. Soils responsible for suppressing
Fusarium wilt are found to be dominant in the Fusarium spp. like F. oxysporum and F. solani which
are of agricultural importance [35,36]. The Fusarium species infect maize and produce fumonisins
mainly at the pre-harvesting stage. Furthermore, fumonisin production has been observed during
the post-harvest period; however, under adverse conditions of storage [37]. Dietary exposure of
fumonisins can lead to several harmful outcomes in both farm and experimental laboratory animals.
For example, these toxins are responsible for leukoencephalomalacia in horses [38], pulmonary edema
syndrome in pigs [39], hepatotoxicity and nephrotoxicity in rats [40], and apoptosis in many other
types of cells [41].

3. Chemistry and Biosynthesis of Fumonisin

Fumonisins (FBs) consist of two methyls (–CH3), one amine (-NH2), one to four hydroxyl (-OH-),
and two tricarboxylic ester groups located at different positions along with the linear polyketide-derived
backbone. The biosynthesis step comprises the addition of two molecules of tricarballylic esters and
one alanine-derived amine to a C-18 polyketide backbone [42]. FBs structural identity has been
established, which are similar to sphingosine and are an integral part of cell signaling, growth, and
communication [43]. It was believed that fumonisin formation could be controlled by disrupting the
biosynthesis of sphingolipids [44]. The biosynthesis process of the toxin has been initiated to illustrate
these cellular mechanisms and to design modified analogs [45,46]; however, to date, single total
synthesis has been achieved by Pereira et al. [47]. There are intra-specific differences in the biosynthesis
of fumonosins depending on the environmental conditions, e.g., temperature, the wavelength of light,
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humidity, and media composition for both the Fusarium spp. F. verticillioides and F. proliferatum [48].
Even the responses of strains were found to be different when the plant extracts were added from
common hosts of F. proliferatum [49].

4. Genes Responsible for Fumonisin Production

Exploring the biosynthesis of trichothecene and fumonisin has revealed the gene cluster fumonisin
biosynthetic gene (FUM in Fusarium and Aspergillus) which is responsible for the production of
fumonisins, two transport proteins, and a transcription factor [50]. The expression of these genes is
co-regulated and related to the FUM genes expression as well; however, it is influenced by ecological
conditions [51,52]. The production of fumonisin is dependent on FUM1 which further expresses
an enzyme complex known as polyketide synthase that catalyzes the initial step for fumonisin
biosynthesis [53]. Furthermore, a positive correlation has been identified between the proportion of
FUM1 transcripts being estimated by real-time RT-PCR and the proportion of fumonisins biosynthesized
by the F. verticillioides and F. proliferatum species [54]. FUM19 lies at a distance of 35 kb downstream
of the FUM1 gene that expresses an ATP-binding cassette responsible for exporting extracellular
fumonisins [51]. Further, the expression of an aminotransferase by FUM8 functions to maintain the
biologically active and mature FB1 molecule [55].

A. niger genome has a Fusarium FUM cluster homologue consisting of eleven homologues of
the Fusarium genes namely fum1 (polyketide synthase), fum3, fum6, and fum15 (hydroxylase), fum7
(dehydrogenase), fum8 (aminotransferase), fum10 (acyl-CoA synthase), fum13 (carbonyl reductase),
fum14 (condensation-domain protein), fum19 (ABC transporter), and fum21 (transcription factor)
genes [56,57]. The FUM cluster in the A. niger, also known to have a dehydrogenase gene (sdr1),
which is of a short-chain length, is absent in the Fusarium FUM cluster and its role in the process of
fumonisin biosynthesis is unknown [56,57]. Further, the Fusarium FUM2 gene is also absent from the
A. niger FUM cluster which causes hydroxylation at the C-10 backbone position of fumonisin [58].
The absence of a FUM2 homologue in the A. niger cluster has been seen to be consistent with other
studies as well revealing that A. niger produces fumonisins (FB2, FB4, and FB6) only when it lacks a
hydroxyl at C-10 [59–61]. In addition to these, genes like FUG1 and FST1 have been also confirmed
to have an important role in fumonisin biosynthesis in F. verticillioides besides their role in maize
kernel colonization [62,63]. Furthermore, Niehaus et al. [64] have identified 21 polyketide synthase
(PKS) in the genome of the F. proliferatum where PKS3 and PKS11 are predicted to be linked with the
biosynthesis of fumonisin.

5. Occurrence in Food

The contamination of foods by fumonisin depends on agroclimatic conditions (Table 1). The most
commonly infected groups in food are the cereals (rice, wheat, barley, maize, rye, oat, and millet).
The FB1 has been reported to contaminate numerous food products like asparagus and garlic [65],
barley foods [66], beers [67], dried figs [68], and milk [69]. Maize (Zea mays L.) and maize-based
products are one of the most commonly infected foods by FB1 [70]. Maize is used for manufacturing
several products like tortillas and tortilla chips, corn flakes and corn starch, popcorn, grits, flour, and
oils. However, the contamination by FB1 and FB2 is decreased by 59% during the manufacturing of
tortilla chips from maize flour, while 60% for flour and 50% for grits and snack products due to the heat
treatment by extrusion [71]. Further, several other products like cornflakes [72], the Portuguese maize
bread [73], tea (black and herbal), along with some medicinal plants [74] have also been contaminated
by fumonisins.
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Table 1. Occurrence of Fumonisin B1 and FB2 in cereals and cereal-based foods around the world.

Country Food Matrix FB1 (Range,
µg/kg)

FB2 (Range,
µg/kg)

Detection
Technique Reference

UK Corn 200–6000 - TLC [75]
The

Netherlands Corn flour 40–90 - HPLC [76]

Switzerland Corn grits 0–790 0–160 HPLC [77]
Turkey Cornmeal 250–2660 550 HPLC [78]
Ghana Corn 11–1655 10–770 HPLC [79]
Malawi Corn 20–115 30 HPLC [80]
Zambia Corn inbred lines 20–1420 10–290 HPLC [81]
Bahrain Corn kernel 25 - HPLC [82]
Kenya Corn kernel 110–120 - HPLC [83]

Venezuela Yellow corn 40–15,050 - HPLC [84]

Korea Corn for popping 23–1210 -
direct competitive

(dcELISA) and
HPLC

[85]

India Corn seed samples 133 to 1617 - HPLC [86]
Iran Corn 10–3980 <10–1180 HPLC [87]

Thailand Corn 63–18,800 50–1400 HPLC [88]
Nepal Corn kernels 50–4600 100–5500 HPLC [89]

Indonesia Corn kernels 51–2440 <376 HPLC and GCMS [90]
Argentina Durum wheat 10.50–987.20 15–258.50 HPLC-MS/MS [91]

Brazil Wheat 958–4906 - HPLC-FL [92]
Canada Wheat - - HPLC [93]
Central
Europe Wheat/wheat bran - - ELISA [94]

China Wheat flour 0.30–34.60 - UPLC-MS-MS [95]

France
Organic Oat, rye and

wheat flakes with maple
syrup

75.70–98.10 62.10–81.10 HPLC-MS/MS [96]

Germany Organic wheat flakes 20.20–59.80 25.40–41.80 HPLC-MS/MS [96]
Iran Stored wheat samples 15–155 12–86 HPLC [97]
Italy Cereals, whole meal flours 10–2870 10–420 LC-MS [98]

Japan Wheat >10 - LC-ESI-MSMS [99]
Serbia Wheat 750–5400 - ELISA [100]
South
Africa Wheat and wheat products 1000–30,000 - TLC, HPLC,

Ms/MS [101]

South
America Wheat/wheat bran - - ELISA-HPLC [94]

South-East
Asia Wheat/wheat bran - - ELISA-HPLC [94]

Southern
Europe Wheat/wheat bran - - ELISA-HPLC [94]

Spain Wheat Gofio 787.50–1001.40 645.20–952.10 HPLC-MS/MS [96]
Syria Durum wheat 5–6 12 HPLC-MS/MS [102]

Tunisia Wheat-based products 88.33–184 121–158 LC-MS/MS [103]
United States Wheat 5–2210 2-249 LC-MS [104]

Zimbabwe Wheat 2500–6000 - HPLC [105]

6. Effects on Agriculture and Food

Annually 25% of harvested crops are contaminated by mycotoxins, causing huge economic losses
to agricultural and industrial commodities. These mycotoxins are stable in nature and do not eliminate
during food processing, cooking, baking, roasting, and pasteurization. The meagre agricultural,
as well as post-harvest practices like inappropriate drying techniques, handling procedure, packaging
materials and methods, and storage and transport conditions, are responsible for the increased risk of
fungal growth and fumonisin contamination [106]. Cao et al. [107] investigated the accumulation of
fumonisins at different kernel developmental stages as well as during the drying of the kernel of hybrid
varieties of white maize. They observed Fusarium (especially F. verticillioides) to be the most prevalent



Toxins 2019, 11, 328 5 of 23

genus for growth and contamination as compared to Aspergillus and Penicillium. The lower humidity of
kernels favoured damage by insects along with fungal growth and accumulation of fumonisins [107].
The occurrence of fumonisins have been reported in edible plants like onion, garlic, asparagus, and
pea seed [108,109]; in other cereals, mainly in wheat [84,110] as well as in crops like sorghum, beans
(white, adzuki, mung), barley, soybean, asparagus spears, and figs [111,112]. Besides this, fumonisins
have been found to impact the performance of aquatic animals like the Nile tilapia fingerlings and
juveniles [113]. Fumonisins affected the hepatic expression of growth hormone receptor (GHR) and
insulin like growth factor 1 (IGF-1) in these species, which is an indication that other aquatic animals
and plants could also be affected by fumonisins posing a serious threat to food safety and security.

Fumonisins are an important class of mycotoxins produced by F. proliferatum and F. verticillioides
along with others such as F. napiforme, F. oxysporum, F. dlamini, F. nygamai and F. anthophilum that are
widely distributed, having potential health hazards to humans and animals [9]. These toxins are
widely distributed in crops like corn, rice, sorghum, barley, and coffee. The exact causes of ear rot
and kernel rot diseases is not well known but may be due to changes in weather such as dry weather
followed by warm wet weather during flowering. The damage caused by the insect at the time of
maturity allows strains present in nature to enter the ear and kernels. Rain before harvest may intensify
the contamination of fumonisins in corn. Sometimes there are substantial amounts of fumonisins
present in the non-symptomatic kernels of corn [114]. Yoshizawa et al. [103] reported the occurrence
of fumonisins and aflatoxins in eighteen samples of corn in Thailand and found FB1 and FB2 and
isolated F. moniliforme and F. proliferatum from the corn grit samples. Studies carried out in the USA
reported the presence of FB1 and moniliformin in 34% of corn samples and 53% of corn-based food
products, respectively [115]. A study in Brazil was conducted (during 2007–2010) to detect fumonisins
in corn-based food products and reported that FB1 and FB2 were present in 82% and 51% of the
examined products, respectively [116]. Contaminations by FB1 and FB2 observed in poultry broiler
and feed fatting calves in South Korea [117]. Abdallah et al. [118] found the co-occurrence of FB2 and
ochratoxin A and B in the date palm. In Brazil, it was reported that the production of fumonisins by
F. verticillioides is found in both symptomatic and asymptomatic grains [119].

Furthermore, a survey was conducted in Japan for aflatoxin, ochratoxin A, and fumonisins
contamination using HPLC and LC-MS. Results revealed that peanut butter is contaminated by
aflatoxin, while orchratoxin A infection in oatmeal, rye, buckwheat flour, green coffee beans, roasted
coffee beans beers, wheat flour, and wine. However, fumonisins were observed in popcorn, frozen
corn, corn flasks, and corn grits [120]. Noonim et al. [59] analyzed the aflatoxin and fumonisin
contaminations in different samples of Thai dried coffee, and it was noted that no Fusarium spp. were
observed; however, A. niger was present in the coffee beans and produced fumonisins along with
aflatoxins. A variable range of acetyldeoxynivalenol, deoxynivalenol, neosolaniol, fumonisin B1, and
ochratoxin A contaminations were observed in Spanish coffee, and this variation was due to different
methods of coffee brewing [121].

7. Mechanism of Toxicity and Health Effects of Fumonisins

7.1. Mechanism of Toxicity

FB1 predominates in 70% of the total FBs naturally occurring in infected food and feed samples [122].
FB1 express both acute and chronic symptoms in infected animals. FB1, though being an initiator of
cancer, is non-genotoxic [123]. The major organs affected are liver and kidney; however, the severity of
infection depends upon the strain and species [124]. The intestine, on the other hand, is a possible
target for fumonisin toxicity [125]. FBs contamination has raised higher concern because of their
interference with sphingolipid metabolism that ultimately leads to serious health concerns. Fumonisins
are also linked to esophagal cancer and defects of the neural tube in humans [126]. Further, FB1 is the
major causative agent for porcine pulmonary edema (PPE) [39], the toxicity of the liver and nephron in
rodents [127], as well as cancers of the liver and esophagus in humans [128].
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Franceschi et al. [129] studied the relationship between maize consumption and the risk of cancer
of the upper digestive tract in the Pordenone Province in the north-eastern part of Italy. The population
of this province has a high incidence of these neoplasms and shows particularly elevated levels of
alcohol and tobacco use, in addition to high maize consumption. They observed that there were highly
significant associations with frequent intake of maize emerging for oral cancer, pharyngeal cancer, and
esophageal cancer. Dragan et al. [130] showed that the FB1 caused renal carcinomas in male rats and
liver cancer in female mice. FB1 also induces apoptosis in many kidney cell lines, primary cell cultures,
and also in vivo in rat liver and kidney [130,131]. Sun et al. [132] reported high contamination of FB1
in the food of the Huaian and Fusui city of China and suggested that FB1 may have a contributing role
in human esophageal- and hepatocarcinogenesis. Further, Alizadeh et al. [133] studied 66 samples of
both corn and rice from the Golestan province of Iran and observed high levels of FB1 contamination
in both corn (223.66 µg/g) and rice (21.59 µg/g). They found a significant relationship between FB1
contamination in rice and the risk of esophageal cancer. Besides this, FB1 was found to be toxic to other
cell lines. For example, FB1 triggers dose-dependent apoptosis and necrosis in esophageal carcinoma
(SNO) cell lines in humans. Similarly, FB1 inhibited the activity of ceramide (CER) synthase, which is
responsible for the acylation of sphinganine (Sa) and the recycling of sphingosine (So). This leads to an
increment in the intracellular cytotoxic Sa-compound. Therefore, the variation of Sa/So proportions in
urine and blood samples may denote the exposure of FBs in several animals; however, this has not
been accurately validated [134].

7.2. Health Effects of Fumonisin

Equine leucoencephalomalacia first reported in 1891 is now revealed to be caused by consuming
fumonisin-contaminated maize [135]. Further, the consumption of maize culture material infected by
F. verticillioides [136] is responsible for the occurrence of porcine pulmonary edema (PPE) [30]. Since
then, the outbreaks of PPE in the USA have been identified because of fumonisin infection. Further
intake of fumonisin-affected diets by pregnant women causes neural tube defects in the developing
fetus [126,137]. Sadler et al. [138] reported that FB1 has the potential to inhibit embryonic sphingolipid
synthesis, produce embryotoxicity, and block folate transport and has been associated with increased
prevalence of cancer and neural tube defects. On the other hand, Missmer et al. [126] reported the
prevalence of neural tube defects (NTDs) doubled between 1990–1991 in Mexican–American women
because they consume large amounts of corn in the form of tortillas, due to which they may be exposed
to high levels of fumonisin. Fumonisin exposure increases the risk of NTDs and a dose above the
threshold level may cause fetal death. Similarly, the exposure of fumonisin and its effect on esophageal
and liver cancer is rare [132,139]. While no direct evidence of fumonisin hazard is found, its prolonged
exposure may lead to cancer and birth defects in humans [140]. Moreover, the co-contamination
of foods by fumonisin and aflatoxin has imposed risks of occurrences of outbreaks in southwest
Nigeria [140], and the rural areas of Malawi in sub-Saharan Africa [141].

Besides this, the contamination of breast milk by fumonisins has been reported in several
studies [142–144]. Recent studies have revealed the relationship between exposure to FBs and growth
impairment in children [145–147]. According to Shirima et al. [146], fumonisin exposure negatively
impacted child growth among children in Tanzania, which was confirmed based on urinary biomarker
levels of fumonisin (UFB1). On the other hand, aflatoxin exposure had no significant impact on child
growth. Furthermore, breastfeeding and weaning practices were considered to be associated with
growth impairment in children due to exposure to FB1 [147]. The fumonisin carry-over has been
observed in cow’s milk as well [69]. Therefore, the incidence of fumonisin in human breast milk and
its consumption by infants cannot be ignored, as the milk is a crucial part of infants’ nutrition [148].

8. Effects of Processing on Fumonisin

Fumonisins are known to be comparatively heat-stable and affected only when heated above
150–200 ◦C during food processing techniques like baking, frying, roasting, or extrusion cooking.
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The degree of reduction in their chemical structure and toxicity depends on the cooking conditions
and the composition of the food matrix [149]. However, this reduction could be due to the structural
modifications of fumonisins while interacting with other components of food that leads to the
conjugate’s formation [150]. FB1 interacts with reducing sugars to form strong covalent bonds during
heat treatments. For instance, FB1 reacts with D-glucose of corn grits during the extrusion cooking at
160–180 ◦C and forms a reaction product, N-(carboxymethyl) fumonisin B1 (NCM) [151]. However,
the condensation reaction of FB1 and D-glucose forms N-(deoxy-Dfructos-1-yl) FB1 (NDF) [152].

Besides this, the wet milling causes the reduction of fumonisins to some extent in steep water.
Further industrial milling processes reduce the fumonisin content significantly such that the fractions
obtained (gluten, fiber, germ, and starch) are suitable for animal and human consumption [153].
However, during the dry milling process, there is a negligible reduction in fumonisin content as the
fumonisins are embedded in the germ and pericarp in higher concentrations than in the endosperm and
its derivatives [72,154,155]. Fumonisins are variably distributed in cereals and the fractions depending
upon the type of cultivars, agricultural practices, and the method of milling processes [153,156].
The toxins might be degraded or modified during the processing of Tortillas at high temperatures and
pH [157]. However, the industrial processing methods like roasting, frying, and extrusion cooking are
effective in reducing the fumonisins to significantly low levels [158].

9. Effects of Environmental Temperature on Fumonisin Production

The two main factors impacting on the growth of fungus and the production of fumonisin are
temperatures and water potential [159]. Therefore, the toxins are predominant in temperate and
Mediterranean climatic regions [160–163]. The Mediterranean climate regions experience extreme
temperature, rainfall patterns, as well as longer durations of drought. These conditions might
lead to variation in the population of mycotoxigenic fungi and the fumonisin production by them
which ultimately impacts the control strategies [164]. The infection of maize by F. verticillioides and
accumulation of fumonisins is determined by the climatic conditions, insect damage, as well as the
plant characteristics. The ear rot infection by F. verticillioides occurs during the flowering stage and is
favored by warm and dry conditions; however, both warm and wet conditions following silking have
been found to be favorable for disease development [165]. The weather conditions are critical for toxin
accumulation during flowering as well as prior to harvesting [166,167]. It has been found that the less
rainfall with maximum temperatures of 30–35◦C during flowering induces disease development [168].

Cendoya et al. [169] evaluated the effect of different levels of temperature and water activity
(aw) on the fungal growth and fumonisin biosynthesis in wheat using three strains of F. proliferatum.
Temperatures of 15, 25, and 30 ◦C and aw of 0.99, 0.98, 0.96, 0.94, 0.92, and 0.88 were evaluated. They
found maximum growth of fumonisins at the highest aw of 0.99 at 15 ◦C for two strains while for
the third strain, the maximum growth was observed at 25 ◦C at the same aw level. Furthermore,
environmental factors like light along with nutrients available impacted the growth of F. proliferatum
and the production of fumonisin [48,170]. In addition, Li et al. [171] evaluated the impact of pH levels
on the growth of F. proliferatum culture. It was found that the toxin production was significantly
inhibited in culture maintained at pH 5 compared to the culture at pH 10. However, the acidic pH 3–4,
was found to enhance FB1 production by the fungus F. proliferatum [172].

10. Detection Techniques

The FB1 presence was detected by the Association of Official Analytical Chemists (AOAC)
official method in food and feed samples. The derivatization was done using precolumn with
ortho-phthaldialdehyde (OPA) and the detection by chromatographic techniques like HPLC
(high-performance liquid chromatography) coupled with a fluorescence detector (HPLC-FLD).
However, the drawback of this method is the use of high sample size (around 50 g), more extraction
solvent (methanol:water), and solid-phase extraction (SPE) cartridges [173]. Therefore, methods like
QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) proved to be ideal for the detection of
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FB1 [174–176]. Some of the commonly used techniques for fumonisin extractions include: (i) solid-liquid
extraction (SLE) [177–180], (ii) liquid-liquid extraction (LLE) [181,182], (iii) matrix solid-phase dispersion
(MSPD) [87,183,184], and (iv) dispersive liquid-liquid microextraction (DLLME) [185]. Recently, it was
observed that the extraction yields were higher in finer flours indicating the importance of sample
particle size on the recovery of fumonisins [11].

The traditional analytical methods to detect and quantify fumonisin include HPLC or
UPLC (ultra-performance liquid chromatography) coupled with detectors such as UV–Vis
spectrophotometric [186], fluorescence [187,188], and mass spectrometry (MS) [176,189–191]; liquid
chromatography-mass spectrometry (LC-MS), and thin-layer chromatography (TLC) [192–194].
As these methods are expensive, tedious, and time-consuming [195], other advanced methods
like the detection of mycotoxins producing fungi, enzyme-linked immunosorbent assay (ELISA),
surface plasmon resonance (SPR), lateral flow immunoassay (LFI), immunosensors, electronic nose,
and hyperspectral imaging are found to be more efficient [194,196]. Fumonisins producing genes have
been amplified by PCR to detect Fusarium species in freshly harvested maize kernels [197]. PCR-based
methods are used for the detection of mycotoxins producing fungal genera Fusarium, Aspergillus, and,
Penicillium [198,199].

Recently, Nagaraj et al. [196] used a multiplex PCR technique to detect fumonisin producing
F. verticillioides strains. ELISA coupled with PCR, i.e., PCR-ELISA by Omor et al. [200] for the detection
of F. verticillioides based on the FUM21 gene in corn. In addition to this, a highly sensitive indirect
competitive enzyme-linked immunosorbent assay (icELISA) and gold nanoparticle-based gray imaging
quantification immunoassay (GNPs-GI) has been developed to detect FB1 in agricultural products [201].
Another important and non-destructive way of identifying toxigenic fungi in maize is by the application
of hyperspectral imaging processes [202,203]. Besides this, the color-encoded lateral flow immunoassay
(LFIA) has emerged as a leading technique for simultaneous detection of aflatoxin B1 and type-B
fumonisins in a single test line [204]. Nowadays, electrochemical immunosensors are employed
for rapid and sensitive detection of FB1 [205]. Furthermore, a rapid and ultrasensitive molecularly
imprinted photoelectrochemical (MIP-PEC) sensing technique has been recently developed to measure
FB1 [206].

11. Masked Mycotoxins as a major concern in detection

The masked mycotoxins issue was initially seen during the mid-1980s due to several mysterious
cases of mycotoxicosis occurrence; however, the symptoms of mycotoxins in affected animals did
not connect with the low mycotoxins content detected in their feed. At the same time, the metabolic
biotransformation of deoxynivalenol (DON) to the less toxic derivatives in planta was first reported
to appear in corn inoculated with F. graminerium [207] and also in naturally infected winter
wheat [208]. In vivo studies for masked mycotoxins were carried out in pig and reported that
zearalenone-14-glucoside was decomposed during the digestion process and zearalenone (ZEN) and
zearalenol (ZEL) were detected in urinary and fecal metabolites [209].

During infection in plants, the mycotoxins produced by fungi are modified by plant enzymes
and often conjugated to more polar substances, like sugars. These form of toxins are often less toxic
metabolites stored in the vacuole in the soluble form or bound to macromolecules and are not detectable
during routine analysis processes; therefore, referred to as masked mycotoxins [210]. These mycotoxins
may not be a homogeneous group of contaminants but somewhat a complex mixture of different plant
metabolites of various classes of mycotoxins and they are overall termed as the ‘maskedome’ [211].
Detection of masked mycotoxins is difficult as they change the physiological properties of their
molecules leading to modified chromatographic behavior [212]. Due to less detectability, these toxins
are a serious concern for food safety and these toxins may be converted back to the parent toxin forms
during the food digestion process [213]. De Boevre et al. [214] analyzed cereal-based food products and
raw feed materials for the presence of mycotoxins including deoxynivalenol, 3-acetyldeoxynivalenol,
15-acetyldeoxynivalenol, zearalenone, α-zearalenol (α-ZEL), β-zearalenol, and their respective
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masked forms like α-zearalenol-1-3glucoside, zearalenone-4-glucoside, α-zearalenone-4-glucoside,
β-zearalenone-4-glucoside, and zearalenone-4-sulfate in fiber-enriched bread, bran-enriched bread,
cornflakes, popcorn, and oatmeal. Binder et al. [215] evaluated the absorption, distribution, metabolism,
and excretion (ADME) of plant (ZEN-14-Glc, ZEN-16-Glc) and fungal (ZEN-14-S) ZEN metabolites in
pigs and found that the total amounts of ZEN-14-GlcA, ZEN, and α-ZEL were excreted into urine after
0–48 hours of administration.

12. Degradation Kinetics

The degradation of FB1 was first revealed by Duvick et al. [216] to occur by microbes like
Exophiala spinifera, Rhinocladiella atrovirens, and Sphingomonas or Xanthomonas having the capacity to
metabolize FB1. These microbes were isolated from various tissues of maize. Further, the fumonisin
metabolism by E. spinifera and the bacterium (deposited as ATCC55552 with the American Type Culture
Collection) was studied by radiochemical and chromatographic (e.g., thin layer chromatography, TLC)
methods. The initial two steps of biodegradation of FB1 were revealed to be due to de-esterification
by a carboxylesterase releasing two tricarballylic acid (TCA) moieties leading to the formation
of hydrolyzed FB1 (HFB1). The bacterial strain ATCC55552 further metabolized 14C-FB1 with
the release of 14 molecules of CO2. However, E. spinifera could not further metabolize the TCA
moieties. Blackwell et al. [217] later studied the oxidative deamination process of HFB1 by E. spinifera
through TLC and mass spectrometry. They found that the HFB1 gets converted to Nacetyl HFB1
and 2-oxo-12,16-dimethyl-3,5,10,14,15-icosanepentol hemiketal. A cluster of genes in the bacterium
ATCC55552 responsible for the degradation of fumonisin is mentioned in a patent, WO 00/04158 by
Duvick et al. [218].

FB1 can be degraded to the less toxic form of hydrolyzed FB1 (HFB1) by an enzymatic process
which could be used to reduce intestinal inflammation in pigs [219]. Further, the gene that catalyzes the
oxidative deamination process of HFB1 in E. spinifera was revealed; however, the responsible enzyme
for the deamination reaction is still unknown [218]. Later, Benedetti et al. [220] screened and isolated a
bacterium related to the Delftia/Comamonas group (known as NCB 1492) from the soil. It was able to
hydrolyze and deaminate FB1, but still, the sequences of the responsible genes are unknown. A year
before, Sphingomonas sp. MTA144 was shown to have fumonisin degrading activity [221]. Further,
Heinl et al. [222] identified two genes (carboxylesterase and aminotransferase) having prominent
fumonisin-degrading activity. In addition to this, essential oils from plants were found to inhibit as
well as degrade FB1 for example anise, camphor, cinnamon, citral, clove, eucalyptus, Litsea cubeba, and
spearmint [223,224].

13. Management and Control Strategies

13.1. Management and Control using Agricultural Practices

As the crop plants like maize are infected by fumonisins during their growth in fields [225],
the implementation of good agricultural practices (GAP), good storage practices (GSP), and good
manufacturing practices (GMP) can mitigate the fumonisin contamination [226]. Harvesting the crop
at earlier stages could be one of the strategies to control fumonisin contamination [227]; however, this
cannot be applied to crops that need to be harvested at full maturity. Instead, the early harvest can be
done for forage maize to increase the digestibility of silage. These practices require careful study as the
farmers prefer a delayed harvest because of advancement in technologies. For instance, the use of
kernel processors during forage harvesting leads to the production of digestible silage from maize
when harvested at later stages [228].

Recently, the Codex Alimentarius Commission has set maximum levels of fumonisin at 4000 µg/

kg and 2000 µg/kg, respectively for raw maize and for maize flour and meal which have been
implemented in South Africa. However, the lowering of fumonisin exposure in subsistence farmers
need an integrated approach, and this cannot be solely achieved by regulatory measures [229]. Besides
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these approaches, the use of nanotechnology and genetic engineering should be encouraged in the
field of agriculture to develop resistant varieties of crops to get rid of Fusarium infection and FB
contamination. The creation of drought and insect-resistant crops can also play a significant role
in the fumonisin control as these factors are responsible, in one or the other way, for the fungal
infection [230]. In addition to this, educating the farmers about the importance of drying and sorting
out of the contaminated kernels from the crops can manage and control the risk of infection to some
extent [231]. The in vitro study of combinations of fungicides (fludioxonil + metalaxyl-M) showed that
it was not sufficient in the growth inhibition of F. verticillioides and even the increase in the production
of FB1 by their strains [232]. A similar study also showed that these fungicides inhibit the growth and
extracellular material formation but enhance the sporulation and fumonisin production in liquid culture
of F. verticillioides [233]. Masiello et al. [234] reported that prothioconazole and thiophanate-methyl
were effective in reducing the F. graminearum (52% and 48%) and F. proliferatum contamination (44%
and 27%) under the field trial.

Fumonisin production and Fusarium growth are the result of interactions with various biotic
and abiotic factors. In the case of abiotic factor temperature, water stress was the most significant
environmental factor which influenced the fumonisin production and Fusarium growth. Several
other stress conditions such as osmotic stress, pH, and fungicides were reported for the production
mycotoxins [235,236]. F. verticillioides isolates were found to exhibit better performance at higher
temperatures and under water stress conditions in comparison to F. proliferatum, another fumonisin-
producing species. Marin et al. [237] suggested that environmental conditions leading to water
stress (drought) might result in an increased risk of fumonisin contamination of maize caused by
F. verticillioides. Drought stress and excess irrigation favor Fusarium infection. Drought stress should be
avoided during the period of wheat seed development and maturation [238]. Excess moisture during
the flowering seasons and early grain-fill periods also supports the Fusarium infection and moisture also
increases the DON contamination [239]. Fungicide treatments were found to be effective against wheat
Fusarium infection and DON contaminations [240,241]. Azole fungicides were found to be effective in
the reduction of DON and other emerging and modified mycotoxins [242]. Therefore, an integrated
approach, involving good agricultural management practices, hazard analysis, and critical control
point production, storage management along with selected biologically based treatments, and mild
chemical and physical treatments could reduce the fumonisin contamination effectively [243].

13.2. Management and Control using Mycotoxin Binder

Mycotoxin binders or adsorbents are substances that bind to mycotoxins and prevent them from
being absorbed through the gut and prevent their entrance into the blood circulation. The mycotoxin
binders can be helpful and utilized when other preventive measures fail against molds and
mycotoxins [244]. The main aim of mycotoxin binders is to prevent the absorption of the mycotoxins
from the intestinal tract of animals by absorbing the toxin to their surface. These binders may be
organic or inorganic in nature, such as clay and yeast derived products, respectively [245]. However,
mycotoxin modifiers are used to alter the chemical structure of mycotoxins and reduce their toxicity.
These are microbiological in origin containing whole bacterial and yeast culture and specifically
extracted compound such as enzymes [246]. In the field during harvesting of the crop, the production
of mycotoxins can be reduced by choosing varieties that are adapted to the growing area and have
resistance to fungal diseases. Mycotoxin production can also be reduced in the field by proper
irrigation and balanced fertilizer applications [247]. These binders bind to the mycotoxins strong
enough to prevent toxic interactions with the consuming animals and their absorption across the
digestive tract. Potential absorbent materials include activated carbon, aluminosilicates (bentonite,
clay, montmorillonite, zeolite, pollyosilicates etc.), complex indigestible carbohydrates (Cellulose,
polysaccharides in the cell wall of yeast and bacteria such as glucomannans, petidoglycans) and
other synthetic polymers such as cholestryamine and polyvinylpyrrolidone and derivatives [247].
De Mil et al. [248] characterized 27 feed additives marketed as mycotoxin binders and screened them
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for their in vitro zearalenone (ZEN) adsorption. Recent studies showed that the addition of the
commercial toxin binders to the aflatoxin B1 (AFB1) containing diets reduced the adverse effects of
AFB1 and could be helpful as a solution to the aflatoxicosis problem in young broiler chicks [249].

14. Conclusion

The contamination of food and feed by fumonisin is a serious threat for disease outbreaks
worldwide. The various techniques ranging from physical to biochemical as well as genetic engineering
can be utilized in an efficient manner to mitigate fumonisin contamination of foods. However, a major
issue of concern lies with the development of fungal and insect resistant crops to combat the fungal
infection and fumonisin contamination. The naturally occurring soil microorganisms have been
reported to have an immense capability of degrading and reducing the biosynthesis of fumonisins
and its contamination in various agricultural crops. Moreover, the application of nanotechnology and
genetic engineering should be given more emphasis to develop resistant varieties of crops and ensure
the safety and quality of food for future generations.
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