Efficient and Simultaneous Chitosan-Mediated Removal of 11 Mycotoxins from Palm Kernel Cake
Abstract
:1. Introduction
2. Results and Discussion
Data Analysis
3. Statistical Design
4. Statistical Analysis
5. Optimization and Validation Procedure
6. Adsorption Studies
7. Optimization for Maximum Mycotoxin Removal
8. Reduced Response Model Validation
9. Conclusions
10. Materials and Methods
Mycotoxins Analysis by LC–MS/MS
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Signorini, M.; Gaggiotti, M.; Molineri, A.; Chiericatti, C.; de Basílico, M.Z.; Basilico, J.; Pisani, M. Exposure assessment of mycotoxins in cow’s milk in Argentina. Food Chem. Toxicol. 2012, 50, 250–257. [Google Scholar] [CrossRef] [PubMed]
- da Rocha, M.E.B.; Freire, F.D.C.O.; Maia, F.E.F.; Guedes, M.I.F.; Rondina, D.J.F.C. Mycotoxins and their effects on human and animal health. Food Control 2014, 36, 159–165. [Google Scholar] [CrossRef]
- Vila-Donat, P.; Marin, S.; Sanchis, V.; Ramos, A. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem. Toxicol. 2018, 114, 246–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharmila, A.; Alimon, A.; Azhar, K.; Noor, H.; Samsudin, A. Improving nutritional values of Palm Kernel Cake (PKC) as poultry feeds: A review. Malays. J. Anim. Sci. 2014, 17, 1–18. [Google Scholar]
- Peng, W.-X.; Marchal, J.; van der Poel, A. Strategies to prevent and reduce mycotoxins for compound feed manufacturing. Anim. Feed Sci. Technol. 2018, 237, 129–153. [Google Scholar] [CrossRef]
- Jard, G.; Liboz, T.; Mathieu, F.; Guyonvarc’h, A.; Lebrihi, A. Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation. Food Addit. Contam. 2011, 28, 1590–1609. [Google Scholar] [CrossRef]
- Jans, D.; Pedrosa, K.; Schatzmayr, D.; Bertin, G.; Grenier, B. Mycotoxin Reduction in Animal Diets. In Mycotoxin Reduction in Grain Chains; Wiley: Hoboken, NJ, USA, 2014; Chapter 8; pp. 101–110. [Google Scholar]
- Smith, T.; Girish, C. Prevention and control of animal feed contamination by mycotoxins and reduction of their adverse effects in livestock. In Animal Feed Contamination; Elsevier: Guelph, ON, Canada, 2012; pp. 326–351. [Google Scholar]
- Mine Kurtbay, H.; Bekçi, Z.; Merdivan, M.; Yurdakoç, K. Reduction of ochratoxin A levels in red wine by bentonite, modified bentonites, and chitosan. J. Agric. Food Chem. 2008, 56, 2541–2545. [Google Scholar] [CrossRef]
- Avantaggiato, G.; Havenaar, R.; Visconti, A. Assessment of the multi-mycotoxin-binding efficacy of a carbon/aluminosilicate-based product in an in vitro gastrointestinal model. J. Agric. Food Chem. 2007, 55, 4810–4819. [Google Scholar] [CrossRef]
- Phillips, T.; Afriyie-Gyawu, E.; Williams, J.; Huebner, H.; Ankrah, N.-A.; Ofori-Adjei, D.; Jolly, P.; Johnson, N.; Taylor, J. Marroquin-Cardona, A. Reducing human exposure to aflatoxin through the use of clay: A review. Food Addit. Contam. 2008, 25, 134–145. [Google Scholar] [CrossRef]
- Kong, C.; Shin, S.Y.; Kim, B.G. Evaluation of mycotoxin sequestering agents for aflatoxin and deoxynivalenol: An in vitro approach. SpringerPlus 2014, 3, 346. [Google Scholar] [CrossRef] [Green Version]
- Wielogórska, E.; MacDonald, S.; Elliott, C. A review of the efficacy of mycotoxin detoxifying agents used in feed in light of changing global environment and legislation. World Mycotoxin J. 2016, 9, 419–433. [Google Scholar] [CrossRef]
- Kabak, B. Prevention and management of mycotoxins in food and feed. In Mycotoxins in Food, Feed and Bioweapons; Springer: Corum, Turkey, 2009; pp. 201–227. [Google Scholar]
- Di Gregorio, M.C.; Neeff, D.V.D.; Jager, A.V.; Corassin, C.H.; Carão, Á.C.D.P.; Albuquerque, R.D.; Azevedo, A.C.D.; Oliveira, C.A.F. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev. 2014, 33, 125–135. [Google Scholar] [CrossRef]
- Azlan, K.; Saime, W.N.W.; Liew, L. Chitosan and chemically modified chitosan beads for acid dyes sorption. J. Environ. Sci. 2009, 21, 296–302. [Google Scholar] [CrossRef]
- Yeul, V.S.; Rayalu, S.S. Unprecedented chitin and chitosan: A chemical overview. J. Polym. Environ. 2013, 21, 606–614. [Google Scholar] [CrossRef]
- Yen, M.-T.; Yang, J.-H.; Mau, J.-L. Antioxidant properties of chitosan from crab shells. Carbohydr. Polym. 2008, 74, 840–844. [Google Scholar] [CrossRef]
- Pillai, C.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Ngah, W.W.; Teong, L.; Hanafiah, M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym. 2011, 83, 1446–1456. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chatterjee, T.; Lim, S.R.; Woo, S.H. Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation. Environ. Technol. 2011, 32, 1503–1514. [Google Scholar] [CrossRef]
- Chatterjee, S.; Lee, M.W.; Woo, S.H. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour. Technol. 2010, 101, 1800–1806. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Lazaridis, N.K.; Kostoglou, M. Adsorption/desorption of a dye by a chitosan derivative: Experiments and phenomenological modeling. Chem. Eng. J. 2014, 248, 327–336. [Google Scholar] [CrossRef]
- Ren, Y.; Abbood, H.A.; He, F.; Peng, H.; Huang, K. Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption. Chem. Eng. J. 2013, 226, 300–311. [Google Scholar] [CrossRef]
- Peng, X.; Liu, B.; Chen, W.; Li, X.; Wang, Q.; Meng, X.; Wang, D. Effective biosorption of patulin from apple juice by cross-linked xanthated chitosan resin. Food Control 2016, 63, 140–146. [Google Scholar] [CrossRef]
- Kaushik, A.; Solanki, P.R.; Ansari, A.A.; Ahmad, S.; Malhotra, B.D. Chitosan–iron oxide nanobiocomposite based immunosensor for ochratoxin-A. Electrochem. Commun. 2008, 10, 1364–1368. [Google Scholar] [CrossRef]
- Pirouz, A.; Selamat, J.; Iqbal, S.; Mirhosseini, H.; Karjiban, R.A.; Bakar, F.A. The use of innovative and efficient nanocomposite (magnetic graphene oxide) for the reduction on of Fusarium mycotoxins in palm kernel cake. Sci. Rep. 2017, 7, 12453. [Google Scholar] [CrossRef] [PubMed]
- Afsah-Hejri, L.; Jinap, S.; Arzandeh, S.; Mirhosseini, H. Optimization of HPLC conditions for quantitative analysis of aflatoxins in contaminated peanut. Food Control 2011, 22, 381–388. [Google Scholar] [CrossRef]
- Ko, W.-C.; Chang, C.-K.; Wang, H.-J.; Wang, S.-J.; Hsieh, C.-W. Process optimization of microencapsulation of curcumin in γ-polyglutamic acid using response surface methodology. Food Chem. 2015, 172, 497–503. [Google Scholar] [CrossRef]
- Liu, D.; Xu, H.; Tian, B.; Yuan, K.; Pan, H.; Ma, S.; Yang, X.; Pan, W. Fabrication of carvedilol nanosuspensions through the anti-solvent precipitation–ultrasonication method for the improvement of dissolution rate and oral bioavailability. Aaps Pharmscitech 2012, 13, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Yuan, Y.; Zhou, Z.; Liang, J.; Chen, Z.; Li, G. Optimization and evaluation of chelerythrine nanoparticles composed of magnetic multiwalled carbon nanotubes by response surface methodology. Appl. Surf. Sci. 2014, 292, 378–386. [Google Scholar] [CrossRef]
- Mirhosseini, H.; Tan, C.P.; Taherian, A.R.; Boo, H.C. Modeling the physicochemical properties of orange beverage emulsion as function of main emulsion components using response surface methodology. Carbohydr. Polym. 2009, 75, 512–520. [Google Scholar] [CrossRef]
- Mehrnoush, A.; Tan, C.P.; Hamed, M.; Aziz, N.A.; Ling, T.C. Optimisation of freeze drying conditions for purified serine protease from mango (Mangifera indicaCv. Chokanan) peel. Food Chem. 2011, 128, 158–164. [Google Scholar] [CrossRef]
- Yibadatihan, S.; Jinap, S.; Mahyudin, N.J.F.A. Simultaneous determination of multi-mycotoxins in palm kernel cake (PKC) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Food Addit. Contam. Part A 2014, 31, 2071–2079. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Sciences, B. Matrix effect in a view of LC-MS/MS: An overview. Int. J. Pharma Biol. Sci. 2011, 2, 559–564. [Google Scholar]
- Rubert, J.; Soler, C.; Mañes, J.J.F.C. Application of an HPLC–MS/MS method for mycotoxin analysis in commercial baby foods. Food Chem. 2012, 133, 176–183. [Google Scholar] [CrossRef]
- Fan, L.; Luo, C.; Sun, M.; Li, X.; Lu, F.; Qiu, H. Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue. Bioresour. Technol. 2012, 114, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Kathiravan, T.; Nadanasabapathi, S.; Kumar, R. Pigments and antioxidant activity of optimized Ready-to-Drink (RTD) Beetroot (Beta vulgaris L.)-passion fruit (Passiflora edulis var. flavicarpa) juice blend. Croat. J. Food Sci. Technol. 2015, 7, 9–21. [Google Scholar] [CrossRef]
- Boudergue, C.; Burel, C.; Dragacci, S.; Favrot, M.-C.; Fremy, J.-M.; Massimi, C.; Pringent, P.; Debongnie, P.; Pussemier, L.; Boudra, H. Review of mycotoxin-detoxifying agents used as feed additives: Mode of action, efficacy and feed/food safety. EFSA Support. Publ. 2009, 6, 22E. [Google Scholar] [CrossRef]
- Gromadzka, K.; Waskiewicz, A.; Chelkowski, J.; Golinski, P. Zearalenone and its metabolites: Occurrence, detection, toxicity and guidelines. World Mycotoxin J. 2008, 1, 209–220. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, N.; Yang, L.; Wang, J.; Song, S.; Nie, D.; Yang, X.; Hou, J.; Wu, A. Cross-linked chitosan polymers as generic adsorbents for simultaneous adsorption of multiple mycotoxins. Food Control 2015, 57, 362–369. [Google Scholar] [CrossRef]
- Faucet-Marquis, V.; Joannis-Cassan, C.; Hadjeba-Medjdoub, K.; Ballet, N.; Pfohl-Leszkowicz, A. Development of an in vitro method for the prediction of mycotoxin binding on yeast-based products: Case of aflatoxin B 1, zearalenone and ochratoxin A. Appl. Microbiol. Biotechnol. 2014, 98, 7583–7596. [Google Scholar] [CrossRef] [Green Version]
- Soleimany, F.; Jinap, S.; Abas, F.J.F.C. Determination of mycotoxins in cereals by liquid chromatography tandem mass spectrometry. Food Chem. 2012, 130, 1055–1060. [Google Scholar] [CrossRef]
- Bornet, A.; Teissedre, P. Chitosan, chitin-glucan and chitin effects on minerals (iron, lead, cadmium) and organic (ochratoxin A) contaminants in wines. Eur. Food Res. Technol. 2008, 226, 681–689. [Google Scholar] [CrossRef]
- Khajarern, J.; Khajarern, S.; Moon, T.; Lee, J. Effects of dietary supplementation of fermented chitin-chitosan (fermkit) on toxicity of mycotoxin in ducks. Asian-Australas. J. Anim. Sci. 2003, 16, 706–713. [Google Scholar] [CrossRef]
- Solís-Cruz, B.; Hernández-Patlán, D.; Beyssac, E.; Latorre, J.; Hernandez-Velasco, X.; Merino-Guzman, R.; Tellez, G.; López-Arellano, R. Evaluation of chitosan and cellulosic polymers as binding adsorbent materials to prevent aflatoxin B1, fumonisin B1, ochratoxin, trichothecene, deoxynivalenol, and zearalenone mycotoxicoses through an in vitro gastrointestinal model for poultry. Polymers 2017, 9, 529. [Google Scholar] [CrossRef] [PubMed]
Std Order | Block | Run Order | Pt Type | pH | Time (h) | Temperature (°C) |
---|---|---|---|---|---|---|
20 | 1 | 0 | 3 | 4.5 | 6 | 40 |
16 | 2 | −1 | 3 | 4.5 | 8 | 40 |
17 | 3 | −1 | 3 | 4.5 | 6 | 30 |
18 | 4 | −1 | 3 | 4.5 | 6 | 50 |
19 | 5 | 0 | 3 | 4.5 | 6 | 40 |
13 | 6 | −1 | 3 | 3.0 | 6 | 40 |
14 | 7 | −1 | 3 | 6.0 | 6 | 40 |
15 | 8 | −1 | 3 | 4.5 | 4 | 40 |
10 | 9 | 1 | 2 | 6.0 | 8 | 50 |
9 | 10 | 1 | 2 | 3.0 | 4 | 50 |
11 | 11 | 0 | 2 | 4.5 | 6 | 40 |
12 | 12 | 0 | 2 | 4.5 | 6 | 40 |
8 | 13 | 1 | 2 | 3.0 | 8 | 30 |
7 | 14 | 1 | 2 | 6.0 | 4 | 30 |
2 | 15 | 1 | 1 | 6.0 | 8 | 30 |
4 | 16 | 1 | 1 | 3.0 | 8 | 50 |
5 | 17 | 0 | 1 | 4.5 | 6 | 40 |
1 | 18 | 1 | 1 | 3.0 | 4 | 30 |
6 | 19 | 0 | 1 | 4.5 | 6 | 40 |
3 | 20 | 1 | 1 | 6.0 | 4 | 50 |
Regression Coefficient | DON | AFB1 | AFB2 | AFG1 | AFG2 | OTA | ZEA | HT-2 | T-2 | FB1 | FB2 |
---|---|---|---|---|---|---|---|---|---|---|---|
b0 | - | 93.4 | 50.7 | 67.0 | 76.4 | 86.68 | 50.37 | −53.0 | - | 72.2 | 81.8 |
b1 | - | −6.6 | 1.1 | −3.9 | −3.3 | −0.20 | −0.25 | 12.4 | - | 7.2 | 2.9 |
b2 | - | −2.5 | 0.88 | 22.1 | 2.7 | 1.9 | 3.3 | - | 15.8 | 3.5 | |
b3 | - | −0.5 | 3.9 | 2.07 | −7.0 | 0.23 | −1.1 | - | - | 3.1 | −6.7 |
b12 | - | −6.8 | 8.00 | - | −21.8 | −1.7 | 1.9 | −31.9 | - | 2.2 | - |
b22 | - | −1.4 | −5.8 | - | 5.3 | 1.6 | −4.3 | - | -- | - | - |
b32 | - | −6.72 | - | - | −12.2 | 3.14 | - | - | - | - | |
b12 | - | −9.5 | −11.2 | −11.9 | - | −0.7 | - | - | - | - | - |
b13 | - | −8.3 | - | 15.7 | 3.3 | 1.4 | - | - | - | 5.5 | - |
b23 | 0.9 | −9.2 | - | - | - | - | −3.9 | - | - | −10.5 | −5.0 |
R2 | 0.72 | 0.98 | 0.97 | 0.96 | 0.98 | 0.98 | 0.89 | 0.61 | 0.71 | 0.98 | 0.92 |
R2 (adj.) | 0.53 | 0.96 | 0.95 | 0.94 | 0.97 | 0.96 | 0.82 | 0.47 | 0.38 | 0.97 | 0.89 |
Regression (p-value) | 0.10 * | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.1 * | 0.3 * | 0.00 | 0.00 |
Lack of fit (F-value) | 1.78 | 5.52 | 5.51 | 27.84 | 3.46 | 0.79 | 6.05 | 1.57 | 0.02 | 6.08 | 0.7 |
Lack of fit (p-value) | 0.33 * | 0.09 * | 0.09 * | 0.1 * | 0.16 * | 0.63 * | 0.08 * | 0.39 * | 1.0 * | 0.08 * | 0.60 * |
Variables | p and F Value | Linear Effects | Quadratic Effects | Interaction Effects | ||||||
---|---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x12 | x22 | x32 | x1x2 | x1x3 | x2x3 | ||
AFB1(y1) | p-value | 0.00 | 0.009 | 0.011 | 0.002 | 0.002 | - | 0.00 | 0.000 | 0.00 |
F-value | 79.66 | 11.21 | 0.82 | 19.44 | 18.47 | - | 127.30 | 97.42 | 120.34 | |
AFB2(y2) | p-value | 0.08a | 0.15a | 0.00 | 0.000 | 0.00 | - | 0.000 | - | - |
F-value | 3.72 | 2.40 | 46.57 | 59.37 | 59.84 | - | 304.58 | - | - | |
AFG1(y3) | p-value | 0.001 | 0.000 | 0.26a | - | - | - | 0.00 | 0.00 | - |
F-value | 25.90 | 203.65 | 1.94 | - | - | - | 45.96 | 74.78 | - | |
AFG2(y4) | p-value | 0.001 | 0.004 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.002 | - |
F-value | −3.33 | 2.72 | −7.00 | −21.94 | 5.09 | −12.38 | - | 14.60 | - | |
OTA(y5) | p-value | 0.21a | 0.00 | 0.15a | 0.00 | 0.00 | 0.00 | 0.002 | 0.00 | - |
F-value | 1.90a | 180.22 | 2.44a | 33.64 | 32.26 | 119.93 | 18.84 | 79.21 | - | |
ZEA(y6) | p-value | 0.66a | 0.00 | 0.06 | 0.03 | 0.001 | - | - | - | 0.003 |
F-value | 0.2 | 34.04 | 4.10 | 6.20 | 19.61 | - | - | - | 33.46 | |
FB1(y7) | p-value | 0.00 | 0.00 | 0.001 | - | - | - | - | 0.00 | 0.00 |
F-value | 98.15 | 483.12 | 19.42 | - | - | - | - | 45.99 | 171.58 | |
FB2(y8) | p-value | 0.000 | 0.005 | 0.007 | - | - | - | - | - | 0.00 |
F-value | 13.69 | 20.69 | 74.65 | - | - | - | - | - | 40.01 |
Independent Variable | Independent Variable Level | ||
---|---|---|---|
Low | Center | High | |
pH | 3 | 5 | 6 |
Time (h) | 4 | 5 | 8 |
Temperature (°C) | 30 | 40 | 50 |
Response | pH | Time | Temperature | y0 | yi | y0–yi | Desirability |
---|---|---|---|---|---|---|---|
AFB1 | 4 | 8 | 35 | 94.35 ± 1.94 | 92.95 ± 2.1 | 1.4 | 0.95 |
AFB2 | 4 | 8 | 35 | 45.90 ± 0.003 | 46.58 ± 0.05 | −0.68 | 0.41 |
AFG1 | 4 | 8 | 35 | 82.11 ± 0.84 | 79.48 ± 0.08 | −2.63 | 0.81 |
AFG2 | 4 | 8 | 35 | 84.29 ± 0.31 | 83.11 ± 0.43 | −1.18 | 0.99 |
OTA | 4 | 8 | 35 | 90.03 ± 0.5 | 87.96 ± 0.27 | −2.07 | 0.99 |
ZEA | 4 | 8 | 35 | 51.30 ± 0.21 | 52.61 ± 0.05 | 2.31 | 0.70 |
FB1 | 4 | 8 | 35 | 90.53 ± 0.43 | 89.85 ± 0.52 | −0.68 | 0.85 |
FB2 | 4 | 8 | 35 | 90.18 ± 2.3 | 88.73 ± 0.12 | −1.45 | 0.68 |
Step | Time (min) | Solvent A% | Solvent B% | Flow Rate (mL/min) |
---|---|---|---|---|
1 | 0–8 | 10 | 90 | 0.4 |
2 | 8–10 | 90 | 10 | 0.4 |
3 | 10–17 | 0 | 100 | 0.4 |
4 | 17–20 | 90 | 10 | 0.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasi Pirouz, A.; Selamat, J.; Zafar Iqbal, S.; Iskandar Putra Samsudin, N. Efficient and Simultaneous Chitosan-Mediated Removal of 11 Mycotoxins from Palm Kernel Cake. Toxins 2020, 12, 115. https://doi.org/10.3390/toxins12020115
Abbasi Pirouz A, Selamat J, Zafar Iqbal S, Iskandar Putra Samsudin N. Efficient and Simultaneous Chitosan-Mediated Removal of 11 Mycotoxins from Palm Kernel Cake. Toxins. 2020; 12(2):115. https://doi.org/10.3390/toxins12020115
Chicago/Turabian StyleAbbasi Pirouz, Atena, Jinap Selamat, Shahzad Zafar Iqbal, and Nik Iskandar Putra Samsudin. 2020. "Efficient and Simultaneous Chitosan-Mediated Removal of 11 Mycotoxins from Palm Kernel Cake" Toxins 12, no. 2: 115. https://doi.org/10.3390/toxins12020115
APA StyleAbbasi Pirouz, A., Selamat, J., Zafar Iqbal, S., & Iskandar Putra Samsudin, N. (2020). Efficient and Simultaneous Chitosan-Mediated Removal of 11 Mycotoxins from Palm Kernel Cake. Toxins, 12(2), 115. https://doi.org/10.3390/toxins12020115