AFLA-PISTACHIO: Development of a Mechanistic Model to Predict the Aflatoxin Contamination of Pistachio Nuts
Abstract
:1. Introduction
2. Results
2.1. Collection of Meteorological Data
2.2. Computation of Pistachio Growth Stages
2.3. Field Sampling and Aflatoxin Occurrence Data
2.4. Predictive Model
2.5. Probability of Aflatoxin Contamination
2.6. External Model Validation
3. Discussion
4. Materials and Methods
4.1. Collection of Meteorological Data
4.2. Description and Computation of Growth Stages
4.3. Field Sampling and Aflatoxin Occurrence Data
4.4. Predictive Model
4.5. Probability of AFB1 Contamination
4.6. Validation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Elloumi, O.; Ghrab, M.; Kessentini, H.; Mimoun, M.B. Chilling accumulation effects on performance of pistachio trees cv. Mateur in dry and warm area climate. Sci. Hortic. 2013, 159, 80–87. [Google Scholar] [CrossRef]
- Afshari, H.; Tajabadipour, A.; Hokmabadi, H.; Moghadam, M.M. Determining the chilling requirements of four Pistachio cultivars in Semnan province (Iran). Afr. J. Agr. Res. 2009, 4, 055–059. [Google Scholar]
- Guo, L.; Dai, J.; Ranjitkar, S.; Yu, H.; Xu, J.; Luedeling, E. Chilling and heat requirements for flowering in temperate fruit trees. Int. J. Biometeorol. 2014, 58, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Kebour, D.; Mekademi, K.; Boutekrabt, A. Test of a study of phenology of pistachio fruit (Pistacia vera L.) in the orchard TIGHENNIF (W. Mascara, Algeria). J. Curr. Res. Sci. 2013, 1, 185–191. [Google Scholar]
- Luedeling, E.; Brown, P.H. A global analysis of the comparability of winter chill models for fruit and nut trees. Int. J. Biometeorol. 2011, 55, 411–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Ranford, T.; Taylor, C. Heat model for pistachio bloom and harvest. Sci. Hortic. 2015, 186, 47–53. [Google Scholar] [CrossRef]
- McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation, two interpretations. Agric. Forest Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Sommer, N.F.; Buchanan, J.R.; Fortlage, R.J. Relation of early splitting and tattering of pistachio nuts to aflatoxin in the orchard. Phytopathology 1986, 76, 692–694. [Google Scholar] [CrossRef]
- Doster, M.A.; Michailides, T.J. Aspergillus molds and aflatoxins in pistachio nuts in California. Phytopathology 1994, 84, 583–590. [Google Scholar] [CrossRef]
- Doster, M.A.; Michailides, T.J. The relationship between date of hull splitting and decay of pistachio nuts by Aspergillus species. Plant Dis. 1995, 79, 766–769. [Google Scholar] [CrossRef]
- Kabirian, H.R.; Afshari, H.; Moghadam, M.M.; Hokmabadi, H. Evaluation of pistachio contamination to Aspergillus flavus in Semnan Province. Int. J. Nuts Relat. Sci. 2011, 2, 1–6. [Google Scholar]
- Georgiadou, M.; Dimou, A.; Yanniotis, S. Aflatoxin contamination in pistachio nuts: A farm to storage study. Food Control 2012, 26, 580–586. [Google Scholar] [CrossRef]
- Rushing, B.R.; Selim, M.I. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2019, 124, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Probst, C.; Njapau, H.; Cotty, P.J. Outbreak of an acute aflatoxicosis in Kenya in 2004: Identification of the causal agent. Appl. Environ. Microbiol. 2007, 73, 2762–2764. [Google Scholar] [CrossRef] [Green Version]
- Probst, C.; Schulthess, F.; Cotty, P.J. Impact of Aspergillus section Flavi community structure on the development of lethal levels of aflatoxins in Kenyan maize (Zea mays). J. Appl. Microbiol. 2010, 108, 600–610. [Google Scholar] [CrossRef]
- Cotty, P.J.; Jaime-Garcia, R. Influences of climate on aflatoxin producing fungi and aflatoxin contamination. Int. J. Food Microbiol. 2007, 119, 109–115. [Google Scholar] [CrossRef]
- Kaminiaris, M.; Tsitsigiannis, D. Pre-harvest management strategies to control aflatoxin contamination in crops. In Aflatoxins: Biochemistry, Toxicology, Public Health, Policies and Modern Methods of Analysis; Kintzios, S., Mavrikou, S., Eds.; Analytical Chemistry and Microchemistry; Nova Science Publishers Inc.: New York, NY, USA, 2020. [Google Scholar]
- Doster, M.A.; Michailides, T.J. Relationship between shell discoloration of pistachio nuts and incidence of fungal decay and insect infestation. Plant Dis. 1999, 83, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Panahi, B.; Khezri, M. Effect of harvesting time on nut quality of pistachio (Pistacia vera L.) cultivars. Sci. Hortic. 2011, 129, 730–734. [Google Scholar] [CrossRef]
- Aktas, T.; Polat, R. Changes in the drying characteristics and water activity values of selected pistachio cultivars during hot air drying. J. Food Process Eng. 2007, 30, 607–624. [Google Scholar] [CrossRef]
- Mahoney, N.E.; Gee, W.S.; Higbee, B.S.; Beck, J.J. Ex situ volatile survey of ground almond and pistachio hulls for emission of spiroketals: Analysis of hull fatty acid composition, water content, and water activity. Phytochem. Lett. 2014, 7, 225–230. [Google Scholar] [CrossRef]
- Beauchat, L.R. Relationship of water activity to moisture content in tree nuts. J. Food Sci. 1978, 43, 754–758. [Google Scholar] [CrossRef]
- Bui-Klimke, T.R.; Guclu, H.; Kensler, T.W.; Yuan, J.-M.; Wu, F. Aflatoxin regulations and global pistachio trade: Insights from social network analysis. PLoS ONE 2014, 9, e92149. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.-N.; Yan, L.-Y.; Jiang, J.-H.; Ma, Z.-H. Biological control of aflatoxin contamination of crops. J. Zhejiang Univ. Sci. B 2008, 9, 787–792. [Google Scholar] [CrossRef]
- Lagogianni, C.S.; Tsitsigiannis, D.I. Effective chemical management for prevention of aflatoxins in maize. Phytopathol. Mediterr. 2018, 57, 186–197. [Google Scholar] [CrossRef]
- Tsitsigiannis, D.I.; Dimakopoulou, M.; Antoniou, P.P.; Tjamos, E.C. Biological control strategies of mycotoxigenic fungi and associated mycotoxins in Mediterranean basin crops. Phytopathol. Mediterr. 2012, 51, 158–174. [Google Scholar] [CrossRef]
- Doster, M.A.; Cotty, P.J.; Michailides, T.J. Evaluation of the atoxigenic Aspergillus flavus strain AF36 in pistachio orchards. Plant Dis. 2014, 98, 948–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battilani, P.; Leggieri, M.C. OTA-Grapes: A mechanistic model to predict Ochratoxin a risk in grapes, a step beyond the systems approach. Toxins 2015, 7, 3012–3029. [Google Scholar] [CrossRef] [Green Version]
- Maiorano, A.; Reyneri, A.; Magni, A.; Ramponi, C. A decision tool for evaluating the agronomic risk of exposure to fumonisins of different maize crop management systems in Italy. Agric. Syst. 2009, 102, 17–23. [Google Scholar] [CrossRef]
- Chauhan, Y.S.; Wright, G.C.; Rachaputi, R.C.N.; Holzworth, D.; Broome, A.; Krosch, S.; Robertson, M.J. Application of a model to assess aflatoxin risk in peanuts. J. Agric. Sci. 2010, 148, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Manstretta, V.; Rossi, V.; Fels-Klerx, H.J.v.d. Comparison of three modelling approaches for predicting deoxynivalenol contamination in winter wheat. Toxins 2018, 10, 267. [Google Scholar] [CrossRef] [Green Version]
- Váňová, M.; Klem, K.; Matušinský, P.; Trnka, M. Prediction model for deoxynivalenol in wheat grain based on weather conditions. Plant Protect. Sci. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Fels-Klerx, H.J.V.D.; Burgers, S.L.G.E.; Booij, C.J.H. Descriptive modelling to predict deoxynivalenol in winter wheat in the Netherlands. Food Addit. Contam. 2010, 27, 636–643. [Google Scholar] [CrossRef]
- Battilani, P.; Camardo Leggieri, M.; Rossi, V.; Giorni, P. AFLA-maize, a mechanistic model for Aspergillus flavus infection and aflatoxin B1 contamination in maize. Comput. Electron. Agric. 2013, 94, 38–46. [Google Scholar] [CrossRef]
- Battilani, P.; Camardo Leggieri, M. Predictive modelling of aflatoxin contamination to support maize chain management. World Mycotoxin J. 2015, 8, 161–170. [Google Scholar] [CrossRef]
- Klem, K.; Váňová, M.; Hajšlová, J.; Lancová, K.; Sehnalová, M. A neural network model for prediction of deoxynivalenol content in wheat grain based on weather data and preceding crop. Plant Soil Environ. 2007, 53, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Battilani, P. Recent advances in modeling the risk of mycotoxin contamination in crops. Curr. Opin. Food Sci. 2016, 11, 10–15. [Google Scholar] [CrossRef]
- Russelle, M.P.; Wilhelm, W.W.; Olson, R.A.; Power, J.F. Growth analysis based on degree days. Crop Sci. 1984, 24, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Gavilán, R.G. The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central. Int. J. Biometeorol. 2005, 50, 111–120. [Google Scholar] [CrossRef]
- Rahemi, M.; Pakkish, Z. Determination of chilling and heat requirements of pistachio (Pistacia vera L.) cultivars. Agric. Sci. China 2009, 8, 803–807. [Google Scholar] [CrossRef]
- Salhi, H.; Mimoun, M.B.; Ghrab, M. Chilling and heat requirements for flowering of the main pistachio Tunisian cultivar ‘Mateur’. Acta Hortic. 2014, 1028, 117–122. [Google Scholar] [CrossRef]
- Pope, K.S.; Brown, P.H.; Dose, V.; Silva, D.D.; DeJong, T.M. Yield potential analysis to model dormancy requirements in pistachio. Acta Hortic. 2014, 1028, 103–106. [Google Scholar] [CrossRef]
- Chauhan, Y.; Tatnell, J.; Krosch, S.; Karanja, J.; Gnonlonfin, B.; Wanjuki, I.; Wainaina, J.; Harvey, J. An improved simulation model to predict pre-harvest aflatoxin risk in maize. Field Crops Res. 2015, 178, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Rossi, V.; Giosuè, S.; Pattori, E.; Spanna, F.; Vecchio, A.D. A model estimating the risk of Fusarium head blight on wheat. EPPO Bull. 2003, 33, 421–425. [Google Scholar] [CrossRef]
- Abbas, H.K.; Zablotowicz, R.M.; Locke, M.A. Spatial variability of Aspergillus flavus soil populations under different crops and corn grain colonization and aflatoxins. Can. J. Bot. 2004, 82, 1768–1775. [Google Scholar] [CrossRef] [Green Version]
- Blandino, M.; Reyneri, A.; Vanara, F.; Pascale, M.; Haidukowski, M.; Campagna, C. Management of fumonisin contamination in maize kernels through the timing of insecticide application against the European corn borer Ostrinia nubilalis Hübner. Food Addit. Contam. 2009, 26, 1501–1514. [Google Scholar] [CrossRef] [Green Version]
- Champeil, A.; Fourbet, J.-F.; Doré, T.; Rossignol, L. Influence of cropping system on Fusarium head blight and mycotoxin levels in winter wheat. Crop Prot. 2004, 23, 531–537. [Google Scholar] [CrossRef]
- Blandino, M.; Scarpino, V.; Sulyok, M.; Krska, R.; Reyneri, A. Effect of agronomic programmes with different susceptibility to deoxynivalenol risk on emerging contamination in winter wheat. Europ. J. Agron. 2017, 85, 12–24. [Google Scholar] [CrossRef]
- Schöneberg, T.; Martin, C.; Wettstein, F.E.; Bucheli, T.D.; Mascher, F.; Bertossa, M.; Musa, T.; Keller, B.; Vogelgsang, S. Fusarium and mycotoxin spectra in Swiss barley are affected by various cropping techniques. Food Addit. Contam. 2016, 33, 1608–1619. [Google Scholar] [CrossRef] [Green Version]
- Leggieri, M.C.; Bertuzzi, T.; Pietri, A.; Battilani, P. Mycotoxin occurrence in maize produced in Northern Italy over the years 2009–2011: Focus on the role of crop related factors. Phytopathol. Mediterr. 2015, 54, 212–221. [Google Scholar]
- González-Domínguez, E.; Legler, S.; Fedele, G.; Ammour, M.S.; Caffi, T.; Rossi, V. Helping farmers in timing the application of biocontrol agents in viticulture. In Proceedings of the Biological and Integrated Control of Plant Pathogens, Catalonia, Spain, 23–26 April 2018; pp. 73–75. [Google Scholar]
- Ehler, L.E. Integrated pest management (IPM): Definition, historical development and implementation, and the other IPM. Pest Manag. Sci. 2006, 62, 787–789. [Google Scholar] [CrossRef]
- Barzman, M.; Bàrberi, P.; Nicholas, A.; Birch, E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Kuden, A.B.; Kaska, N.; Tanriver, E.; Ak, B.E.; Tekin, H. Determining the chilling requirements and growing degree hours of some pistachio nut cultivars and regions. Acta Hortic. 1995, 419, 85–90. [Google Scholar] [CrossRef]
- Leffelaar, P.A. Basic elements of dynamic simulation. In On Systems Analysis and Simulation of Ecological Processes with Examples in CSMP and FORTRAN; Production Ecology; Springer Netherlands: Dordrecht, The Netherlands, 1993; Volume 1, pp. 11–27. [Google Scholar]
- Paul, P.A.; Munkvold, G.P. A model-based approach to preplanting risk assessment for gray leaf spot of maize. Phytopathology 2004, 94, 1350–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Growth Stage | Period | 2014 | SE (±days) | 2015 | SE (±days) | 2016 | SE (±days) | Mean GDD | SE (±days) |
---|---|---|---|---|---|---|---|---|---|
Flowering | 15–30 April | 771 | ±2.1 | 579 | ±2.0 | 836 | ±2.4 | 729 | ±5.0 |
Pollination | 1–10 May | 912 | ±1.2 | 735 | ±1.9 | 987 | ±1.4 | 878 | ±4.7 |
Setting | 11–20 May | 1036 | ±1.6 | 877 | ±1.8 | 1114 | ±1.8 | 1009 | ±4.5 |
Early maturity | 25 July–4 August | 2411 | ±3.0 | 2235 | ±3.3 | 2563 | ±3.1 | 2403 | ±6.3 |
Splitting of hull | 5–19 August | 2690 | ±4.0 | 2527 | ±4.0 | 2852 | ±4.0 | 2690 | ±6.8 |
Harvesting | 20 August–3 September | 3013 | ±4.0 | 2845 | ±3.9 | 3167 | ±3.8 | 3008 | ±6.7 |
Year | AFB1-I | AFB1 | |||||||
---|---|---|---|---|---|---|---|---|---|
Average | Min | Max | SD | Number of Samples | Average | Min | Max | SD | |
Dataset 1 | |||||||||
2014 | 1014 | 890 | 1203 | 144.5 | 29 | 22 | 0.2 | 180 | 39.3 |
2015 | 1043 | 927 | 1257 | 122.2 | 11 | 18 | 0.1 | 73 | 26.1 |
2016 | 879 | 879 | 879 | 0.0 | 3 | na | ≤LOD | ≤LOD | na |
Dataset 2 | |||||||||
2017 | 900 | 857 | 1390 | 127.9 | 54 | 1 | ≤LOD | 20 | 2.96 |
2018 | 850 | 837 | 1103 | 58.0 | 20 | na | ≤LOD | ≤LOD | na |
2019 | 349 | 349 | 349 | 0.0 | 13 | na | ≤LOD | 0.5 | na |
Parameters | Parameters Value | SE a | Wald b | df c | Probability d | Exp (b) e |
---|---|---|---|---|---|---|
b | 0.004 | 0.002 | 3.141 | 1 | 0.076 | 1.004 |
c | −5.131 | 2.595 | 3.911 | 1 | 0.048 | 0.006 |
Dataset 1 | Dataset 2 | ||||||
---|---|---|---|---|---|---|---|
Predicted | Predicted | ||||||
0 | 1 | 0 | 1 | ||||
Observed | 0 | 55.8 | 11.6 | Observed | 0 | 95.6 | 3.3 |
1 | 16.3 | 16.3 | 1 | 1.1 | 0.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaminiaris, M.D.; Camardo Leggieri, M.; Tsitsigiannis, D.I.; Battilani, P. AFLA-PISTACHIO: Development of a Mechanistic Model to Predict the Aflatoxin Contamination of Pistachio Nuts. Toxins 2020, 12, 445. https://doi.org/10.3390/toxins12070445
Kaminiaris MD, Camardo Leggieri M, Tsitsigiannis DI, Battilani P. AFLA-PISTACHIO: Development of a Mechanistic Model to Predict the Aflatoxin Contamination of Pistachio Nuts. Toxins. 2020; 12(7):445. https://doi.org/10.3390/toxins12070445
Chicago/Turabian StyleKaminiaris, Michail D., Marco Camardo Leggieri, Dimitrios I. Tsitsigiannis, and Paola Battilani. 2020. "AFLA-PISTACHIO: Development of a Mechanistic Model to Predict the Aflatoxin Contamination of Pistachio Nuts" Toxins 12, no. 7: 445. https://doi.org/10.3390/toxins12070445
APA StyleKaminiaris, M. D., Camardo Leggieri, M., Tsitsigiannis, D. I., & Battilani, P. (2020). AFLA-PISTACHIO: Development of a Mechanistic Model to Predict the Aflatoxin Contamination of Pistachio Nuts. Toxins, 12(7), 445. https://doi.org/10.3390/toxins12070445