Bedside Coagulation Tests in Diagnosing Venom-Induced Consumption Coagulopathy in Snakebite
Abstract
:1. Introduction
2. Venom Induced Consumption Coagulopathy
3. Laboratory Diagnosis of VICC
4. Types of Bedside Coagulation Tests for VICC
4.1. Lee–White Clotting Test
4.1.1. Validation Studies of the Lee–White Clotting Test
4.1.2. Use of Lee–White Clotting Test in Snakebite Clinical Studies
4.2. 20-Min Whole Blood Clotting Test and Its Variants
4.2.1. Validation Studies of the 20-Min Whole Blood Clotting Test
4.2.2. Use of WBCT20 in Clinical Studies
4.3. Venous Clotting Time
4.3.1. Validation Studies of the Venous Clotting Time
4.3.2. Use of Venous Clotting Time in Clinical Studies
5. Novel Methods to Diagnose VICC
6. Discussion
7. Methods
Author Contributions
Funding
Conflicts of Interest
References
- Kasturiratne, A.; Wickremasinghe, A.R.; De Silva, N.; Gunawardene, N.K.; Pathmeswaran, A.; Premaratna, R. The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008, 5, 1591–1604. [Google Scholar] [CrossRef] [PubMed]
- Ediriweera, D.S.; Kasturiratne, A.; Pathmeswaran, A.; Gunawardene, N.K.; Wijewickrema, B.A.; Jayamanne, S.F.; De Silva, H.J. Mapping the Risk of Snakebite in Sri Lanka—A National Survey with Geospatial Analysis. PLoS Negl. Trop. Dis. 2016, 10, e0004813. [Google Scholar] [CrossRef]
- Chippaux, J.-P. Snakebite envenomation turns again into a neglected tropical disease! J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 38. [Google Scholar] [CrossRef]
- Harrison, R.A.; Hargreaves, A.; Wagstaff, S.C.; Faragher, B.; Lalloo, D.G. Snake envenoming: A disease of poverty. PLoS Negl. Trop. Dis. 2009, 3, e569. [Google Scholar] [CrossRef] [Green Version]
- Warrell, D.A. Seminar Snake bite. Lancet 2010, 375, 77–88. [Google Scholar] [CrossRef]
- Waiddyanatha, S.; Silva, A.; Siribaddana, S.; Isbister, G.K. Long-term Effects of Snake Envenoming. Toxins 2019, 11, 193. [Google Scholar] [CrossRef] [Green Version]
- Kasturiratne, A.; Pathmeswaran, A.; Wickremasinghe, A.R.; Jayamanne, S.F.; Dawson, A.; Isbister, G.K.; De Silva, H.J.; Lalloo, D.G. The socio-economic burden of snakebite in Sri Lanka. PLoS Negl. Trop. Dis. 2017, 11, e0005647. [Google Scholar] [CrossRef] [Green Version]
- Berling, I.; Isbister, G.K. Hematologic effects and complications of snake envenoming. Transfus. Med. Rev. 2015, 29, 82–89. [Google Scholar] [CrossRef]
- Maduwage, K.; Isbister, G.K. Current Treatment for Venom-Induced Consumption Coagulopathy Resulting from Snakebite. PLoS Negl. Trop. Dis. 2014, 8, e3220. [Google Scholar] [CrossRef] [Green Version]
- Isbister, G.K. Snakebite doesn’t cause disseminated intravascular coagulation: Coagulopathy and thrombotic microangiopathy in snake envenoming. Semin. Thromb. Hemost. 2010, 36, 444–451. [Google Scholar] [CrossRef]
- Lu, Q.; Clemetson, J.M.; Clemetson, K.J. Snake venoms and hemostasis. J. Thromb. Haemost. 2005, 3, 1791–1799. [Google Scholar] [CrossRef]
- Isbister, G.K.; Maduwage, K.; Scorgie, F.E.; Shahmy, S.; Mohamed, F.; Abeysinghe, C.; Karunathilake, H.; O’Leary, M.A.; Gnanathasan, C.A.; Lincz, L.F. Venom concentrations and clotting factor levels in a prospective cohort of russell’s viper bites with coagulopathy. PLoS Negl. Trop. Dis. 2015, 9, e0003968. [Google Scholar] [CrossRef] [Green Version]
- Isbister, G.K. Procoagulant Snake Toxins: Laboratory Studies, Diagnosis, and Understanding Snakebite Coagulopathy. Semin. Thromb. Hemost. 2009. [Google Scholar] [CrossRef] [PubMed]
- Maduwage, K.; Scorgie, F.E.; Silva, A.; Shahmy, S.; Mohamed, F.; Abeysinghe, C.; Karunathilake, H.; Lincz, L.F.; Gnanathasan, C.A.; Isbister, G.K. Hump-nosed pit viper (Hypnale hypnale) envenoming causes mild coagulopathy with incomplete clotting factor consumption. Clin. Toxicol. 2013, 51, 527–531. [Google Scholar] [CrossRef]
- Maduwage, K.; Buckley, N.A.; De Silva, H.J.; Lalloo, D.G.; Isbister, G.K. Snake antivenom for snake venom induced consumption coagulopathy. Cochrane Database Syst. Rev. 2015, 6, CD011428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.; Isbister, G.K. Current research into snake antivenoms, their mechanisms of action and applications. Biochem. Soc. Trans. 2020, 48, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Mion, G.; Larréché, S.; Benois, A.; Petitjeans, F.; Puidupin, M. Hemostasis dynamics during coagulopathy resulting from Echis envenomation. Toxicon 2013, 76, 103–109. [Google Scholar] [CrossRef]
- Isbister, G.K.; Maduwage, K.; Shahmy, S.; Mohamed, F.; Abeysinghe, C.; Karunathilake, H.; Ariaratnam, C.A.; Buckley, N.A. Diagnostic 20-min whole blood clotting test in Russell’s viper envenoming delays antivenom administration. QJM 2013, 106, 925–932. [Google Scholar] [CrossRef] [Green Version]
- O’Rourke, K.M.; Correlje, E.; Martin, C.L.; Robertson, J.D.; Isbister, G.K. Point-of-care derived INR does not reliably detect significant coagulopathy following Australian snakebite. Thromb. Res. 2013, 132, 610–613. [Google Scholar] [CrossRef]
- Ratnayake, I.; Shihana, F.; Dissanayake, D.M.; Buckley, N.A.; Maduwage, K.; Isbister, G.K. Performance of the 20-minute whole blood clotting test in detecting venom induced consumption coagulopathy from Russell’s viper (Daboia russelii) bites. Thromb. Haemost. 2017, 117, 500–507. [Google Scholar] [CrossRef]
- Lee, R.I.; White, P.D. A Clinical Study of the Coagulation Time of Blood. Am. J. Med. Sci. 1913, 145, 495–503. [Google Scholar] [CrossRef]
- Bernal, J.C.C.; Bisneto, P.F.; Pereira, J.P.T.; Ibiapina, H.N.D.S.; Sarraff, L.K.S.; Monteiro-Júnior, C.; da Pereira, H.; Santos, B.; de Moura, V.M.; de Oliveira, S.S.; et al. “Bad things come in small packages”: Predicting venom-induced coagulopathy in Bothrops atrox bites using snake ontogenetic parameters. Clin. Toxicol. 2020, 58, 388–896. [Google Scholar] [CrossRef]
- de Brito Sousa, J.D.; Sachett, J.A.G.; de Oliveira, S.S.; Mendonça-da-Silva, I.; Marques, H.O.; de Lacerda, M.V.G.; Fan, H.W.; Monteiro, W.M. Accuracy of the Lee–White Clotting Time Performed in the Hospital Routine to Detect Coagulopathy in Bothrops atrox Envenomation. Am. J. Trop. Med. Hyg. 2018, 98, 1547–1551. [Google Scholar] [CrossRef]
- Swinson, C. Control of antivenom treatment in Echis carinatus (Carpet Viper) poisoning. Trans. R. Soc. Trop. Med. Hyg. 1976, 70, 85–87. [Google Scholar] [CrossRef]
- Warrell, D.A.; Davidson, N.M.; Greenwood, B.M.; Ormerod, L.D.; Pope, H.M.; Watkins, B.J.; Prentice, C.R. Poisoning by bites of the saw-scaled or carpet viper (Echis carinatus) in Nigeria. Q. J. Med. 1977, 46, 33–62. [Google Scholar]
- Chippaux, J.P.; Lang, J.; Eddine, S.A.; Fagot, P.; Rage, V.; Peyrieux, J.C.; Le Mener, V. Clinical safety of a polyvalent F(ab’)2 equine antivenom in 223 African snake envenomations: A field trial in Cameroon. VAO (Venin Afrique de l’Ouest) Investigators. Trans. R. Soc. Trop. Med. Hyg. 1998, 92, 657–662. [Google Scholar] [CrossRef]
- Bregani, E.R.; Maraffi, T.; Van Tien, T. Case Series and Case Reports: Snake bites in Moyen Chari district, Chad: A five-year experience. Trop. Dr. 2011, 41, 123–126. [Google Scholar] [CrossRef]
- Premawardena, A.P.; Seneviratne, S.L.; Gunatilake, S.B.; De Silva, H.J. Excessive fibrinolysis: The coagulopathy following Merrem’s hump-nosed viper (Hypnale hypnale) bites. Am. J. Trop. Med. Hyg. 1998, 58, 821–823. [Google Scholar] [CrossRef] [Green Version]
- Srimannarayana, J.; Dutta, T.K.; Sahai, A.; Badrinath, S. Rational use of anti-snake venom (ASV): Trial of various regimens in hemotoxic snake envenomation. J. Assoc. Phys. India 2004, 52, 788–793. [Google Scholar]
- Isbister, G.K.; Currie, B.J. Suspected snakebite: One year prospective study of emergency department presentations. Emerg. Med. 2003, 15, 160–169. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Gunasekaran, K.; Mahadevan, S.; Bobby, Z.; Kumar, A.P. Russell’s viper envenomation-associated acute kidney injury in children in Southern India. Indian Pediatr. 2015, 52, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Kularatne, S.A.M.; Sivansuthan, S.; Medagedara, S.C.; Maduwage, K.; de Silva, A. Revisiting saw-scaled viper (Echis carinatus) bites in the Jaffna Peninsula of Sri Lanka: Distribution, epidemiology and clinical manifestations. Trans. R. Soc. Trop. Med. Hyg. 2011, 105, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Hutton, R.A.; Looareesuwan, S.; Ho, M.; Silamut, K.; Chanthavanich, P.; Karbwang, J.; Supanaranond, W.; Vejcho, S.; Viravan, C.; Phillips, R.E.; et al. Arboreal green pit vipers (genus Trimeresurus) of south-east Asia: Bites by T. albolabris and T. macrops in Thailand and a review of the literature. Trans. R. Soc. Trop. Med. Hyg. 1990, 84, 866–874. [Google Scholar] [CrossRef]
- Mitrakul, C.; Juzi, U.; Pongrujikorn, W. Antivenom Therapy in Russell’s Viper Bite. Am. J. Clin. Pathol. 1991, 95, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Thein-Than; Tin-Tun; Hla-Pe; Phillips, R.E.; Myint-Lwin; Tin-Nu-Swe; Warrell, D.A. Development of renal function abnormalities following bites by Russell’s vipers (Daboia russelii siamensis) in Myanmar. Trans. R. Soc. Trop. Med. Hyg. 1991, 85, 404–409. [Google Scholar] [CrossRef]
- Tun-Pe; Ba-Aye; Aye-Aye-Myint; Tin-Nu-Swe; Warrell, D.A. Bites by Russell’s vipers (Daboia russelii siamensis) in Myanmar: Effect of the snake’s length and recent feeding on venom antigenaemia and severity of envenoming. Trans. R. Soc. Trop. Med. Hyg. 1991, 85, 804–808. [Google Scholar] [CrossRef]
- Win-Aung; Khin-Pa-Pa-Kyaw; Baby-Hla; Saw-Sandar-Aye; Saw-Phone-Naing; Aye-Kyaw; Tin-Nu-Swe. Renal involvement in Russell’s viper bite patients without disseminated intravascular coagulation. Trans. R. Soc. Trop. Med. Hyg. 1998, 92, 322–324. [Google Scholar] [CrossRef]
- Myint-Lwin; Warrell, D.; Phillips, R.; Tin-Nu-Swe; Tun-Pe; Maung-Maung-Lay. Bites by Russell’s viper (Vipera russelli siamensis) in Burma: Haemostatic, vascular, and renal disturbances and response to treatment. Lancet 1985, 2, 427–433. [Google Scholar]
- Ribeiro, L.A.; Jorge, M.T.; Lebrão, M.L. Prognostic factors for local necrosis in Bothrops jararaca (Brazilian pit viper) bites. Trans. R. Soc. Trop. Med. Hyg. 2001, 95, 630–634. [Google Scholar] [CrossRef]
- Lalloo, D.G.; Trevett, A.J.; Korinhona, A.; Nwokolo, N.; Laurenson, I.F.; Paul, M.; Black, J.; Naraqi, S.; Mavo, B.; Saweri, A.; et al. Snake bites by the papuan taipan (Oxyuranus scutellatus canni): Paralysis, hemostatic and electrocardiographic abnormalities, and effects of antivenom. Am. J. Trop. Med. Hyg. 1995, 52, 525–531. [Google Scholar] [CrossRef]
- Lalloo, D.G.; Trevett, A.J.; Nwokolo, N.; Laurenson, I.F.; Naraqi, S.; Kevau, I.; Kemp, M.W.; Hooper, R.J.L.; Theakston, R.D.G.; Warrell, D. Electrocardiographic abnormalities in patients bitten by taipans (Oxyuranus scuttellatus canni) and other elapid snakes in Papua New Guinea. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 53–56. [Google Scholar] [CrossRef]
- Jeyarajah, R. Russell’s viper bite in Sri Lanka. A study of 22 cases. Am. J. Trop. Med. Hyg. 1984, 33, 506–510. [Google Scholar] [CrossRef]
- Kularatne, S.A.M.; Silva, A.; Weerakoon, K.; Maduwage, K.; Walathara, C.; Paranagama, R.; Mendis, S. Revisiting Russell’s viper (Daboia russelii) bite in Sri Lanka: Is abdominal pain an early feature of systemic envenoming? PLoS ONE 2014, 9, e90198. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.; Maduwage, K.; Sedgwick, M.; Pilapitiya, S.; Weerawansa, P.; Dahanayaka, N.J.; Buckley, N.A.; Siribaddana, S.; Isbister, G.K. Neurotoxicity in Russells viper (Daboia russelii) envenoming in Sri Lanka: A clinical and neurophysiological study. Clin. Toxicol. 2016, 54, 411–419. [Google Scholar] [CrossRef]
- Than, T.; EiHan, K.; Hutton, R.A.; Lwin, M.; Swe, T.N.; Phillips, R.E.; Warrell, D.A. Evolution of coagulation abnormalities following Russell’s viper bite in Burma. Br. J. Haematol. 1987, 65, 193–198. [Google Scholar] [CrossRef]
- Kamiguti, A.S.; Cardoso, J.L.C.; Theakston, R.D.G.; Sano-Martins, I.S.; Hutton, R.A.; Rugman, F.P.; Warrell, D.A.; Hay, C.R.M. Coagulopathy and haemorrhage in human victims of Bothrops jararaca envenoming in Brazil. Toxicon 1991, 29, 961–972. [Google Scholar] [CrossRef]
- Maduwage, K.; Isbister, G.K.; Silva, A.; Bowatta, S.; Mendis, S.; Gawarammana, I. Epidemiology and clinical effects of hump-nosed pit viper (Genus: Hypnale) envenoming in Sri Lanka. Toxicon 2013, 61, 11–15. [Google Scholar] [CrossRef]
- Ho, M.; Warrell, D.A.; Looareesuwan, S.; Phillips, R.E.; Chanthavanich, P.; Karbwang, J.; Supanaranond, W.; Viravan, C.; Hutton, R.A.; Vejcho, S. Clinical significance of venom antigen levels in patients envenomed by the Malayan pit viper (Calloselasma rhodostoma). Am. J. Trop. Med. Hyg. 1986, 35, 579–587. [Google Scholar] [CrossRef]
- Namal Rathnayaka, R.M.M.K.; Ranathunga, P.E.A.N.; Kularatne, S.A.M. Epidemiology and clinical features of Green pit viper (Trimeresurus trigonocephalus) envenoming in Sri Lanka. Toxicon 2017, 137, 99–105. [Google Scholar] [CrossRef]
- Witharana, E.W.R.A.; Gnanathasan, A.; Dissanayake, A.S.; Wijesinghe, S.K.J.; Kadahetti, S.C.L.; Rajapaksha, R.M.J.K. Sri Lankan green pit viper (Trimeresurus trigonocephalus) bites in Deniyaya: A clinico-epidemiological study. Toxicon 2019, 169, 34–37. [Google Scholar] [CrossRef]
- Lalloo, D.; Trevett, A.; Black, J.; Mapao, J.; Naraqi, S.; Owens, D.; Hutton, R.; Theakston, R.D.G.; Warrell, D.A. Neurotoxicity and haemostatic disturbances in patients envenomed by the Papuan black snake (Pseudechis papuanus). Toxicon 1994, 32, 927–936. [Google Scholar] [CrossRef]
- Ribeiro, L.A.; Puorto, G.; Jorge, M.T. Bites by the colubrid snake Philodryas olfersii: A clinical and epidemiological study of 43 cases. Toxicon 1999, 37, 943–948. [Google Scholar] [CrossRef]
- de Medeiros, C.R.; de Souza, S.N.; da Silva, M.C.; de Ventura, J.S.; Piorelli, R.D.O.; Puorto, G. Bites by Tomodon dorsatus (serpentes, dipsadidae): Clinical and epidemiological study of 86 cases. Toxicon 2019, 162, 40–45. [Google Scholar] [CrossRef]
- Sano-Martins, I.S.; Fan, H.W.; Castro, S.C.B.; Tomy, S.C.; Franca, F.O.S.; Jorge, M.T.; Kamiguti, A.S.; Warrell, D.A.; Theakston, R.D.G. Reliability of the simple 20 minute whole blood clotting test (WBCT20) as an indicator of low plasma fibrinogen concentration in patients envenomed by Bothrops snakes. Toxicon 1994, 32, 1045–1050. [Google Scholar] [CrossRef]
- Punguyire, D.; Iserson, K.V.; Stolz, U.; Apanga, S. Bedside Whole-Blood Clotting Times: Validity after Snakebites. J. Emerg. Med. 2013, 44, 663–667. [Google Scholar] [CrossRef]
- Biradar, M.V.; Abhange, R. A study of laboratory parameters prothrombin time and 20 minute WBCT in snake bite patients. MedPulse 2015, 2, 697–701. [Google Scholar]
- Dsilva, A.A.; Basheer, A.; Thomas, K. Snake envenomation: Is the 20 min whole blood clotting test (WBCT20) the optimum test for management? QJM 2019, 112, 575–579. [Google Scholar] [CrossRef]
- Holla, S.K.; Rao, H.A.; Shenoy, D.; Boloor, A.; Boyanagari, M. The role of fresh frozen plasma in reducing the volume of anti-snake venom in snakebite envenomation. Trop. Dr. 2018, 48, 89–93. [Google Scholar] [CrossRef]
- Otero, R.; Gutiérrez, J.M.; Núñez, V.; Robles, A.; Estrada, R.; Segura, E.; Toro, M.F.; García, M.E.; Díaz, A.; Ramírez, E.C.; et al. A randomized double-blind clinical trial of two antivenoms in patients bitten by Bothrops atrox in Colombia. Trans. R. Soc. Trop. Med. Hyg. 1996, 90, 696–700. [Google Scholar] [CrossRef]
- Smalligan, R.; Cole, J.; Brito, N.; Laing, G.D.; Mertz, B.L.; Manock, S.; Maudlin, J.; Quist, B.; Holland, G.; Nelson, S.; et al. Crotaline snake bite in the Ecuadorian Amazon: Randomised double blind comparative trial of three South American polyspecific antivenoms. Br. Med. J. 2004, 329, 1129–1133. [Google Scholar] [CrossRef] [Green Version]
- Meyer, W.P.; Habib, A.G.; Onayade, A.A.; Yakubu, A.; Smith, D.C.; Nasidi, A.; Daudu, I.J.; Warrell, D.A.; Theakston, R.D.G. First clinical experiences with a new ovine fab Echis ocellatus snake bite antivenom in Nigeria: Randomized comparative trial with Institute Pasteur Serum (Ipser) Africa antivenom. Am. J. Trop. Med. Hyg. 1997, 56, 291–300. [Google Scholar] [CrossRef]
- Ho, M.A.Y.; Silamut, K.; White, N.J.; Karbwang, J.; Looareesuwan, S.; Phillips, R.E.; Warrell, D.A. Pharmacokinetics of Three Commercial Antwenoms in patients envenomed by the Malayan pit viper, Calloselasma rhodostoma, in Thailand. Am. J. Trop. Med. Hyg. 1990, 42, 260–266. [Google Scholar] [CrossRef]
- Qureshi, H.; Alam, S.E.; Mustufa, M.A.; Nomani, N.K.; Asnani, J.L.; Sharif, M. Comparative cost and efficacy trial of Pakistani versus Indian anti snake venom. J. Pak. Med. Assoc. 2013, 63, 1129–1132. [Google Scholar]
- Abubakar, I.S.; Abubakar, S.B.; Habib, A.G.; Nasidi, A.; Durfa, N.; Yusuf, P.O.; Larnyang, S.; Garnvwa, J.; Sokomba, E.; Salako, L.; et al. Randomised controlled double-blind non-inferiority trial of two antivenoms for saw-scaled or carpet viper (Echis ocellatus) envenoming in Nigeria. PLoS Negl. Trop. Dis. 2010, 4, e767. [Google Scholar] [CrossRef]
- Visser, L.E.; Kyei-Faried, S.; Belcher, D.W.; Geelhoed, D.W.; van Leeuwen, J.S.; van Roosmalen, J. Failure of a new antivenom to treat Echis ocellatus snake bite in rural Ghana: The importance of quality surveillance. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 445–450. [Google Scholar] [CrossRef]
- Kularatne, S.A.M. Epidemiology and clinical picture of the russell’s viper (Daboia russelii russelii) bite in Anuradhapura, Sri Lanka: A prospective study of 336 patients. Southeast Asian J. Trop. Med. Public Health 2003, 34, 855–862. [Google Scholar]
- Tchaou, B.A.; de Tové, K.M.S.; de Tové, Y.S.S.; Djomga, A.T.C.; Aguemon, A.R.; Massougbodji, A.; Chippaux, J.P. Contribution of ultrasonography to the diagnosis of internal bleeding in snakebite envenomation. J. Venom. Anim. Toxins Incl. Trop. Dis. 2016, 22, 13. [Google Scholar] [CrossRef] [Green Version]
- Bhat, S.; Mukhopadhyay, P.; Raychaudhury, A.; Chowdhury, S.; Ghosh, S. Predictors of hypopituitarism due to vasculotoxic snake bite with acute kidney injury. Pituitary 2019, 22, 594–600. [Google Scholar] [CrossRef]
- Kalantri, S.; Singh, A.; Joshi, R.; Malamba, S.; Ho, C.; Ezoua, J.; Morgan, M. Clinical predictors of in-hospital mortality in patients with snake bite: A retrospective study from a rural hospital in central India. Trop. Med. Int. Health 2006, 11, 22–30. [Google Scholar] [CrossRef]
- Joseph, I.M.; Kuriakose, C.K.; Dev, A.V.; Philip, G.A. Low dose versus high dose anti-snake venom therapy in the treatment of haematotoxic snake bite in South India. Trop. Dr. 2017, 47, 300–304. [Google Scholar] [CrossRef]
- Kularatne, K.; Budagoda, S.; Maduwage, K.; Naser, K.; Kumarasiri, R.; Kularatne, S. Parallels between Russell’s viper (Daboia russelii) and hump-nosed viper (Hypnale species) bites in the central hills of Sri Lanka amidst the heavy burden of unidentified snake bites. Asian Pac. J. Trop. Med. 2011, 4, 564–567. [Google Scholar] [CrossRef] [Green Version]
- Santoro, M.L.; Sano-Martins, I.S.; Fan, H.W.; Cardoso, J.L.C.; Theakston, R.D.G.; Warrell, D.A. Haematological evaluation of patients bitten by the jararaca, Bothrops jararaca, in Brazil. Toxicon 2008, 51, 1440–1448. [Google Scholar] [CrossRef]
- Bawaskar, H.S.; Bawaskar, P.H. Diagnosis of envenomation by Russell’s and Echis carinatus viper: A clinical study at rural Maharashtra state of India. J. Fam. Med. Prim. Care 2019, 8, 1386–1390. [Google Scholar] [CrossRef]
- Vikrant, S.; Jaryal, A.; Parashar, A. Clinicopathological spectrum of snake bite-induced acute kidney injury from India. World J. Nephrol. 2017, 6, 150–161. [Google Scholar] [CrossRef]
- Gopalakrishnan, M.; Vinod, K.V.; Dutta, T.K.; Shaha, K.K.; Sridhar, M.G.; Saurabh, S. Exploring circulatory shock and mortality in viper envenomation: A prospective observational study from India. QJM 2018, 111, 799–806. [Google Scholar] [CrossRef] [Green Version]
- Iliyasu, G.; Tiamiyu, A.B.; Daiyab, F.M.; Tambuwal, S.H.; Habib, Z.G.; Habib, A.G. Effect of distance and delay in access to care on outcome of snakebite in rural north-eastern Nigeria. Rural Remote Health 2015, 15, 3496. [Google Scholar]
- Gawarammana, I.; Mendis, S.; Jeganathan, K. Acute ischemic strokes due to bites by Daboia russelii in Sri Lanka—First authenticated case series. Toxicon 2009, 54, 421–428. [Google Scholar] [CrossRef]
- Kochar, D.K.; Tanwar, P.D.; Norris, R.L.; Sabir, M.; Nayak, K.C.; Agrawal, T.D.; Purohit, V.P.; Kochar, A.; Simpson, I.D. Rediscovery of Severe Saw-Scaled Viper (Echis sochureki) Envenoming in the Thar Desert Region of Rajasthan, India. Wilderness Environ. Med. 2007, 18, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, D.; Mitiku, T.; Tamir, Y.; Azazh, A. Snake bite: Case series of patients presented to Gondar University Hospital, North West Ethiopia. Ethiop. Med. J. 2016, 54, 83–86. [Google Scholar]
- Pothukuchi, V.K.; Kumar, A.; Teja, C.; Verma, A. A Rare Case Series of Ischemic Stroke Following Russell’s Viper Snake Bite in India. Acta Med. Indones. 2017, 49, 343–346. [Google Scholar]
- Isbister, G.K.; Jayamanne, S.; Mohamed, F.; Dawson, A.H.; Maduwage, K.; Gawarammana, I.; Lalloo, D.G.; de Silva, H.J.; Scorgie, F.E.; Lincz, L.F.; et al. A randomized controlled trial of fresh frozen plasma for coagulopathy in Russell’s viper (Daboia russelii) envenoming. J. Thromb. Haemost. 2017, 15, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Paul, V.; Pudoor, A.; Earali, J.; John, B.; Anil Kumar, C.S.; Anthony, T. Trial of low molecular weight heparin in the treatment of viper bites. J. Assoc. Physicians India 2007, 55, 338–342. [Google Scholar]
- de Oliveria Pardal, P.P.; Souza, S.M.; da Costa Monteiro, M.R.; Fan, H.W.; Cardoso, J.L.C.; França, F.O.S.; Tomy, S.C.; Sano-Martins, I.S.; de Sousa-e-Silva, M.C.C.; Colombini, M.; et al. Clinical trial of two antivenoms for the treatment of Bothrops and Lachesis bites in the north eastern Amazon region of Brazil. Trans. R. Soc. Trop. Med. Hyg. 2004, 98, 28–42. [Google Scholar] [CrossRef]
- Cardoso, J.L.C.; Fan, H.W.; Franca, F.O.S.; Jorge, M.T.; Leite, R.P.; Nishioka, S.A.; Avila, A.; Sano-Martins, I.S.; Tomy, S.C.; Santoro, M.L.; et al. Randomized comparative trial of three antivenoms in the treatment of envenoming by lance-headed vipers (Bothrops jararaca) in São Paulo, Brazil. QJM Int. J. Med. 1993, 86, 315–325. [Google Scholar] [CrossRef]
- Jorge, M.T.; Cardoso, J.L.C.; Castro, S.C.B.; Ribeiro, L.; França, F.O.S.; de Almeida, M.E.S.; Kamiguti, A.S.; Santo-Martins, I.S.; Santoro, M.L.; Mancau, J.E.C.; et al. A randomized ‘blinded’ comparison of two doses of antivenom in the treatment of Bothrops envenoming in São Paulo, Brazil. Trans. R. Soc. Trop. Med. Hyg. 1995, 89, 111–114. [Google Scholar] [CrossRef]
- Otero-Patiño, R.; Cardoso, J.L.C.; Higashi, H.G.; Nunez, V.; Diaz, A.; Toro, M.F.; Garcia, M.E.; Sierra, A.; Garcia, L.F.; Moreno, A.M.; et al. A randomized, blinded, comparative trial of one pepsin-digested and two whole IgG antivenoms for Bothrops snake bites in Uraba, Colombia. Am. J. Trop. Med. Hyg. 1998, 58, 183–189. [Google Scholar] [CrossRef]
- Otero, R.; León, G.; Gutiérrez, J.M.; Rojas, G.; Toro, M.F.; Barona, J.; Rodríguez, V.; Díaz, A.; Núñez, V.; Quintana, J.C.; et al. Efficacy and safety of two whole IgG polyvalent antivenoms, refined by caprylic acid fractionation with or without β-propiolactone, in the treatment of Bothrops asper bites in Colombia. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 1173–1182. [Google Scholar] [CrossRef]
- Warrell, D.A.; Warrell, M.J.; Edgar, W.; Prentice, C.R.M.; Mathison, J.; Mathison, J. Comparison of Pasteur and Behringwerke antivenoms in envenoming by the carpet viper (Echis carinatus). Br. Med. J. 1980, 280, 607–609. [Google Scholar] [CrossRef] [Green Version]
- Warrell, D.A.; Davidson, N.M.; Omerod, L.D.; Pope, H.M.; Watkins, B.J.; Greenwood, B.M.; Ried, H.A. Bites by the Saw-scaled or Carpet Viper (Echis carinatus): Trial of Two Specific Antivenoms. Br. Med. J. 1974, 4, 437–440. [Google Scholar] [CrossRef] [Green Version]
- Milani Júnior, R.; Jorge, M.T.; de Campos, F.P.; Martins, F.P.; Bousso, A.; Cardoso, J.L.; Ribeiro, L.A.; Fan, H.W.; França, F.O.; Sano-Martins, I.S.; et al. Snake bites by the jararacuçu (Bothrops jararacussu): Clinicopathological studies of 29 proven cases in São Paulo State, Brazil. QJM 1997, 90, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Chugh, K.S.; Pal, Y.; Chakravarty, R.N.; Datta, B.N.; Mehta, R.; Sakhuja, V.; Mandal, A.K.; Sommers, S.C. Acute renal failure following poisonous snakebite. Am. J. Kidney Dis. 1984, 4, 30–38. [Google Scholar] [CrossRef]
- Franca, F.O.S.; Barbaro, K.C.; Fan, H.W.; Cardoso, J.L.C.; Sano-Martins, I.S.; Tomy, S.C.; Lopes, M.H.; Warell, D.A.; Theakston, R.D.G. Envenoming by Bothrops jararaca in Brazil: Association between venom antigenaemia and severity at admission to hospital. Trans. R. Soc. Trop. Med. Hyg. 2003, 97, 312–317. [Google Scholar] [CrossRef]
- Bucaretchi, F.; Herrera, S.R.; Hyslop, S.; Baracat, E.C.; Vieira, R.J. Snakebites by Crotalus durissus ssp in children in Campinas, São Paulo, Brazil. Rev. Inst. Med. Trop. Sao Paulo 2002, 44, 133–138. [Google Scholar] [CrossRef]
- Harshavardhana, H.S.; Pasha, I.; Prabhu, N.C.S.; Amira, R.P. Snake bite induced coagulopathy: A study of clinical profile and predictors of poor outcome. Int. J. Sci. Study 2014, 2, 2–5. [Google Scholar]
- Brown, S.G.; Caruso, N.; Borland, M.L.; McCoubrie, D.L.; Celenza, A.; Isbister, G.K. Clotting factor replacement and recovery from snake venom-induced consumptive coagulopathy. Intensive Care Med. 2009, 35, 1532–1538. [Google Scholar] [CrossRef]
- Monzavi, S.M.; Afshari, R.; Khoshdel, A.R.; Mahmoudi, M.; Salarian, A.A.; Samieimanesh, F.; Shirmast, E.; Mihandoust, A. Analysis of the effectiveness of Iranian snake antivenom on Viper venom induced effects including analysis of immunologic biomarkers in the Echis carinatus sochureki envenomed victims. Toxicon 2019, 158, 38–46. [Google Scholar] [CrossRef]
- Suchithra, N.; Pappachan, J.M.; Sujathan, P. Snakebite envenoming in Kerala, South India: Clinical profile and factors involved in adverse outcomes. Emerg. Med. J. 2008, 25, 200–204. [Google Scholar] [CrossRef]
- Kumar, K.G.S.; Narayanan, S.; Udayabhaskaran, V.; Thulaseedharan, N.K. Clinical and epidemiologic profile and predictors of outcome of poisonous snake bites—An analysis of 1500 cases from a tertiary care center in Malabar, North Kerala, India. Int. J. Gen. Med. 2018, 11, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Aye, K.P.; Thanachartwet, V.; Soe, C.; Desakorn, V.; Chamnanchanunt, S.; Sahassananda, D.; Supaporn, T.; Sitprija, V. Predictive Factors for Death After Snake Envenomation in Myanmar. Wilderness Environ. Med. 2018, 29, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Padhiyar, R.; Chavan, S.; Dhampalwar, S.; Trivedi, T.; Moulick, N. Snake Bite Envenomation in a Tertiary Care Centre. J. Assoc. Phys. India 2018, 66, 55–59. [Google Scholar]
- Patil, S.; Paranjape, A.; Patil, N.R.; Patil, H.S.; Surve, R.A.; Desai, M.B. Rural Set Up Experience of Viper Bite Treatment with Special Reference to FFP in Venom Induced Consumption Coagulopathy. J. Assoc. Phys. India 2019, 67, 26–28. [Google Scholar]
- Johnson, C.; Rimmer, J.; Mount, G.; Gurney, I.; Nicol, E.D. Challenges of managing snakebite envenomation in a deployed setting. J. R. Army Med. Corps 2013, 159, 307–311. [Google Scholar] [CrossRef]
- Kularatne, S.A.M.; Budagoda, B.D.S.S.; Gawarammana, I.B.; Kularatne, W.K.S. Epidemiology, clinical profile and management issues of cobra (Naja naja) bites in Sri Lanka: First authenticated case series. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 924–930. [Google Scholar] [CrossRef]
- Silva, A.; Samarasinghe, R.; Pilapitiya, S.; Dahanayake, N.; Siribaddana, S. Viper bites complicate chronic agrochemical nephropathy in rural Sri Lanka. J. Venom. Anim. Toxins Incl. Trop. Dis. 2014, 20, 33. [Google Scholar] [CrossRef]
- Othong, R.; Keeratipornruedee, P. A study regarding follow-ups after green pit viper bites treated according to the practice guideline by the Ministry of Public Health of Thailand. Clin. Toxicol. 2020, 58, 893–899. [Google Scholar] [CrossRef]
- Chotenimitkhun, R.; Rojnuckarin, P. Systemic antivenom and skin necrosis after green pit viper bites. Clin. Toxicol. 2008, 46, 122–125. [Google Scholar] [CrossRef]
- Rojnuckarin, P.; Mahasandana, S.; Intragumthornchai, T.; Sutcharitchan, P.; Swasdikul, D. Prognostic factors of green pit viper bites. Am. J. Trop. Med. Hyg. 1998, 58, 22–25. [Google Scholar] [CrossRef] [Green Version]
- Wongtongkam, N.; Wilde, H.; Sitthi-Amorn, C.; Ratanabanangkoon, K. A study of 225 Malayan pit viper bites in Thailand. Mil. Med. 2005, 170, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Pongpit, J.; Limpawittayakul, P.; Juntiang, J.; Akkawat, B.; Rojnuckarin, P. The role of prothrombin time (PT) in evaluating green pit viper (Cryptelytrops sp.) bitten patients. Trans. R. Soc. Trop. Med. Hyg. 2012, 106, 415–418. [Google Scholar] [CrossRef]
- Nuchprayoon, I.; Pongpan, C.; Sripaiboonkij, N. The role of prednisolone in reducing limb oedema in children bitten by green pit vipers: A randomized, controlled trial. Ann. Trop. Med. Parasitol. 2008, 102, 643–649. [Google Scholar] [CrossRef]
- Rojnuckarin, P.; Chanthawibun, W.; Noiphrom, J.; Pakmanee, N.; Intragumtornchai, T. A randomized, double-blind, placebo-controlled trial of antivenom for local effects of green pit viper bites. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 879–884. [Google Scholar] [CrossRef]
- Rojnuckarin, P.; Banjongkit, S.; Chantawibun, W.; Akkawat, B.; Juntiang, J.; Noiphrom, J.; Pakmanee, N.; Intragumtornchai, T. Green pit viper (Trimeresurus albolabris and T. macrops)venom antigenaemia and kinetics in humans. Trop. Dr. 2007, 37, 207–210. [Google Scholar] [CrossRef]
- Abraham, S.V.; Rafi, A.M.; Krishnan, S.V.; Palatty, B.U.; Innah, S.J.; Johny, J.; Varghese, S. Utility of Clot Waveform Analysis in Russell’s Viper Bite Victims with Hematotoxicity. J. Emerg. Trauma Shock 2018, 11, 211–216. [Google Scholar] [CrossRef]
- Park, E.J.; Choi, S.; Kim, H.H.; Jung, Y.S. Novel Treatment Strategy for Patients with Venom-Induced Consumptive Coagulopathy from a Pit Viper Bite. Toxins 2020, 12, 295. [Google Scholar] [CrossRef]
- Maduwage, K.; O’Leary, M.A.; Isbister, G.K. Diagnosis of snake envenomation using a simple phospholipase A 2 assay. Sci. Rep. 2014, 4, 4827. [Google Scholar] [CrossRef]
- Allen, G.E.; Brown, S.G.A.; Buckley, N.A.; O’Leary, M.A.; Page, C.B.; Currie, B.J.; White, J.; Isbister, G.K. Clinical Effects and Antivenom Dosing in Brown Snake (Pseudonaja spp.) Envenoming—Australian Snakebite Project (ASP-14). PLoS ONE 2012, 7, e53188. [Google Scholar] [CrossRef] [Green Version]
- Cherian, A.M.; Girish, T.S.; Jagannati, M.; Lakshmi, M. High or low—A trial of low dose anti snake venom in the treatment of poisonous snakebites. J. Assoc. Physicians India 2013, 61, 387–396. [Google Scholar]
- Paul, V.; Prahlad, K.A.; Earali, J.; Francis, S.; Lewis, F. Trial of heparin in viper bites. J. Assoc. Phys. India 2003, 51, 163–166. [Google Scholar]
- Myo-Khina, T.N.; Nyan-Tun-Ooc, Y.H. Prognostic indicators in patients with snakebite: Analysis of two-year data from a township hospital in central Myanmar. WHO South-East Asia J. Public Health 2012, 1, 144–150. [Google Scholar] [CrossRef]
- Kulkarni, M.L.; Anees, S. Snake venom poisoning: Experience with 633 cases. Indian Pediatr. 1994, 31, 1239–1243. [Google Scholar]
- Whitehall, J.S.; Yarlini; Arunthathy; Varan; Kaanthan; Isaivanan; Vanprasath. Snake bites in north east Sri Lanka. Rural Remote Health 2007, 7, 751. [Google Scholar] [CrossRef] [PubMed]
- Narvencar, K. Correlation between timing of ASV administration and complications in snake bites. J. Assoc. Physicians India 2006, 54, 717–719. [Google Scholar] [PubMed]
- Silva, A.; Sarathchandra, C.; Senanayake, H.; Weerawansa, P.; Siribaddana, S.; Isbister, G.K. Capillary blood clotting time in detecting venom-induced consumption coagulopathy (VICC). Clin. Toxicol. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
Lee–White Clotting Method | Modified Lee White Clotting Time | WBCT20 Method | Venous Clotting Time | |
---|---|---|---|---|
Type of blood | venous | venous | venous | venous |
Volume of blood | 1 cc of blood | 1 cc of blood | ‘a few milliliters’ | 1 cc of blood in each tube |
Vessel | Glass tube | Glass tube | Glass tube or bottle | Glass tube |
Specifications of the vessel | 8 mm in diameter | |||
Method | Blood is taken from an arm vein using a small all glass syringe which has been sterilized with a normal salt solution, preferably with a platinum needle Syringe is then emptied into a tube which has also been rinsed with a normal salt solution Every 30 s tube is rotated endwise | Venous blood is placed in a glass tube and the tube is left undisturbed for 5 min. Then the tube is gently tipped every following minute | Few milliliters of venous blood is placed in a new, clean, dry, glass vessel and left undisturbed for twenty minutes at room temperature Vessel is tipped exactly at 20 min | 1 cc of blood is placed in each tube in sequence at room temperature First tube is labeled as 3, next one as 2 and the last one as 1 A timer is started when blood touches the first tube Three tubes are kept still for five minutes After 5 min, tube 1 is tilted first about 45 degrees every 30 s to 1 min until a clot is seen, then tube 2 the same way and next tube 3 |
Result reading point | Point at which blood no longer flows from its position when inverted | 20 min | Time from starting the timer until blood in tube 3 turns to a clot |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wedasingha, S.; Isbister, G.; Silva, A. Bedside Coagulation Tests in Diagnosing Venom-Induced Consumption Coagulopathy in Snakebite. Toxins 2020, 12, 583. https://doi.org/10.3390/toxins12090583
Wedasingha S, Isbister G, Silva A. Bedside Coagulation Tests in Diagnosing Venom-Induced Consumption Coagulopathy in Snakebite. Toxins. 2020; 12(9):583. https://doi.org/10.3390/toxins12090583
Chicago/Turabian StyleWedasingha, Supun, Geoffrey Isbister, and Anjana Silva. 2020. "Bedside Coagulation Tests in Diagnosing Venom-Induced Consumption Coagulopathy in Snakebite" Toxins 12, no. 9: 583. https://doi.org/10.3390/toxins12090583
APA StyleWedasingha, S., Isbister, G., & Silva, A. (2020). Bedside Coagulation Tests in Diagnosing Venom-Induced Consumption Coagulopathy in Snakebite. Toxins, 12(9), 583. https://doi.org/10.3390/toxins12090583