Levels of Alternaria Toxins in Selected Food Commodities Including Green Coffee
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analytical Method Development
2.1.1. LC-MS/MS Conditions
2.1.2. Sample Preparation
2.2. Method Performance Characteristics
2.3. Occurrence of Alternaria Toxins in Various Food Commodities
2.4. Occurrence of Alternaria Toxins in Green Coffee
2.5. Risk Assessment: Alternaria Toxins in Green Coffee
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Preparation of Standard Solutions
4.3. Sample Collection
4.4. Sample Extraction Methodology
4.5. LC-MS/MS Methodology
4.6. Identification Criteria
4.7. Quantification
4.8. Method Validation
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tirado, M.C.; Clarke, R.; Jaykus, L.A.; McQuatters-Gollop, A.; Frank, J.M. Climate change and food safety: A review. Food Res. Int. 2010, 43, 1745–1765. [Google Scholar] [CrossRef]
- Crudo, F.; Varga, E.; Aichinger, G.; Galaverna, G.; Marko, D.; Dall’Asta, C.; Dellafiora, L. Co-Occurrence and Combinatory Effects of Alternaria Mycotoxins and Other Xenobiotics of Food Origin: Current Scenario and Future Perspectives. Toxins 2019, 11, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. Scientific Opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA J. 2011, 9, 2407. [Google Scholar] [CrossRef]
- EFSA. Dietary exposure assessment to Alternaria toxins in the European population. EFSA J. 2016, 14, e04654. [Google Scholar] [CrossRef]
- Zwickel, T.; Klaffke, H.; Richards, K.; Rychlik, M. Development of a high performance liquid chromatography tandem mass spectrometry based analysis for the simultaneous quantification of various Alternaria toxins in wine, vegetable juices and fruit juices. J. Chromatogr. A 2016, 1455, 74–85. [Google Scholar] [CrossRef]
- Kroes, R.; Renwick, A.G.; Cheeseman, M.; Kleiner, J.; Mangelsdorf, I.; Piersma, A.; Schilter, B.; Schlatter, J.; van Schothorst, F.; Vos, J.G.; et al. Structure-based thresholds of toxicological concern (TTC): Guidance for application to substances present at low levels in the diet. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2004, 42, 65–83. [Google Scholar] [CrossRef]
- EFSA. Call for Data on Alternaria Toxins in Food and Feed. Available online: http://www.efsa.europa.eu/de/data/call/160216a (accessed on 11 August 2020).
- De Berardis, S.; De Paola, E.L.; Montevecchi, G.; Garbini, D.; Masino, F.; Antonelli, A.; Melucci, D. Determination of four Alternaria alternata mycotoxins by QuEChERS approach coupled with liquid chromatography-tandem mass spectrometry in tomato-based and fruit-based products. Food Res. Int. 2018, 106, 677–685. [Google Scholar] [CrossRef]
- Guo, W.; Fan, K.; Nie, D.; Meng, J.; Huang, Q.; Yang, J.; Shen, Y.; Tangni, E.K.; Zhao, Z.; Wu, Y.; et al. Development of a QuEChERS-Based UHPLC-MS/MS Method for Simultaneous Determination of Six Alternaria Toxins in Grapes. Toxins 2019, 11, 87. [Google Scholar] [CrossRef] [Green Version]
- Monbaliu, S.; Wu, A.; Zhang, D.; Van Peteghem, C.; De Saeger, S. Multimycotoxin UPLC−MS/MS for Tea, Herbal Infusions and the Derived Drinkable Products. J. Agric. Food Chem. 2010, 58, 12664–12671. [Google Scholar] [CrossRef]
- López, P.; Venema, D.; de Rijk, T.; de Kok, A.; Scholten, J.M.; Mol, H.G.J.; de Nijs, M. Occurrence of Alternaria toxins in food products in The Netherlands. Food Control. 2016, 60, 196–204. [Google Scholar] [CrossRef]
- Xing, L.; Zou, L.; Luo, R.; Wang, Y. Determination of five Alternaria toxins in wolfberry using modified QuEChERS and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 2020, 311, 125975. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, H.; Zhang, J.; Shao, B. Determination of Alternaria toxins in drinking water by ultra-performance liquid chromatography tandem mass spectrometry. Environ. Sci. Pollut. Res. 2019, 26, 22485–22493. [Google Scholar] [CrossRef] [PubMed]
- Gotthardt, M.; Asam, S.; Gunkel, K.; Moghaddam, A.F.; Baumann, E.; Kietz, R.; Rychlik, M. Quantitation of Six Alternaria Toxins in Infant Foods Applying Stable Isotope Labeled Standards. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambacorta, L.; El Darra, N.; Fakhoury, R.; Logrieco, A.F.; Solfrizzo, M. Incidence and levels of Alternaria mycotoxins in spices and herbs produced worldwide and commercialized in Lebanon. Food Control. 2019, 106, 106724. [Google Scholar] [CrossRef]
- Bessaire, T.; Perrin, I.; Tarres, A.; Bebius, A.; Reding, F.; Theurillat, V. Mycotoxins in green coffee: Occurrence and risk assessment. Food Control. 2019, 96, 59–67. [Google Scholar] [CrossRef]
- Verstraete, F. Analytical Challenges for an Effective EU Policy on Contaminants in Food and Feed to Ensure a High Level of Animal and Human Health Protection. In Proceedings of the Recent Advances in Food Analysis 2019, Prague, Czech Republic, 5–8 November 2019. [Google Scholar]
- Food Chemistry Institute of the Association of the German Confectionery Industry. Alternaria Toxins: Occurrence, Toxicity, Analytical Methods, Maximum Levels. Available online: https://www.lci-koeln.de/deutsch/veroeffentlichungen/lci-focus/alternaria-toxins-occurrence-toxicity-analytical-methods-maximum-levels (accessed on 11 August 2020).
- European Union. Mandate for Standardization Addressed to CEN for Methods of Analysis for Mycotoxins in Food. Available online: https://law.resource.org/pub/eu/mandates/m520.pdf (accessed on 11 August 2020).
- Tölgyesi, Á.; Kozma, L.; Sharma, K.V. Determination of Alternaria Toxins in Sunflower Oil by Liquid Chromatography Isotope Dilution Tandem Mass Spectrometry. Molecules 2020, 25, 1685. [Google Scholar] [CrossRef] [Green Version]
- PrEN 17521. Foodstuffs—Determination of Alternaria Toxins in Tomato, Wheat and Sunflower Seeds by SPE Clean-Up and HPLC-MS/MS; European Committee for Standardization: Brussels, Belgium, 2020. [Google Scholar]
- Puntscher, H.; Kütt, M.L.; Skrinjar, P.; Mikula, H.; Podlech, J.; Fröhlich, J.; Marko, D.; Warth, B. Tracking emerging mycotoxins in food: Development of an LC-MS/MS method for free and modified Alternaria toxins. Anal. Bioanal. Chem. 2018, 410, 4481–4494. [Google Scholar] [CrossRef] [Green Version]
- Puntscher, H.; Cobankovic, I.; Marko, D.; Warth, B. Quantitation of free and modified Alternaria mycotoxins in European food products by LC-MS/MS. Food Control. 2019, 102, 157–165. [Google Scholar] [CrossRef]
- Noser, J.; Schneider, P.; Rother, M.; Schmutz, H. Determination of six Alternaria toxins with UPLC-MS/MS and their occurrence in tomatoes and tomato products from the Swiss market. Mycotoxin Res. 2011, 27, 265–271. [Google Scholar] [CrossRef]
- Walravens, J.; Mikula, H.; Rychlik, M.; Asam, S.; Devos, T.; Njumbe Ediage, E.; Diana Di Mavungu, J.; Jacxsens, L.; Van Landschoot, A.; Vanhaecke, L.; et al. Validated UPLC-MS/MS Methods to Quantitate Free and Conjugated Alternaria Toxins in Commercially Available Tomato Products and Fruit and Vegetable Juices in Belgium. J. Agric. Food Chem. 2016, 64, 5101–5109. [Google Scholar] [CrossRef] [Green Version]
- Desmarchelier, A.; Tessiot, S.; Bessaire, T.; Racault, L.; Fiorese, E.; Urbani, A.; Chan, W.C.; Cheng, P.; Mottier, P. Combining the quick, easy, cheap, effective, rugged and safe approach and clean-up by immunoaffinity column for the analysis of 15 mycotoxins by isotope dilution liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2014, 1337, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bessaire, T.; Mujahid, C.; Mottier, P.; Desmarchelier, A. Multiple Mycotoxins Determination in Food by LC-MS/MS: An International Collaborative Study. Toxins 2019, 11, 658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desmarchelier, A.; Fan, K.; Minh Tien, M.; Savoy, M.C.; Tarres, A.; Fuger, D.; Goyon, A.; Bessaire, T.; Mottier, P. Determination of 105 antibiotic, anti-inflammatory, antiparasitic agents and tranquilizers by LC-MS/MS based on an acidic QuEChERS-like extraction. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35, 646–660. [Google Scholar] [CrossRef]
- Hickert, S.; Krug, I.; Cramer, B.; Humpf, H.-U. Detection and Quantitative Analysis of the Non-cytotoxic allo-Tenuazonic Acid in Tomato Products by Stable Isotope Dilution HPLC-MS/MS. J. Agric. Food Chem. 2015, 63, 10879–10884. [Google Scholar] [CrossRef]
- Prelle, A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. A new method for detection of five alternaria toxins in food matrices based on LC–APCI-MS. Food Chem. 2013, 140, 161–167. [Google Scholar] [CrossRef]
- Baslé, Q.; Mujahid, C.; Bessaire, T. Application of a streamlined LC-MS/MS methodology for the determination of atropine and scopolamine in cereals from Asian and African countries. Food Addit. Contam. Part A 2020, 1–11. [Google Scholar] [CrossRef]
- SANTE/12682/2019. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed; European Commission Directorate General for Health and Food Safety: Brussels, Belgium, 2019. [Google Scholar]
- Sanzani, S.M.; Gallone, T.; Garganese, F.; Caruso, A.G.; Amenduni, M.; Ippolito, A. Contamination of fresh and dried tomato by Alternaria toxins in southern Italy. Food Addit. Contam. Part A 2019, 36, 789–799. [Google Scholar] [CrossRef]
- Wei, D.; Wang, Y.; Jiang, D.; Feng, X.; Li, J.; Wang, M. Survey of Alternaria Toxins and Other Mycotoxins in Dried Fruits in China. Toxins 2017, 9, 200. [Google Scholar] [CrossRef] [Green Version]
- Schrader, T.J.; Cherry, W.; Soper, K.; Langlois, I. Further examination of the effects of nitrosylation on Alternaria alternata mycotoxin mutagenicity in vitro. Mutat. Res./Genet. Toxicol. Environ. Mutagenesis 2006, 606, 61–71. [Google Scholar] [CrossRef]
- Schuchardt, S.; Ziemann, C.; Hansen, T. Combined toxicokinetic and in vivo genotoxicity study on Alternaria toxins. EFSA Supporting Publ. 2014, 11, 679E. [Google Scholar] [CrossRef]
- Blanc, M.; Pittet, A.; Muñoz-Box, R.; Viani, R. Behavior of Ochratoxin A during Green Coffee Roasting and Soluble Coffee Manufacture. J. Agric. Food Chem. 1998, 46, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016, 32, 179–205. [Google Scholar] [CrossRef] [PubMed]
- Soliman, K.M. Incidence, Level, and Behavior of Aflatoxins during Coffee Bean Roasting and Decaffeination. J. Agric. Food Chem. 2002, 50, 7477–7481. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on the risk for public and animal health related to the presence of sterigmatocystin in food and feed. EFSA J. 2013, 11, 3254. [Google Scholar] [CrossRef]
- ISO 5725-2. Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 2: Basic Method for the Determination of Repeatability and Reproducibility of a Standard Measurement Method; International Organization for Standardization: Geneva, Switzerland, 1994. [Google Scholar]
- Barwick, V.J.; Ellison, S.L.R. The evaluation of measurement uncertainty from method validation studies. Accredit. Qual. Assur. 2000, 5, 47–53. [Google Scholar] [CrossRef]
Food Commodity | Analyte | LOQ (µg/kg) |
---|---|---|
Cereals and cereal-based products, green coffee | ALT, AOH, AME, TEN | 0.5 |
TeA | 2.5 | |
Tree nuts, dried fruits, cocoa, vegetable oil, tomato-based products | ALT, AOH, AME, TEN | 2 |
TeA | 10 | |
Spices, herbs, tea | ALT, AOH, AME, TEN | 10 |
TeA | 50 |
Sample | Lab | Analyte | Fortification Level (µg/kg) | RSDr (%) | RSDIR (%) | Recovery (%) | Measurement Uncertainty (%) |
---|---|---|---|---|---|---|---|
Cereal-based products | Lab 1 | ALT | 0.5 | 3.4 | 5.8 | 104 | 12 |
25 | 0.3 | 4.4 | 95 | 11 | |||
AOH | 0.5 | 4.3 | 12 | 110 | 25 | ||
25 | 1.7 | 3.9 | 97 | 8.4 | |||
AME | 0.5 | 1.2 | 4.5 | 104 | 9.6 | ||
25 | 0.6 | 9.1 | 91 | 22 | |||
TEN | 0.5 | 5.0 | 3.7 | 100 | 7.4 | ||
25 | 1.0 | 1.4 | 97 | 4.2 | |||
TeA | 2.5 | 5.7 | 6.8 | 109 | 16 | ||
125 | 0.4 | 1.1 | 105 | 5.2 | |||
Lab 2 | ALT | 0.5 | 5.5 | 13.0 | 96 | 28 | |
AOH | 0.5 | 3.3 | 12.7 | 96 | 27 | ||
AME | 0.5 | 6.7 | 14.7 | 95 | 31 | ||
TEN | 0.5 | 5.3 | 6.6 | 100 | 14 | ||
TeA | 2.5 | 2.5 | 5.3 | 101 | 11 | ||
Tomato-based products | Lab 1 | ALT | 2 | 5.1 | 6.1 | 102 | 13 |
50 | 2.8 | 7.8 | 94 | 17 | |||
AOH | 2 | 7.2 | 9.5 | 102 | 20 | ||
50 | 2.8 | 2.9 | 94 | 8.7 | |||
AME | 2 | 1.9 | 3.5 | 101 | 7.6 | ||
50 | 0.6 | 6.3 | 89 | 18 | |||
TEN | 2 | 1.2 | 2.0 | 99 | 4.2 | ||
50 | 0.8 | 0.8 | 96 | 4.0 | |||
TeA | 10 | 5.2 | 8.4 | 102 | 18 | ||
250 | 0.3 | 1.4 | 97 | 4.5 | |||
Lab 2 | ALT | 2 | 4.8 | 6.4 | 98 | 14 | |
AOH | 2 | 4.5 | 6.5 | 99 | 14 | ||
AME | 2 | 1.2 | 3.1 | 109 | 10 | ||
TEN | 2 | 2.1 | 1.9 | 110 | 10 | ||
TeA | 10 | 7.7 | 12 | 106 | 26 | ||
Spices | Lab 1 | ALT | 10 | 6.6 | 6.0 | 100 | 12 |
250 | 2.3 | 4.4 | 90 | 15 | |||
AOH | 10 | 7.9 | 12 | 101 | 25 | ||
250 | 4.6 | 7.8 | 93 | 18 | |||
AME | 10 | 3.2 | 15 | 106 | 32 | ||
250 | 0.9 | 3.5 | 94 | 10 | |||
TEN | 10 | 2.4 | 2.4 | 110 | 10 | ||
250 | 1.1 | 1.1 | 97 | 3.5 | |||
TeA | 1250 | 26 | 29 | 91 | 58 | ||
Lab 2 | ALT | 10 | 7.2 | 16 | 98 | 34 | |
AOH | 10 | 3.9 | 5.6 | 98 | 12 | ||
AME | 10 | 1.4 | 4.4 | 113 | 15 | ||
TEN | 10 | 3.1 | 4.0 | 115 | 16 | ||
TeA | 50 | 19 | 19 | 100 | 40 | ||
Sunflower oil | Lab 1 | ALT | 2 | 4.7 | 3.9 | 102 | 8.3 |
AOH | 2 | 3.2 | 3.3 | 102 | 7.0 | ||
AME | 2 | 1.5 | 2.8 | 102 | 5.9 | ||
TEN | 2 | 1.4 | 2.1 | 98 | 4.4 | ||
TeA | 10 | 1.7 | 2.4 | 103 | 5.8 | ||
Lab 2 | ALT | 2 | 2.4 | 4.9 | 98 | 10 | |
AOH | 2 | 3.3 | 4.7 | 95 | 11 | ||
AME | 2 | 1.1 | 9.9 | 92 | 21 | ||
TEN | 2 | 2.4 | 2.5 | 100 | 5.1 | ||
TeA | 10 | 1.0 | 1.4 | 97 | 4.2 | ||
Dried fruits | Lab 1 | ALT | 2 | 4.1 | 11 | 92 | 23 |
AOH | 2 | 12 | 11 | 106 | 23 | ||
AME | 2 | 2.2 | 3.5 | 94 | 9.9 | ||
TEN | 2 | 1.7 | 3.0 | 103 | 6.4 | ||
TeA | 10 | 2.9 | 3.2 | 95 | 8.7 | ||
Tree nuts | Lab 1 | ALT | 2 | 6.3 | 8.4 | 106 | 18 |
AOH | 2 | 7.8 | 7.3 | 95 | 16 | ||
AME | 2 | 2.0 | 7.4 | 101 | 16 | ||
TEN | 2 | 1.6 | 1.9 | 103 | 4.7 | ||
TeA | 10 | 5.7 | 5.3 | 112 | 15 |
Foods (Nb of Samples) | ALT | AOH | AME | TEN | TeA |
---|---|---|---|---|---|
Cereals (31) | <0.5 (0) | <0.5–11.8 (8) | <0.5–3.4 (6) | <0.5–31.2 (9) | <2.5–766 (25) |
Cereal-based products (15) | <0.5 (0) | <0.5–7.4 (4) | <0.5–2.7 (3) | <0.5–6.9 (10) | <2.5–628 (11) |
Cocoa (5) | <2 (0) | <2 (0) | <2 (0) | <2 (0) | <10 (0) |
Fruits, dried and juice (9) | <2–17.2 (1) | <2–80.2 (3) | <2–47.8 (2) | <2–13.4 (1) | <10–685 (7) |
Herbs (11) | <10 (0) | <10–111 (6) | <10–25.6 (4) | <10–113 (5) | <50–748 (10) |
Nuts (13) | <2 (0) | <2–6.4 (4) | <2–3.5 (2) | <2 (0) | <10–62.0 (4) |
Sunflower oil (4) | <2 (0) | <2 (0) | <2–2.4 (1) | <2–3.9 (1) | <10 (0) |
Spices (21) | <10 (0) | <10–153 (13) | <10–73.6 (10) | <10–73.4 (13) | <50–20,478 (19) |
Tea (15) | <10 (0) | <10 (0) | <10 (0) | <10 (0) | <50 (0) |
Vegetables incl. tomato (14) | <2 (0) | <2–65.3 (7) | <2–7.9 (1) | <2–3.1 (2) | <10–1096 (11) |
Producing Countries (Nb of Samples) | ALT | AOH | AME | TEN | TeA |
---|---|---|---|---|---|
Brazil (5) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5–10.0 (1) |
Cameroon (2) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
China (2) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
Columbia (4) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
Costa Rica (2) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
Ethiopia (4) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
Guatemala (2) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
Honduras (4) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
India (2) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
Indonesia (4) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
Ivory Coast (6) | <0.5 (0) | <0.5–1.2 (1) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
Kenya (2) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
Mexico (3) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
Nicaragua (2) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
Papua New Guinea (4) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
Peru (4) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5–13.2 (1) |
Philippines (2) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
Rwanda (2) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
Thailand (2) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
Uganda (4) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <0.5 (0) | <2.5 (0) |
Vietnam (16) | <0.5 (0) | <0.5–1.7 (3) | <0.5–1.3 (1) | <0.5–0.5 (1) | <2.5 (0) |
Toxin | LOQ (µg/kg) | Number of Samples | Max Level (µg/kg) | Max Exposure 2 (ng/kg BW/d) | TTC (ng/kg BW/d) | % TTC 2 | ||
---|---|---|---|---|---|---|---|---|
ND 1 | <LOQ | >LOQ | ||||||
ALT | 0.5 | 78 (100%) | 0 | 0 | - | - | 1500 | - |
AOH | 0.5 | 73 (94%) | 1 (1%) | 4 (5%) | 2.75 | 1.3 | 2.5 | 52 |
AME | 0.5 | 71 (91%) | 6 (8%) | 1 (1%) | 1.29 | 0.6 | 2.5 | 24 |
TEN | 0.5 | 77 (99%) | 0 | 1 (1%) | 0.52 | 0.2 | 1500 | 0.01 |
TeA | 2.5 | 75 (96%) | 1 (1%) | 2 (3%) | 13.2 | 6.2 | 1500 | 0.4 |
AOH + AME | - | - | - | - | 2.98 | 1.4 | 2.5 | 56 |
Analyte | RT (min) | DP (V) | Quantification (m/z) | Confirmation (m/z) | Peak Area Ratio |
---|---|---|---|---|---|
ALT | 3.45 | −60 | 291.0 > 214.1 (−30) | 291.0 > 186.1 (−35) | 0.66 |
ALT-IS | 3.45 | −45 | 297.0 > 217.2 (−30) | 297.0 > 189.0 (−38) | 0.77 |
AOH | 3.80 | −60 | 257.0 > 215.1 (−35) | 257.0 > 212.0 (−40) | 0.60 |
AOH-IS | 3.80 | −65 | 260.0 > 218.0 (−35) | 260.0 > 215.1 (−40) | 0.94 |
AME | 4.95 | −60 | 271.0 > 256.0 (−30) | 271.0 > 228.0 (−40) | 0.27 |
AME-IS | 4.95 | −60 | 274.0 > 259.0 (−30) | 274.0 > 231.1 (−40) | 0.30 |
TEN | 4.25 | −40 | 413.2 > 141.0 (−25) | 413.2 > 271.0 (−22) | 0.69 |
TEN-IS | 4.25 | −45 | 416.2 > 141.0 (−27) | 416.2 > 274.1 (−23) | 0.67 |
TeA | 2.05 | −40 | 196.1 > 139.1 (−25) | 196.1 > 112.1 (−30) | 0.74 |
TeA-IS | 2.05 | −45 | 198.1 > 141.0 (−25) | 198.1 > 114.0 (−32) | 0.79 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mujahid, C.; Savoy, M.-C.; Baslé, Q.; Woo, P.M.; Ee, E.C.Y.; Mottier, P.; Bessaire, T. Levels of Alternaria Toxins in Selected Food Commodities Including Green Coffee. Toxins 2020, 12, 595. https://doi.org/10.3390/toxins12090595
Mujahid C, Savoy M-C, Baslé Q, Woo PM, Ee ECY, Mottier P, Bessaire T. Levels of Alternaria Toxins in Selected Food Commodities Including Green Coffee. Toxins. 2020; 12(9):595. https://doi.org/10.3390/toxins12090595
Chicago/Turabian StyleMujahid, Claudia, Marie-Claude Savoy, Quentin Baslé, Pei Mun Woo, Edith Chin Yean Ee, Pascal Mottier, and Thomas Bessaire. 2020. "Levels of Alternaria Toxins in Selected Food Commodities Including Green Coffee" Toxins 12, no. 9: 595. https://doi.org/10.3390/toxins12090595
APA StyleMujahid, C., Savoy, M. -C., Baslé, Q., Woo, P. M., Ee, E. C. Y., Mottier, P., & Bessaire, T. (2020). Levels of Alternaria Toxins in Selected Food Commodities Including Green Coffee. Toxins, 12(9), 595. https://doi.org/10.3390/toxins12090595