Making 3D-Cry Toxin Mutants: Much More Than a Tool of Understanding Toxins Mechanism of Action
Abstract
:1. Introduction
2. “In Vitro Evolution” of 3D-Cry Toxins: An Historical Perspective
2.1. Evolution by Chemical Mutagenesis and Homologue Scanning Mutagenesis, the First Molecular Techniques Used for Cry-Toxins “In Vitro Evolution”
2.2. Evolution by Domain Swapping
2.3. Evolution by Site-Directed Mutagenesis
2.4. Evolution by Rational Design
2.5. Evolution by Random Mutagenesis
2.6. Evolution by Mixing Cry Genes: DNA Shuffling, In Vitro Recombination, and StEP (Staggered Extension Process)
2.7. Evolution by Phage Display
2.8. Evolution by PACE (Phage-Assisted Continuous Evolution)
3. Concluding Remarks
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Dammak, M.; Jaoua, S.; Tounsi, S. Construction of a Bacillus thuringiensis genetically-engineered strain harbouring the secreted Cry1Ia delta-endotoxin in its crystal. Biotechnol. Lett. 2011, 33, 2367–2372. [Google Scholar] [CrossRef]
- Hannay, C. Crystalline inclusions in aerobic sporeforming bacteria. Nature 1953, 172, 1004. [Google Scholar] [CrossRef]
- Angus, A. Bacterial toxin paralysing silkworm larvae. Nature 1954, 4403, 545. [Google Scholar] [CrossRef]
- Ishiwata, S. On a type of severe flacherie (sotto disease). Dainihon Sanshi Kaiho 1901, 114, 1–5. [Google Scholar]
- Bacterial Pesticidal Protein Resource Center. Available online: https://www.bpprc.org (accessed on 15 July 2020).
- Crickmore, N.; Berry, C.; Panneerselvam, S.; Mishra, R.; Connor, T.R.; Bonning, B.C. A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. J. Invertebr. Pathol. 2020, 107438. [Google Scholar] [CrossRef]
- Crickmore, N.; Zeigler, D.R.; Feitelson, J.; Schnepf, E.; Van Rie, J.; Lereclus, D.; Baum, J.; Dean, D.H. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 807–813. [Google Scholar] [CrossRef] [Green Version]
- Palma, L.; Muñoz, D.; Berry, C.; Murillo, J.; Caballero, P. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins 2014, 6, 3296–3325. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.; Yuan, Y.; Wu, Y.; Wu, D.; Gong, P.; Gao, M. Crystal structure of Bacillus thuringiensis Cry7Ca1 toxin active against Locusta migratoria manilensis. Protein Sci. 2019, 28, 609–619. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Carroll, J.; Ellar, D. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 1991, 353, 815–821. [Google Scholar] [CrossRef]
- Grochulski, P.; Masson, L.; Borisova, S.; Pusztai-Carey, M.; Schwartz, J.-L.; Brousseau, R.; Cygler, M. Bacillus thuringiensis CrylA(a) Insecticidal toxin: Crystal structure and channel formation. J. Mol. Biol. 1995, 254, 447–464. [Google Scholar] [CrossRef]
- Galitsky, N.; Cody, V.; Wojtczak, A.; Ghosh, D.; Luft, J.R.; Pangborn, W.; English, L. Biological crystallography structure of the insecticidal bacterial δ-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Cryst. 2001, 57, 1101–1109. [Google Scholar] [CrossRef] [Green Version]
- Derbyshire, D.; Ellar, D.; Li, J. Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Crystallogr. D Biol. Crystallogr. 2001, 57, 1938–1944. [Google Scholar] [CrossRef] [Green Version]
- Morse, R.J.; Yamamoto, T.; Stroud, R.M. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 2001, 9, 409–417. [Google Scholar] [CrossRef]
- Boonserm, P.; Davis, P.; Ellar, D.J.; Li, J. Crystal Structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J. Mol. Biol. 2005, 348, 363–382. [Google Scholar] [CrossRef]
- Boonserm, P.; Mo, M.; Angsuthanasombat, C.; Lescar, J. Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. J. Bacteriol. 2006, 188, 3391–3401. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Ye, S.; Liu, Y.; Wei, L.; Xue, J.; Wu, H.; Song, F.; Zhang, J.; Wu, X.; Huang, D.; et al. Crystal structure of Bacillus thuringiensis Cry8Ea1: An insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. J. Struct. Biol. 2009, 168, 259–266. [Google Scholar] [CrossRef]
- Hui, F.; Scheib, U.; Hu, Y.; Sommer, R.J.; Aroian, R.V.; Ghosh, P. Structure and glycolipid binding properties of the nematicidal protein Cry5B. Biochemistry 2012, 51, 9911–9921. [Google Scholar] [CrossRef] [Green Version]
- Evdokimov, A.G.; Moshiri, F.; Sturman, E.J.; Rydel, T.J.; Zheng, M.; Seale, J.W.; Franklin, S. Structure of the full-length insecticidal protein Cry1Ac reveals intriguing details of toxin packaging into in vivo formed crystals. Protein Sci. 2014, 23, 1491–1497. [Google Scholar] [CrossRef] [Green Version]
- Pardo-López, L.; Soberón, M.; Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 2013, 37, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Zghal, R.Z.; Elleuch, J.; Ben Ali, M.; Darriet, F.; Rebaï, A.; Chandre, F.; Jaoua, S.; Tounsi, S. Towards novel Cry toxins with enhanced toxicity/broader: A new chimeric Cry4Ba/Cry1Ac toxin. Appl. Microbiol. Biotechnol. 2017, 101, 113–122. [Google Scholar] [CrossRef]
- Melo, A.L.D.A.; Soccol, V.T.; Soccol, C.R. Bacillus thuringiensis: Mechanism of action, resistance, and new applications: A review. Crit. Rev. Biotechnol. 2016, 36, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Lucena, W.A.; Pelegrini, P.B.; Martins-de-Sa, D.; Fonseca, F.C.A.; Gomes, J.E.; de Macedo, L.L.P.; da Silva, M.C.M.; Sampaio, R.; Grossi-de-Sa, M.F. Molecular approaches to improve the insecticidal activity of Bacillus thuringiensis Cry toxins. Toxins 2014, 6, 2393–2423. [Google Scholar] [CrossRef] [PubMed]
- Coates, B.S. Bacillus thuringiensis toxin resistance mechanisms among Lepidoptera: Progress on genomic approaches to uncover causal mutations in the European corn borer, Ostrinia nubilalis. Curr. Opin. Insect Sci. 2016, 15, 70–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, B.; Bezuidenhout, C.; Van den Berg, J. An overview of mechanisms of Cry toxin resistance in Lepidopteran insects. J. Econ. Entomol. 2017, 110, 362–377. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.; Gómez, I.; Porta, H.; García-Gómez, B.I.; Rodriguez-Almazan, C.; Pardo, L.; Soberón, M. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb. Biotechnol. 2013, 6, 17–26. [Google Scholar] [CrossRef]
- Deist, B.R.; Rausch, M.A.; Fernandez-Luna, M.T.; Adang, M.J.; Bonning, B.C. Bt toxin modification for enhanced efficacy. Toxins 2014, 6, 3005–3027. [Google Scholar] [CrossRef] [Green Version]
- Pardo-López, L.; Muñoz-Garay, C.; Porta, H.; Rodríguez-Almazán, C.; Soberón, M.; Bravo, A. Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. Peptides 2009, 30, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Khasdan, V.; Sapojnik, M.; Zaritsky, A.; Horowitz, A.R.; Boussiba, S.; Rippa, M.; Manasherob, R.; Ben-Dov, E. Larvicidal activities against agricultural pests of transgenic Escherichia coli expressing combinations of four genes from Bacillus thuringiensis. Arch. Microbiol. 2007, 188, 643–653. [Google Scholar] [CrossRef]
- Elleuch, J.; Jaoua, S.; Ginibre, C.; Chandre, F.; Tounsi, S.; Zghal, R.Z. Toxin stability improvement and toxicity increase against dipteran and lepidopteran larvae of Bacillus thuringiensis crystal protein Cry2Aa. Pest Manag. Sci. 2016, 72, 2240–2246. [Google Scholar] [CrossRef]
- Hu, S.B.; Liu, P.; Ding, X.Z.; Yan, L.; Sun, Y.J.; Zhang, Y.M.; Li, W.P.; Xia, L.Q. Efficient constitutive expression of chitinase in the mother cell of Bacillus thuringiensis and its potential to enhance the toxicity of Cry1Ac protoxin. Appl. Microbiol. Biotechnol. 2009, 82, 1157–1167. [Google Scholar] [CrossRef]
- Leetachewa, S.; Khomkhum, N.; Sakdee, S.; Wang, P.; Moonsom, S. Enhancement of insect susceptibility and larvicidal efficacy of Cry4Ba toxin by calcofluor. Parasites Vectors 2018, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Xu, Z.; Li, L.; Shao, E.; Chen, S.; Huang, T.; Chen, Z.; Rao, W.; Huang, T.; Zhang, L.; et al. Adsorption of Insecticidal Crystal Protein Cry11Aa onto Nano-Mg(OH)2: Effects on bioactivity and anti-ultraviolet ability. J. Agric. Food Chem. 2017, 65, 9428–9434. [Google Scholar] [CrossRef] [PubMed]
- Pérez, C.; Fernández, L.E.; Sun, J.; Folch, J.L.; Gill, S.S.; Soberón, M.; Bravo, A. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc. Natl. Acad. Sci. USA 2005, 102, 18303–18308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantón, P.E.; Reyes, E.Z.; De Escudero, I.R.; Bravo, A.; Soberón, M. Binding of Bacillus thuringiensis subsp. israelensis Cry4Ba to Cyt1Aa has an important role in synergism. Peptides 2011, 32, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Park, H.W.; Pino, B.C.; Kozervanich-Chong, S.; Hafkenscheid, E.A.; Oliverio, R.M.; Federici, B.A.; Bideshi, D.K. Cyt1Aa from Bacillus thuringiensis subsp. israelensis enhances mosquitocidal activity of B. thuringiensis subsp. kurstaki HD-1 against Aedes aegypti but not Culex quinquefasciatus. J. Microbiol. Biotechnol. 2013, 23, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Elleuch, J.; Zghal, R.Z.; Jemaà, M.; Azzouz, H.; Tounsi, S.; Jaoua, S. New Bacillus thuringiensis toxin combinations for biological control of lepidopteran larvae. Int. J. Biol. Macromol. 2014, 65, 148–154. [Google Scholar] [CrossRef]
- Yang, J.; Quan, Y.; Sivaprasath, P.; Shabbir, M.Z.; Wang, Z.; Ferré, J.; He, K. Insecticidal activity and synergistic combinations of ten different Bt toxins against Mythimna separata (Walker). Toxins 2018, 10, 454. [Google Scholar] [CrossRef] [Green Version]
- Wirth, M.C.; Jiannino, J.A.; Federici, B.A.; Walton, W.E. Synergy between toxins of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus. J. Med. Entomol. 2004, 41, 935–941. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Chen, L.; Huang, Q.; Zheng, J.; Zhou, W.; Peng, D.; Ruan, L.; Sun, M. Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor. Appl. Environ. Microbiol. 2013, 79, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, R.; Shimizu, Y.; Howlader, M.T.H.; Namba, M.; Iwamoto, A.; Sakai, H.; Hayakawa, T. Potency of insect-specific scorpion toxins on mosquito control using Bacillus thuringiensis Cry4Aa. J. Biosci. Bioeng. 2014, 117, 680–683. [Google Scholar] [CrossRef]
- García-Gómez, B.I.; Cano, S.N.; Zagal, E.E.; Dantán-Gonzalez, E.; Bravo, A.; Soberón, M. Insect Hsp90 chaperone assists Bacillus thuringiensis Cry toxicity by enhancing protoxin binding to the receptor and by protecting protoxin from gut protease degradation. mBio 2019, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Menofy, W.; Osman, G.; Assaeedi, A.; Salama, M. A novel recombinant baculovirus overexpressing a Bacillus thuringiensis Cry1Ab toxin enhances insecticidal activity. Biol. Proced. Online 2014, 16, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Xia, L.; Long, X.; Ding, X.; Zhang, Y. Increase in insecticidal toxicity by fusion of the cry1Ac gene from Bacillus thuringiensis with the neurotoxin gene hwtx-I. Curr. Microbiol. 2009, 58, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Li, W.P.; Xia, L.Q.; Ding, X.Z.; Lv, Y.; Luo, Y.S.; Hu, S.B.; Yin, J.; Yan, F. Expression and characterization of a recombinant Cry1Ac crystal protein fused with an insect-specific neurotoxin ω-ACTX-Hv1a in Bacillus thuringiensis. Gene 2012, 498, 323–327. [Google Scholar] [CrossRef]
- Sun, Y.; Fu, Z.; He, X.; Yuan, C.; Ding, X.; Xia, L. Enhancement of Bacillus thuringiensis insecticidal activity by combining Cry1Ac and bi-functional toxin HWTX-XI from spider. J. Invertebr. Pathol. 2016, 135, 60–62. [Google Scholar] [CrossRef] [PubMed]
- Sellami, S.; Jemli, S.; Abdelmalek, N.; Cherif, M.; Abdelkefi-Mesrati, L.; Tounsi, S.; Jamoussi, K. A novel Vip3Aa16-Cry1Ac chimera toxin: Enhancement of toxicity against Ephestia kuehniella, structural study and molecular docking. Int. J. Biol. Macromol. 2018, 117, 752–761. [Google Scholar] [CrossRef]
- Hu, X.; Liu, Z.; Li, Y.; Ding, X.; Xia, L.; Hu, S. PirB-Cry2Aa hybrid protein exhibits enhanced insecticidal activity against Spodoptera exigua larvae. J. Invertebr. Pathol. 2014, 120, 40–42. [Google Scholar] [CrossRef]
- Tajne, S.; Sanam, R.; Gundla, R.; Gandhi, N.S.; Mancera, R.L.; Boddupally, D.; Vudem, D.R.; Khareedu, V.R. Molecular modeling of Bt Cry1Ac (DI-DII)-ASAL (Allium sativum lectin)-fusion protein and its interaction with aminopeptidase N (APN) receptor of Manduca sexta. J. Mol. Graph. Model. 2012, 33, 61–76. [Google Scholar] [CrossRef]
- Tajne, S.; Boddupally, D.; Sadumpati, V.; Vudem, D.R.; Khareedu, V.R. Synthetic fusion-protein containing domains of Bt Cry1Ac and Allium sativum lectin (ASAL) conferred enhanced insecticidal activity against major lepidopteran pests. J. Biotechnol. 2013, 171, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.H.; Zhao, S.T.; Ma, Y.; Hu, J.J.; Han, X.J.; Chen, J.; Lu, M.Z. Bacillus thuringiensis Cry3Aa fused to a cellulase-binding peptide shows increased toxicity against the longhorned beetle. Appl. Microbiol. Biotechnol. 2012, 93, 1249–1256. [Google Scholar] [CrossRef]
- Hou, J.; Cong, R.; Izumi-Willcoxon, M.; Ali, H.; Zheng, Y.; Bermudez, E.; McDonald, M.; Nelson, M.; Yamamoto, T. Engineering of Bacillus thuringiensis Cry proteins to enhance the activity against western corn rootworm. Toxins 2019, 11, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhao, D.; Yan, X.; Guo, W.; Bao, Y.; Wang, W.; Wang, X. Identification and characterization of Hyphantria cunea aminopeptidase N as a binding protein of Bacillus thuringiensis Cry1Ab35 toxin. Int. J. Mol. Sci. 2017, 18, 2575. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Abdullah, M.A.F.; Taylor, M.D.; Rahman, K.; Adang, M.J. Enhancement of Bacillus thuringiensis Cry3Aa and Cry3Bb toxicities to coleopteran larvae by a toxin-binding fragment of an insect cadherin. Appl. Environ. Microbiol. 2009, 75, 3086–3092. [Google Scholar] [CrossRef] [Green Version]
- Peng, D.; Xu, X.; Ruan, L.; Yu, Z.; Sun, M. Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis. Res. Microbiol. 2010, 161, 383–389. [Google Scholar] [CrossRef]
- Gao, Y.; Jurat-Fuentes, J.L.; Oppert, B.; Fabrick, J.A.; Liu, C.; Gao, J.; Lei, Z. Increased toxicity of Bacillus thuringiensis Cry3Aa against Crioceris quatuordecimpunctata, Phaedon brassicae and Colaphellus bowringi by a Tenebrio molitor cadherin fragment. Pest Manag. Sci. 2011, 67, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Rahman, K.; Abdullah, M.A.F.; Ambati, S.; Taylor, M.D.; Adang, M.J. Differential protection of Cry1Fa toxin against Spodoptera frugiperda larval gut proteases by cadherin orthologs correlates with increased synergism. Appl. Environ. Microbiol. 2012, 78, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Hua, G.; Taylor, M.D.; Adang, M.J. A coleopteran cadherin fragment synergizes toxicity of Bacillus thuringiensis toxins Cry3Aa, Cry3Bb, and Cry8Ca against lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). J. Invertebr. Pathol. 2014, 123, 1–5. [Google Scholar] [CrossRef]
- Park, Y.; Hua, G.; Ambati, S.; Taylor, M.; Adang, M.J. Binding and synergizing motif within coleopteran cadherin enhances Cry3Bb toxicity on the Colorado Potato Beetle and the lesser mealworm. Toxins 2019, 11, 386. [Google Scholar] [CrossRef] [Green Version]
- Schnepf, H.E.; Whiteley, H.R. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 1981, 78, 2893–2897. [Google Scholar] [CrossRef] [Green Version]
- Schnepf, H.E.; Wongs, H.C.; Whiteley5, H.R. The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence. J. Biol. Chem. 1985, 260, 6264–6272. [Google Scholar]
- Wong, S.; Wilcox, E.; Edwards, D.; Herrnstadt, C. Process for Altering the Host Range of Bacillus thuringiensis Toxins, and Novel Toxins Produced Thereby 1986. Pattent Application No. CA19860617139 14 October 1986. [Google Scholar]
- Smith, H.O.; Wilcox, K.W. A restriction enzyme from Hemophilus influenzae I. Purification and general properties. J. Mol. Biol. 1970, 51, 379–391. [Google Scholar] [CrossRef]
- Sanger, F.; Coulson, A. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 1975, 94, 441–448. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shortle, D.; Botstein, D. Single-stranded gaps as localized targets for in vitro mutagenesis. Basic Life Sci. 1982, 20, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.; Lerman, L.; Maniatis, T. A general method for saturation mutagenesis of cloned DNA fragments. Science 1985, 229, 242–247. [Google Scholar] [CrossRef]
- Jellis, C.; Bass And, D.; Beerman, N.; Dennis, C.; Farrell, K.; Piot, J.C.; Rusche, J.; Carson, H.; Witt, D. Molecular biology of Bacillus thuringiensis and potential benefits to agriculture. Isr. J. Entomol. 1989, 23, 189–199. [Google Scholar]
- Saiki, R.; Gelfand, D.; Stoffel, S.; Scharf, S.; Higuchi, R.; Horn, G.; Mullis, K.; Erlich, H. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988, 239, 487–491. [Google Scholar] [CrossRef]
- Ge, A.Z.; Shivarova, N.I.; Deant, D.H. Location of the Bombyx mori specificity domain on a Bacillus thuringiensis 6-endotoxin protein. Proc. Nat. Acad. Sci. USA 1989, 86, 4037–4041. [Google Scholar] [CrossRef] [Green Version]
- Höfte, H.; Whiteley, H. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 1989, 52, 242–255. [Google Scholar] [CrossRef]
- Schnepf, H.E.; Tomczak, K.; Ortega, J.P.; Whiteleys, H.R. Specificity-determining regions of a Lepidopteran-specific insecticidal protein produced by Bacillus thuringiensis. J. Biol. Chem. 1990, 265, 20923–20930. [Google Scholar]
- Widner, W.R.; Whiteley, H.R. Location of the Dipteran specificity region in a Lepidopteran-Dipteran crystal protein from Bacillus thuringiensis. J. Bacteriol. 1990, 172, 2826–2832. [Google Scholar] [CrossRef] [Green Version]
- Ge, A.Z.; Rivers, D.; Milne, R.; Dean, D.H. Functional domains of Bacillus thuringiensis insecticidal crystal proteins. J. Biol. Chem. 1991, 266, 17954–17958. [Google Scholar] [PubMed]
- Weber, H.; Weissmann, C. Formation of genes coding for hybrid proteins by recoinbination between related, cloned genes in Escherichia coli. Nucl. Acids Res. 1983, 11, 5661–5669. [Google Scholar] [CrossRef] [PubMed]
- Caramori, T.; Albertini, A.M.; Galizzi, A. In vivo generation of hybrids between two Bacillus thuringiensis insect-toxin-encoding genes. Gene 1991, 98, 37–44. [Google Scholar] [CrossRef]
- Bosch, D.; Schipper, B.; Van Der Kleij, H.; De Maagd, R.A.; Stiekema, W.J. Recombinant Bacillus thuringiensis crystal proteins with new properties: Possibilities for resistance management. Biotechnology 1994, 12, 915–918. [Google Scholar] [CrossRef] [PubMed]
- De Maagd, R.A.; Kwa, M.S.G.; Van Der Klei, H.; Yamamoto, T.; Schipper, B.; Vlak, J.M.; Stiekema, W.J.; Bosch, D. Domain III substitution in Bacillus thuringiensis delta-endotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl. Environ. Microbiol. 1996, 62, 1537–1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Maagd, R.A.; Weemen-Hendriks, M.; Stiekema, W.; Bosch, D. Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids. Appl. Environ. Microbiol. 2000, 66, 1559–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlova, R.; Weemen-Hendriks, M.; Naimov, S.; Ceron, J.; Dukiandjiev, S.; De Maagd, R.A. Bacillus thuringiensis δ-endotoxin Cry1Ac domain III enhances activity against Heliothis virescens in some, but not all Cry1-Cry1Ac hybrids. J. Invertebr. Pathol. 2005, 88, 169–172. [Google Scholar] [CrossRef]
- Sanchis, V.; Gohar, M.; Chaufaux, J.; Arantes, O.; Meier, A.; Agaisse, H.; Cayley, J.; Lereclus, D. Development and field performance of a broad-spectrum nonviable asporogenic recombinant strain of Bacillus thuringiensis with greater potency and UV resistance. Appl. Environ. Microbiol. 1999, 65, 4032–4039. [Google Scholar] [CrossRef] [Green Version]
- Naimov, S.; Weemen-Hendriks, M.; Dukiandjiev, S.; De Maagd, R.A. Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle. Appl. Environ. Microbiol. 2001, 67, 5328–5330. [Google Scholar] [CrossRef] [Green Version]
- Walters, F.S.; Defontes, C.M.; Hart, H.; Warren, G.W.; Chen, J.S. Lepidopteran-active variable-region sequence imparts coleopteran activity in eCry3.1Ab, an engineered Bacillus thuringiensis hybrid insecticidal protein. Appl. Environ. Microbiol. 2010, 76, 3082–3088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walters, F.S.; Stacy, C.M.; Mi, K.L.; Palekar, N.; Chen, J.S. An engineered chymotrypsin/cathepsin G site in domain I renders Bacillus thuringiensis Cry3A active against western corn rootworm larvae. Appl. Environ. Microbiol. 2008, 74, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Shah, J.V.; Yadav, R.; Ingle, S.S. Engineered Cry1Ac-Cry9Aa hybrid Bacillus thuringiensis delta-endotoxin with improved insecticidal activity against Helicoverpa armigera. Arch. Microbiol. 2017, 199, 1069–1075. [Google Scholar] [CrossRef]
- Dulau, L.; Cheyrou, A.; Aigle, M. Directed mutagenesis using PCR. Nucleic Acids Res. 1989, 17, 2873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Aronson, A.I. Localized mutagenesis defines regions of the Bacillus thuringiensis delta-endotoxin involved in toxicity and specificity. J. Biol. Chem. 1992, 267, 2311–2317. [Google Scholar] [PubMed]
- Padilla, C.; Pardo-López, L.; De La Riva, G.; Gómez, I.; Sánchez, J.; Hernandez, G.; Nuñez, M.E.; Carey, M.P.; Dean, D.H.; Alzate, O.; et al. Role of tryptophan residues in toxicity of Cry1Ab toxin from Bacillus thuringiensis. Appl. Environ. Microbiol. 2006, 72, 901–907. [Google Scholar] [CrossRef] [Green Version]
- Alzate, O.; Osorio, C.; Florez, A.M.; Dean, D.H. Participation of valine 171 in α-helix 5 of Bacillus thuringiensis Cry1Ab δ-endotoxin in translocation of toxin into Lymantria dispar midgut membranes. Appl. Environ. Microbiol. 2010, 76, 7878–7880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smedley, D.P.; Ellar, D.J. Mutagenesis of three surface-exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion. Microbiology 1996, 142, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.J.; Dean, D.H. Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryIIIA delta-endotoxin. J. Mol. Biol. 1996, 255, 628–640. [Google Scholar] [CrossRef]
- Rajamohan, F.; Alzate, O.; Cotrill, J.A.; Curtiss, A.; Dean, D.H. Protein engineering of Bacillus thuringiensis endotoxin: Mutations at domain II of CryIAb enhance receptor affinity and toxicity toward gypsy moth larvae. Proc. Natl. Acad. Sci. USA 1996, 93, 14338–14343. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.-J.; Koller, C.N.; Miller, D.L.; Bauer, L.S.; Dean, D.H. Enhanced toxicity of Bacillus thuringiensis Cry3A N-endotoxin in coleopterans by mutagenesis in a receptor binding loop. FEBS Lett. 2000, 473, 227–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcneil, B.C.; Dean, D.H. Bacillus thuringiensis Cry2Ab is active on Anopheles mosquitoes: Single D block exchanges reveal critical residues involved in activity. FEMS Microbiol. Lett. 2011, 325, 16–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholls, C.N.; Ahmad, W.; Ellar, D.J. Evidence for two different types of insecticidal P2 toxins with dual specificity in Bacillus thuringiensis subspecies. J. Bacteriol. 1989, 171, 5141–5147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Y.; Tang, Y.; Zhang, Y.; Xia, L.; Wang, F.; Ding, X.; Yi, S.; Li, W.; Yin, J. The role of β20-β21 loop structure in insecticidal activity of Cry1Ac toxin from Bacillus thuringiensis. Curr. Microbiol. 2011, 62, 665–670. [Google Scholar] [CrossRef]
- Gómez, I.; Ocelotl, J.; Sánchez, J.; Lima, C.; Martins, E.; Rosales-Juárez, A.; Aguilar-Medel, S.; Abad, A.; Dong, H.; Monnerat, R.; et al. Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa toxicity to Spodoptera frugiperda by domain III mutations indicates there are two limiting steps in toxicity as defined by receptor binding and protein stability. Appl. Environ. Microbiol. 2018, 84, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gómez, I.; Rodríguez-Chamorro, D.E.; Flores-Ramírez, G.; Grande, R.; Zúñiga, F.; Portugal, F.J.; Sánchez, J.; Pacheco, S.; Bravo, A.; Soberón, M. Spodoptera frugiperda (J. E. Smith) aminopeptidase N1 is a functional receptor of the Bacillus thuringiensis Cry1Ca toxin. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [Green Version]
- Xia, L.; Wang, F.; Ding, X.; Zhao, X.; Fu, Z.; Quan, M.; Yu, Z. The role of β18–β19 lobop structure in insecticidal activity of Cry1Ac toxin from Bacillus thuringiensis. Chin. Sci. Bull. 2008, 53, 3178–3184. [Google Scholar] [CrossRef] [Green Version]
- Xiang, W.F.; Qiu, X.L.; Zhi, D.X.; Min, Z.X.; Yuan, L.; Quan, Y.Z. N546 in β18-β19 loop is important for binding and toxicity of the Bacillus thuringiensis Cry1Ac toxin. J. Invertebr. Pathol. 2009, 101, 119–123. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Zhang, F.; Chai, L.; Ruan, L.; Peng, D.; Sun, M. Improvement of crystal solubility and increasing toxicity against Caenorhabditis elegans by asparagine substitution in block 3 of Bacillus thuringiensis crystal protein Cry5Ba. Appl. Environ. Microbiol. 2012, 78, 7197–7204. [Google Scholar] [CrossRef] [Green Version]
- Angsuthanasombat, C.; Crickmore, N.; Ellar, D.J. Effects on toxicity of eliminating a cleavage site in a predicted interhelical loop in Bacillus thuringiensis CrylVB 6-endotoxin. FEMS Microbiol. Lett. 1993, 111, 378–1097. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, M.A.F.; Alzate, O.; Mohammad, M.; McNall, R.J.; Adang, M.J.; Dean, D.H. Introduction of Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering. Appl. Environ. Microbiol. 2003, 69, 5343–5353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah, M.A.F.; Dean, D.H. Enhancement of Cry19Aa mosquitocidal activity against Aedes aegypti by mutations in the putative loop regions of domain II. Appl. Environ. Microbiol. 2004, 70, 3769–3771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.S.; Dean, D.H. Redesigning Bacillus thuringiensis Cry1Aa toxin into a mosquito toxin. Protein Eng. Des. Sel. 2006, 19, 107–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Liu, Y.; Liang, G.; Huang, Y.; Bravo, A.; Soberón, M.; Song, F.; Zhou, X.; Zhang, J. Insecticidal specificity of Cry1Ah to Helicoverpa armigera is determined by binding of APN1 via domain II loops 2 and 3. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [Green Version]
- Mandal, C.C.; Gayen, S.; Basu, A.; Ghosh, K.S.; Dasgupta, S.; Maiti, M.K.; Sen, S.K. Prediction-based protein engineering of domain I of Cry2A entomocidal toxin of Bacillus thuringiensis for the enhancement of toxicity against lepidopteran insects. Protein Eng. Des. Sel. 2007, 20, 599–606. [Google Scholar] [CrossRef]
- Smith, G.P.; Ellar, D.J. Mutagenesis of two surface-exposed loops of the Bacillus thuringiensis CrylC δ-endotoxin affects insecticidal specificity. Biochem. J. 1994, 302, 611–616. [Google Scholar] [CrossRef]
- Ner, S.S.; Goodin, D.B.; Smith, M. A simple and efficient procedure for generating random point mutations and for codon replacements using mixed oligodeoxynucleotides. DNA 1988, 7, 127–134. [Google Scholar] [CrossRef]
- Kumar, A.S.M.; Aronson, A.I. Analysis of mutations in the pore-forming region essential for insecticidal activity of a Bacillus thuringiensis delta-endotoxin. J. Bacteriol. 1999, 181, 6103–6107. [Google Scholar] [CrossRef] [Green Version]
- Leung, D.; Chen, E.; Goeddel, D. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1989, 1, 11–15. [Google Scholar]
- Van Dillewijn, P.; Vilchez, S.; Paz, J.A.; Ramos, J.L. Plant-dependent active biological containment system for recombinant rhizobacteria. Environ. Microbiol. 2004, 6. [Google Scholar] [CrossRef]
- Shu, C.; Liu, R.; Wang, R.; Zhang, J.; Feng, S.; Huang, D.; Song, F. Improving toxicity of Bacillus thuringiensis strain contains the cry8Ca gene specific to Anomala corpulenta larvae. Curr. Microbiol. 2007, 55, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Shan, S.; Zhang, Y.; Ding, X.; Hu, S.; Sun, Y.; Yu, Z.; Liu, S.; Zhu, Z.; Xia, L. A Cry1ac toxin variant generated by directed evolution has enhanced toxicity against lepidopteran insects. Curr. Microbiol. 2011, 62, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Stemmer, W. Rapid evolution of a protein in vitro by DNA shuffling. Nature 1994, 370, 389–390. [Google Scholar] [CrossRef] [PubMed]
- Stemmer, W.P.C. DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA. 1994, 91, 10747–10751. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.S.; Broadwell, A.H.; Grant, W.N.; Shoemaker, C.B. A strategy for shuffling numerous Bacillus thuringiensis crystal protein domains. J. Econ. Entomol. 2004, 97, 1805–1813. [Google Scholar] [CrossRef]
- Florez, A.M.; Suarez-Barrera, M.O.; Morales, G.M.; Rivera, K.V.; Orduz, S.; Ochoa, R.; Guerra, D.; Muskus, C. Toxic activity, molecular modeling and docking simulations of Bacillus thuringiensis Cry11 toxin variants obtained via DNA shuffling. Front. Microbiol. 2018, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.; Zhou, J.; Crickmore, N.; Li, X.; Song, F.; Liang, G.; He, K.; Huang, D.; Zhang, J. In vitro template-change PCR to create single crossover libraries: A case study with Bacillus thuringiensis Cry2A toxins. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Giver, L.; Shao, Z.; Affholter, J.A.; Arnold, F.H. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 1998, 16, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Buchholz, F.; Muyrers, J.P.P.; Stewart, A.F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 1998, 20, 123–128. [Google Scholar] [CrossRef]
- Zhang, Y.; Muyrers, J.; Testa, G.; Stewart, A. DNA cloning by homologous recombination in Escherichia coli. Nat. Biotechnol. 2000, 18, 1314–1317. [Google Scholar] [CrossRef]
- Smith, G. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228, 1315–1317. [Google Scholar] [CrossRef] [PubMed]
- De La Cruz, V.F.; Lal, A.A.; McCutchan, T.F. Immumogenicity and epitope mapping of foreign sequences via genetically engineered filamentous phage. J. Biol. Chem. 1988, 263, 4318–4322. [Google Scholar] [PubMed]
- Scott, J.; Smith, G. Searching for peptide ligands with an epitope library. Science 1990, 249, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Landon, L.; Deutscher, S. Combinatorial discovery of tumor targeting peptides using phage display. J. Cell. Biochem. 2003, 90, 509–517. [Google Scholar] [CrossRef]
- Luzar, J.; Štrukelj, B.; Lunder, M. Phage display peptide libraries in molecular allergology: From epitope mapping to mimotope-based immunotherapy. Eur. J. Allergy Clin. Immunol. 2016, 71, 1526–1532. [Google Scholar] [CrossRef] [Green Version]
- Marzari, R.; Edomi, P.; Bhatnagar, R.K.; Ahmad, S.; Selvapandiyan, A.; Bradbury, A. Phage display of Bacillus thuringiensis CryIA(a) insecticidal toxin. FEBS Lett. 1997, 411, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Kasman, L.M.; Lukowiak, A.A.; Garczynski, S.F.; Mcnall, R.J.; Youngman, P.; Adang, M.J. Phage display of a biologically active Bacillus thuringiensis toxin. Appl. Environ. Microbiol. 1998, 64, 2995–3003. [Google Scholar] [CrossRef] [Green Version]
- Vilchez, S.; Jacoby, J.; Ellar, D.J. Display of biologically functional insecticidal toxin on the surface of lambda phage. Appl. Environ. Microbiol. 2004, 70, 6587–6594. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, S.; Gómez, I.; Sato, R.; Bravo, A.; Soberón, M. Functional display of Bacillus thuringiensis Cry1Ac toxin on T7 phage. J. Invertebr. Pathol. 2006, 92, 45–49. [Google Scholar] [CrossRef]
- Pacheco, S.; Cantón, E.; Zuñiga-Navarrete, F.; Pecorari, F.; Bravo, A.; Soberón, M. Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes. AMB Express 2015, 5, 73. [Google Scholar] [CrossRef]
- Ishikawa, H.; Hoshino, Y.; Motoki, Y.; Kawahara, T.; Kitajima, M.; Kitami, M.; Watanabe, A.; Bravo, A.; Soberon, M.; Honda, A.; et al. A system for the directed evolution of the insecticidal protein from Bacillus thuringiensis. Mol. Biotechnol. 2007, 36, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Tanaka, S.; Otsuki, M.; Hoshino, Y.; Morimoto, C.; Kotani, T.; Harashima, Y.; Endo, H.; Yoshizawa, Y.; Sato, R. Cry1Aa binding to the cadherin receptor does not require conserved amino acid sequences in the domain II loops. Biosci. Rep. 2013, 33, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Endo, H.; Kobayashi, Y.; Hoshino, Y.; Tanaka, S.; Kikuta, S.; Tabunoki, H.; Sato, R. Affinity maturation of Cry1Aa toxin to the Bombyx mori cadherin-like receptor by directed evolution based on phage display and biopanning selections of domain II loop 2 mutant toxins. Microbiologyopen 2014, 3, 568–577. [Google Scholar] [CrossRef]
- Craveiro, K.I.C.; Gomes, J.E.; Silva, M.C.M.; Macedo, L.L.P.; Lucena, W.A.; Silva, M.S.; de Souza, J.D.A.; Oliveira, G.R.; Quezado de Magalhães, M.T.; Santiago, A.D.; et al. Variant Cry1Ia toxins generated by DNA shuffling are active against sugarcane giant borer. J. Biotechnol. 2010, 145, 215–221. [Google Scholar] [CrossRef]
- Oliveira, G.R.; Silva, M.C.; Lucena, W.A.; Nakasu, E.Y.; Firmino, A.A.; Beneventi, M.A.; Souza, D.S.; Gomes, J.E.; Da De Souza, J.; Rigden, D.J.; et al. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis). BMC Biotechnol. 2011, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pigott, C.R.; King, M.S.; Ellar, D.J. Investigating the properties of Bacillus thuringiensis Cry proteins with novel loop replacements created using combinatorial molecular biology. Appl. Environ. Microbiol. 2008, 74, 3497–3511. [Google Scholar] [CrossRef] [Green Version]
- Andris-Widhopf, J.; Rader, C.; Steinberger, P.; Barbas, C., 3rd; Fuller, R. Methods for the generation of chicken monoclonal antibody fragments by phage display. J. Immunol. Methods 2000, 242, 159–181. [Google Scholar] [CrossRef]
- Domínguez-Flores, T.; Romero-Bosquet, M.D.; Gantiva-Díaz, D.M.; Luque-Navas, M.J.; Berry, C.; Osuna, A.; Vílchez, S. Using phage display technology to obtain Crybodies active against non-target insects. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Shao, E.; Lin, L.; Chen, C.; Chen, H.; Zhuang, H.; Wu, S.; Sha, L.; Guan, X.; Huang, Z. Loop replacements with gut-binding peptides in Cry1Ab domain II enhanced toxicity against the brown planthopper, Nilaparvata lugens (Stål). Sci. Rep. 2016, 6, 20106. [Google Scholar] [CrossRef] [Green Version]
- Esvelt, K.M.; Carlson, J.C.; Liu, D.R. A system for the continuous directed evolution of biomolecules. Nature 2011, 472, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Leconte, A.M.; Dickinson, B.C.; Yang, D.D.; Chen, I.A.; Allen, B.; Liu, D.R. A population-based experimental model for protein evolution: Effects of mutation rate and selection stringency on evolutionary outcomes. Biochemistry 2013, 52, 1490–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickinson, B.C.; Packer, M.S.; Badran, A.H.; Liu, D.R. A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef]
- Hubbard, B.P.; Badran, A.H.; Zuris, J.A.; Guilinger, J.P.; Davis, K.M.; Chen, L.; Tsai, S.Q.; Sander, J.D.; Joung, J.K.; Liu, D.R. Continuous directed evolution of DNA-binding proteins to improve TALEN specificity. Nat. Methods 2015, 12, 939–942. [Google Scholar] [CrossRef] [Green Version]
- Badran, A.H.; Guzov, V.M.; Huai, Q.; Kemp, M.M.; Vishwanath, P.; Kain, W.; Nance, A.M.; Evdokimov, A.; Moshiri, F.; Turner, K.H.; et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 2016, 533, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Baxter, S.W.; Badenes-Pérez, F.R.; Morrison, A.; Vogel, H.; Crickmore, N.; Kain, W.; Wang, P.; Heckel, D.G.; Jiggins, C.D. Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics 2011, 189, 675–679. [Google Scholar] [CrossRef] [Green Version]
- Tiewsiri, K.; Wang, P. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper. Proc. Natl. Acad. Sci. USA 2011, 108, 14037–14042. [Google Scholar] [CrossRef] [Green Version]
Molecular Technique Used | Parental Toxin Evolved | Mutant Name | Evolution Result (Insect)/Evolution Level 1 | Activity Enhancement | Domain Evolved 2 | Reference |
---|---|---|---|---|---|---|
Random mutagenesis with mutagens | CryIA(b) | P26-3 P48a14 P48c5 P36a65 P95a76 P95a86 P98c1 P99c62 P107c22 107c25 114a30 | Enhanced toxicity (H. virescens)/SS | 3–5-fold | DI * | [68] |
Homolog-scanning mutagenesis | ICPC73 | OSU 4205 | Novel activity (B. mori)/SL | DII * | [70] | |
Homolog-scanning mutagenesis | CryIIB | Hybrid 513 | Novel activity (from Lepidoptera to a dual Lepidoptera and Diptera)/OL | DII * | [73] | |
Domain swapping (in vivo recombination) | CryIA(a) and CryIA(c) | pHy32 pHy45 pHy104 | Enhanced toxicity (T. ni and Heliothis sp)/SS Novel activity (S. littoralis)/SL | 2–37-fold 3–7-fold | DII * | [76] |
Homolog-scanning mutagenesis | CryIA(c) | Hybrid 4109 | Enhanced toxicity (H. virescens)/SS | 30-fold | DII * | [74] |
Site directed mutagenesis | CryIA(c) | H168R | Enhanced toxicity (M. sexta)/SS | 3–5-fold | DI | [87] |
Rational design (site directed mutagenesis) | Cry4B | R203A | Enhanced toxicity (Ae. aepypti)/SS | 2.8-fold | DI | [102] |
Domain swapping (in vivo recombination) | CryIE | G27 | Enhanced toxicity (S. exigua)/SS | >50-fold | DIII | [77] |
Domain swapping (cloning) | CryIA(b) | H04 | Enhanced toxicity (S. exigua)/SS | More than 60-fold | DIII | [78] |
Site directed mutagenesis (alanine scanning mutagenesis) | CryIIIA | Triple mutant: S484A, R485A, G486A | Enhanced toxicity (T. molitor)/SS | 2.4-fold | DII (Loop 3) | [91] |
Site directed mutagenesis | Cry1Ab | N372A N372G | Enhanced toxicity (L. dispar)/SS | 8.53-fold 9.61-fold | DII | [92] |
Site directed mutagenesis | Cry1Ab | DF-1: Triple mutant N372A, A282G, L283S | Enhanced toxicity (L. dispar)/SS | 36-fold | DII | [92] |
Domain Swapping (cloning) | Cry1C | Cry1C/Ab hybrid | Enhanced toxicity (S. littoralis, O. nubilalis, and P. xylostella)/SS | 3-, 4- and 35-fold respectively | DI-DVII | [81] |
Random mutagenesis | Cry1Ac1 | F134L | Enhanced toxicity (M. sexta and H. virescens)/SS | 3-fold | DI α-Helix 4) | [110] |
Domain swapping (in vivo recombination) | Cry1Ba | BBC13 BBC15 | Enhanced toxicity (M. sexta)/SS Enhanced toxicity (S. exigua) /SS Enhanced toxicity (M. sexta) /SS | 11.8-fold 8.3-fold 7.8-fold | DIII | [79] |
Domain swapping (in vivo recombination) | Cry1Fa | FFC1 | Enhanced toxicity (S. exigua) /SS | 5.5-fold | DIII | [79] |
Rational design (site directed mutagenesis) | Cry3A loop 1 | A1 | Enhanced toxicity (T. molitor) /SS | 11.4-fold | DII | [93] |
Rational design (site directed mutagenesis) | Cry3A loop 1 | A2 | Enhanced toxicity (T. molitor)/SS | 2.7-fold | DII | [93] |
Domain swapping (cloning) | Cry1Ia | 1Ia/1Ia/1Ba hybrid | Enhanced toxicity (L. decemlineata)/SS | 2.5-fold respect Cry1Ia and 7.5-fold respect Cry1Ba | DI, DII, DIII | [82] |
Cry1Ba | 1Ba/1Ia/1Ba hybrid | Enhanced toxicity (L. decemlineata)/SS | 17.9-fold | DI, DII, DIII | [82] | |
Rational design (Site directed mutagenesis) | Cry4Ba using Loop3 from Cry4Aa | 4BL3PAT | Evolution from Anopheles and Aedes to Culex/SL | 700- and 285-fold increase | DII | [103] |
Rational design (Site directed mutagenesis) | Cry19Aa using loop from Cry4Ba | 19AL1L2 | Evolution from Anopheles and Culex to Aedes/SL | 42,000-fold increase | DII | [104] |
Domain swapping (in vivo recombination) | Cry1Ca and Cry1Fb using DIII of Cry1Ac | RK15 RK12 | Enhanced toxicity (H. virescens)/SS Enhanced toxicity (H. virescens)/SS | 172-fold 69.6-fold | [80] | |
Rational design (Site directed mutagenesis) | Cry1Aa using loop 1 from Cry4Ba | 1AaMosq | Evolution from Lepidoptera to Diptera (mosquito)/OL | From no activity at 100 ug/mL to an LC50 45.73 of ug/mL | DII | [105] |
Site directed mutagenesis | Cry1Ab | W73F W210F W219F W455F | Enhanced toxicity (M. sexta)/SS Enhanced toxicity (M. sexta)/SS Enhanced toxicity (M. sexta)/SS Enhanced toxicity (M. sexta)/SS | 3.3-fold 1.5-fold 2.3-fold 1.4-fold | DI and DII | [88] |
Error prone PCR | Cry8Ca2 | M100 M102 | Enhanced toxicity (A. corpulenta)/SS | 5-fold 4.4-fold | DIII DII | [113] |
Rational design (Site-directed mutagenesis) | Cry2A | D42 | Enhanced toxicity (S. littoralis)/SS Enhanced toxicity (H. armigera)/SS Enhanced toxicity (A. ipsilon)/SS | 2.85-fold 1.99-fold 2.87-fold | DI | [107] |
Rational design (Site-directed mutagenesis) | Cry2A | D42/K63F/K64F | Enhanced toxicity (S. littoralis)/SS Enhanced toxicity (H. armigera)/SS Enhanced toxicity (A. ipsilon)/SS | 4.5-fold 2.9-fold 3.7-fold | DI | [107] |
Rational design (Site-directed mutagenesis) | Cry2A | D42/K63F/K64P | Enhanced toxicity (S. littoralis)/SS Enhanced toxicity (H. armigera)/SS Enhanced toxicity (A. ipsilon)/SS | 6.6-fold 4.1-fold 4.9-fold | DI | [107] |
Phage display | Cry1Aa1 | R5-51 | Enhanced toxicity (B. mori)/SS | 4-fold | DII (loop 2) | [133] |
Site directed mutagenesis | Cry3A | mCry3A | Novel activity (D. virgifera virgifera)/SL | From LC50 >> 100 μg/mL to 65 μg/ml | DI (Loop α-helix 3 and 4) | [84] |
Site directed mutagenesis | Cry1Ac | N546A | Enhanced toxicity (H. armigera)/SS | 1.8-fold | DIII | [99] |
Site directed mutagenesis | Cry1Ab | V171C L157C | Enhanced toxicity (L. dispar)/SS | 25-fold 4-fold | DI | [89] |
DNA Shuffling and Phage display | Cry1Ia12synth | Variant 1 Variant 2 Variant 3 Variant 4 | Novel toxicity (T. licus licus)/SL | LC50 not determined | DI, DII, DIII | [136] |
Domain swapping (Overlapping PCR) | mCry3A | eCry3.1Ab | Enhanced toxicity (D. virgifera virgifera)/SS | From low toxicity to 93% mortality at 7.5 μg/mL | DIII | [83] |
Error prone PCR and StEP shuffling | Cry1Ac5 | T524N | Enhanced toxicity (S. exigua)/SS | 1.5-fold | DIII | [114] |
DNA shuffling and phage display | Cry8Ka1 | Cry8Ka5 | Enhanced toxicity (A. grandis)/SS | 3-fold | DI, DII, DIII | [137] |
Site directed mutagenesis | Cry1Ac5 | S581A I585A | Enhanced toxicity (H. armigera)/SS Enhanced toxicity (H. armigera)/SS | 1.72-fold 1.89-fold | DIII | [45] |
Rational design (Site directed mutagenesis) | Cry2Ab | N309S F311I A334S | Enhanced toxicity (An. gambiae)/SS Enhanced toxicity (An. gambiae)/SS Enhanced toxicity (An. gambiae)/SS | 1.17-fold 3.17-fold 6.75-fold | DII | [94] |
Site directed mutagenesis | Cry5Ba | N586A | Enhanced toxicity (C. elegans)/SS | 9-fold | DIII | [101] |
In vitro template-change PCR (TC-PCR) | Cry2Ad | R24 R26 R27 R27 | Novel activity (O. furnacalis)/SL Novel activity (P. xylostella)/SL Novel activity (C. suppressalis)/SL Novel activity (H. armigera)/SL | From 0% to 26.7% mortality From 4.6 to 75.6% From 6.7 to 76.7% From 2.2 to 84.1% | DII | [119] |
Phage display | Cry1Ab | L1-P2S L2-P2S L3-P2S L1-P1Z L2-P1Z | Enhanced toxicity (N. lugens)/SS Enhanced toxicity (N. lugens)/SS Enhanced toxicity (N. lugens)/SS Enhanced toxicity (N. lugens)/SS Enhanced toxicity (N. lugens)/SS | 5-fold 8.9-fold 5-fold 1.4-fold 2.5-fold | DII | [141] |
PACE | Cry1Ac | A01s C04s C05s | Enhanced toxicity (T. ni /Cry1Ac resistant T. ni)/SS Enhanced toxicity (T. ni /Cry1Ac resistant T. ni)/SS Enhanced toxicity (T. ni /Cry1Ac resistant T. ni)/SS | 2.2/334-fold 1.1/27.8-fold 1.8/26.4-fold | Not available | [146] |
Rational design (reverse PCR) | Cry1Ai | Cry1Ai-h-loop2 Cry1Ai-h-loop2&3 | Activity redirected from B. mori to H. armigera/SL | >7.8-fold >58-fold | DII | [106] |
Domain swapping | Cry9Aa | Cry1Ac-Cry9Aa Cry1Ac-Cry9AaMod | Enhanced toxicity (H. armigera)/SS Enhanced toxicity (H. armigera)/SS | 4.9-fold 5.1-fold | DI, DII, DIII | [85] |
Gene fusion | Chimeric protein Cry4Ba and Cry1Ac | Cry(4Ba-1Ac) | Enhanced toxicity (Culex pipiens)/SS | >238-fold | DI-DVII | [21] |
Phage display | Cry1Aa13 | Cry1Aa13-A8 Cry1Aa13-A12 | Activity redirected from B. mori to Ae. aegypti/OL | From 0% activity to 90% activity at 20 μg/mL | DII | [140] |
Site directed mutagenesis (Alanine scanning) | Cry1Ab | S509A V513A N514A | Enhanced toxicity (S. frugiperda)/SS | 9.5-fold 12.7-fold 51-fold | DIII (β-16) | [97] |
Site directed mutagenesis (saturation mutagenesis) | Cry1Ab | N514F N514H N514K N514L N514Q N514S N514V | Enhanced toxicity (S. frugiperda)/SS | 44-fold 16-fold 7-fold 9-fold 26-fold 23-fold 9-fold | DIII (β-16) | [97] |
Site directed mutagenesis (Alanine scanning) | Cry1Fa | N504A | Enhanced toxicity (S. frugiperda)/SS | 11-fold | DIII (β-16) | [97] |
Site directed mutagenesis | Cry1Ca | V509A N510A | Enhanced toxicity (S. frugiperda)/SS Enhanced toxicity (S. frugiperda)/SS | 1.6-fold 1.5-fold | DIII (β-16) DIII (β-16) | [98] |
DNA shuffling | Cry11Aa, Cry11Ba, and Cry11Bb | Variant 8 | Enhanced toxicity (Ae. aegypti)/SS | 3.8-fold increase compared to Cry11Bb and 6.09-fold increase compared to Cry11Aa | DI, DII, DIII | [118] |
Rational design and DNA Shuffling | IP3-1: an artificial mutant derived from Cry3Aa1 | IP3-2 IP3-3 IP3-4 IP3-5 IP3-6 IP3-7 | Enhanced toxicity (D. virgifera virgifera)/SS | 11-fold 14.6-fold 15.6-fold 19-fold 18.4-fold 29.3-fold | DI, DII, DIII | [52] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vílchez, S. Making 3D-Cry Toxin Mutants: Much More Than a Tool of Understanding Toxins Mechanism of Action. Toxins 2020, 12, 600. https://doi.org/10.3390/toxins12090600
Vílchez S. Making 3D-Cry Toxin Mutants: Much More Than a Tool of Understanding Toxins Mechanism of Action. Toxins. 2020; 12(9):600. https://doi.org/10.3390/toxins12090600
Chicago/Turabian StyleVílchez, Susana. 2020. "Making 3D-Cry Toxin Mutants: Much More Than a Tool of Understanding Toxins Mechanism of Action" Toxins 12, no. 9: 600. https://doi.org/10.3390/toxins12090600
APA StyleVílchez, S. (2020). Making 3D-Cry Toxin Mutants: Much More Than a Tool of Understanding Toxins Mechanism of Action. Toxins, 12(9), 600. https://doi.org/10.3390/toxins12090600