Effects of Fumonisin-Contaminated Corn on Growth Performance of 9 to 28 kg Nursery Pigs
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Ethics Statement
3.2. Animal and Experimental Design
3.3. Mycotoxin Analysis
3.4. Serum SA and SO Analysis
3.5. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hendel, E.G.; Gott, P.N.; Curry, S.; Hofstetter-Schähs, U.; Murugesan, G.R. Trends in Mycotoxin Contamination in United States Corn. In Proceedings of the Poster Session Presented at: Midwest ASAS, Omaha, NE, USA, 2–4 March 2020. [Google Scholar]
- Zomborszky-Kovacs, M.; Vetesi, F.; Horn, P.; Repa, I.; Kovacs, F. Effects of prolonged exposure to low-dose fumonisin B1 in pigs. J. Vet. Med. B Infect. Dis. Vet. Public Health 2002, 49, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Colvin, B.M.; Cooley, A.J.; Beaver, R.W. Fumonisin toxicosis in swine: Clinical and pathologic findings. J. Vet. Diagn. Invest. 1993, 5, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Bouhet, S.; Hourcade, E.; Loiseau, N.; Fikry, A.; Martinez, S.; Roselli, M.; Galtier, P.; Mengheri, E.; Oswald, I.P. The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells. Toxicol. Sci. 2004, 77, 165–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ensely, S.M.; Radke, S.L. Mycotoxins in Grains and Feeds. In Diseases of Swine, 11th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 1055–1071. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Guidance for Industry: Fumonisin Levels in Human Foods and Animal Feeds; U.S. Food & Drug Administration: Montgomery, MD, USA, 2001.
- European Commission. Commission Regulation (EU) 2016/1319 of 29 July 2016 amending Recommendation 2006/576/EC as regards deoxynivalenol, zearalenone and ochratoxin A in pet food. Off. J. EU. L 2016, 208, 58–60. [Google Scholar]
- Merrill, A.H., Jr.; Sullards, M.C.; Wang, E.; Voss, K.A.; Riley, R.T. Sphingolipid metabolism: Roles in signal transduction and disruption by fumonisins. Environ. Health Perspect. 2001, 109, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Fodor, J.; Meyer, K.; Riedlberger, M.; Bauer, J.; Horn, P.; Kovacs, F.; Kovacs, M. Distribution and elimination of fumonisin analogues in weaned piglets after oral administration of Fusarium verticillioides fungal culture. Food Addit. Contam. 2006, 23, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Enongene, E.N.; Sharma, R.P.; Bhandari, N.; Miller, J.D.; Meredith, F.I.; Voss, K.A.; Riley, R.T. Persistence and reversibility of the elevation in free sphingoid bases induced by fumonisin inhibition of ceramide synthase. Toxicol. Sci. 2002, 67, 173–181. [Google Scholar] [CrossRef]
- Zomborszky, M.K.; Vetesi, F.; Repa, I.; Kovacs, F.; Bata, A.; Horn, P.; Toth, A.; Romvari, R. Experiment to determine limits of tolerance for fumonisin B1 in weaned piglets. J. Vet. Med. B Infect. Dis. Vet. Public Health 2000, 47, 277–286. [Google Scholar] [CrossRef]
- Hsiao, S.H.; Tumbleson, M.E.; Constable, P.D.; Haschek, W.M. Use of formalin-fixed tissues to determine fumonisin B1-induced sphingolipid alterations in swine. J. Vet. Diagn. Invest. 2007, 19, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Dilkin, P.; Direito, G.; Simas, M.M.; Mallmann, C.A.; Correa, B. Toxicokinetics and toxicological effects of single oral dose of fumonisin B1 containing Fusarium verticillioides culture material in weaned piglets. Chem. Biol. Interact. 2010, 185, 157–162. [Google Scholar] [CrossRef]
- Riley, R.T.; An, N.H.; Showker, J.L.; Yoo, H.S.; Norred, W.P.; Chamberlain, W.J.; Wang, E.; Merrill, A.H., Jr.; Motelin, G.; Beasley, V.R.; et al. Alteration of tissue and serum sphinganine to sphingosine ratio: An early biomarker of exposure to fumonisin-containing feeds in pigs. Toxicol. Appl. Pharmacol. 1993, 118, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Motelin, G.K.; Haschek, W.M.; Ness, D.K.; Hall, W.F.; Harlin, K.S.; Schaeffer, D.J.; Beasley, V.R. Temporal and dose-response features in swine fed corn screenings contaminated with fumonisin mycotoxins. Mycopathologia 1994, 126, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.C.; Madec, S.; Coton, E.; Hymery, N. Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in vitro Combined Toxicological Effects. Toxins 2016, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Bracarense, A.P.; Lucioli, J.; Grenier, B.; Drociunas Pacheco, G.; Moll, W.D.; Schatzmayr, G.; Oswald, I.P. Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. Br. J. Nutr. 2012, 107, 1776–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateos, I.; Combes, S.; Pascal, G.; Cauquil, L.; Barilly, C.; Cossalter, A.M.; Laffitte, J.; Botti, S.; Pinton, P.; Oswald, I.P. Fumonisin-Exposure Impairs Age-Related Ecological Succession of Bacterial Species in Weaned Pig Gut Microbiota. Toxins 2018, 10, 230. [Google Scholar] [CrossRef] [Green Version]
- Schertz, H.; Dänicke, S.; Frahm, J.; Schatzmayr, D.; Dohnal, I.; Bichl, G.; Schwartz-Zimmermann, H.E.; Colicchia, S.; Breves, G.; Teifke, J.P.; et al. Biomarker Evaluation and Toxic Effects of an Acute Oral and Systemic Fumonisin Exposure of Pigs with a Special Focus on Dietary Fumonisin Esterase Supplementation. Toxins 2018, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D. Fumonisin Toxicosis. In Clinical Veterinary Advisor: The Horse, 1st ed.; Saunders: Philadelphia, PA, USA, 2012; pp. 214–215. [Google Scholar]
- Bartov, I. Comparative effects of antifungal compounds on the nutritional value of diets containing moldy corn for broiler chicks. Poult. Sci. 1985, 64, 1236–1238. [Google Scholar] [CrossRef]
- Gbore, F.A. Growth performance and puberty attainment in growing pigs fed dietary fumonisin B(1). J. Anim. Physiol. Anim. Nutr. 2009, 93, 761–767. [Google Scholar] [CrossRef]
- Rotter, B.A.; Thompson, B.K.; Prelusky, D.B.; Trenholm, H.L.; Stewart, B.; Miller, J.D.; Savard, M.E. Response of growing swine to dietary exposure to pure fumonisin B1 during an eight-week period: Growth and clinical parameters. Nat. Toxins 1996, 4, 42–50. [Google Scholar] [CrossRef]
- Harvey, B.; Edrington, T.S.; Kubena, L.F.; Rottinghaus, G.E.; Turk, J.R.; Genovese, K.J.; Ziprin, R.L.; Nisbet, D.J. Toxicity of fumonisin from Fusarium verticillioides culture material and moniliformin from Fusarium fujikuroi culture material when fed singly and in combination to growing barrows. J. Food Prot. 2002, 65, 373–377. [Google Scholar] [CrossRef]
- Lessard, M.; Boudry, G.; Seve, B.; Oswald, I.P.; Lalles, J.P. Intestinal physiology and peptidase activity in male pigs are modulated by consumption of corn culture extracts containing fumonisins. J. Nutr. 2009, 139, 1303–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academic Press: Washington, DC, USA, 2012. [Google Scholar]
- AOAC Int. Official Methods of Analysis AOAC International, 21st ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2019. [Google Scholar]
- Kovar, J.L. Method 6.3 Inductively Coupled Plasma Spectroscopy; University of Wisconsin-Extension: Madison, WI, USA, 2003; Volume A3769. [Google Scholar]
- ANKOM Technology. Method for Determining Crude Fiber; ANKOM Technology: Fairport, NY, USA, 2005. [Google Scholar]
- ANKOM Technology. Rapid Determination of Oil/Fat Utilizing High. Temperature Solvent Extraction; ANKOM Technology: Fairport, NY, USA, 2004. [Google Scholar]
- Varga, E.; Mayer, K.; Sulyok, M.; Schuhmacher, R.; Krska, R.; Berthiller, F. Validation of a Stable Isotope Dilution Assay for the Accurate Quantitation of Mycotoxin in Maize Using UHPLC/MS/MS.; Agilent Technologies, Inc.: Waldbronn, Germany, 2013. [Google Scholar]
- Riley, R.T.; Wang, E.; Merrill, A.H., Jr. Liquid Chromatographic Determination of Sphmgamne and Sphingosine: Use of the Free Sphinganine-to-Sphingosine Ratio as a Biomarker for Consumption of Fumonisins. J. AOAC Int. 1994, 77, 533–540. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
Item, mg/kg | Analyzed Fumonisin Concentration, mg/kg | ||||
---|---|---|---|---|---|
7.2 | 14.7 | 21.9 | 32.7 | 35.1 | |
Fumonisin B1 | 5.68 | 11.71 | 17.35 | 25.21 | 27.46 |
Fumonisin B2 | 1.49 | 2.96 | 4.51 | 7.46 | 7.54 |
Analyzed Fumonisin Concentration, mg/kg | Probability, p | |||||||
---|---|---|---|---|---|---|---|---|
Item | 7.2 | 14.7 | 21.9 | 32.7 | 35.1 | SEM | Linear | Quadratic |
BW, kg | ||||||||
d 0 | 8.9 | 8.9 | 8.9 | 8.9 | 8.9 | <0.21 3 | 0.598 | 0.724 |
d 28 | 28.1 | 27.7 | 27.8 | 26.8 | 26.6 | 0.42 | <0.001 | 0.410 |
d 0 to 28 | ||||||||
ADG, g | 677 | 666 | 674 | 640 | 633 | 10.4 | 0.001 | 0.184 |
ADFI, g | 1016 | 993 | 1010 | 974 | 978 | 18.6 | 0.055 | 0.774 |
G:F, g/kg | 667 | 672 | 668 | 658 | 648 | 6.4 | 0.016 | 0.114 |
Analyzed Fumonisin Concentration, mg/kg | Probability, p | |||||||
---|---|---|---|---|---|---|---|---|
Item | 7.2 | 14.7 | 21.9 | 32.7 | 35.1 | SEM | Linear | Quadratic |
SA:SO | ||||||||
d 14 | 0.47 | 0.84 | 1.00 | 1.14 | 1.40 | 0.09 | <0.001 | 0.364 |
d 28 | 0.55 | 0.77 | 0.93 | 1.42 | 1.58 | <0.15 4 | <0.001 | 0.143 |
Analyzed Fumonisin Concentration, mg/kg | |||||
---|---|---|---|---|---|
Item, % | 7.2 | 14.7 | 21.9 | 32.7 | 35.1 |
Dry matter | 87.54 | 87.56 | 87.72 | 87.92 | 88.14 |
Crude protein | 19.3 | 19.3 | 19.8 | 19.7 | 19.8 |
Ca | 0.73 | 0.65 | 0.57 | 0.67 | 0.63 |
P | 0.51 | 0.49 | 0.50 | 0.51 | 0.53 |
Neutral detergent fiber | 6.5 | 5.6 | 6.6 | 6.8 | 6.3 |
Ether extract | 5.1 | 4.9 | 4.8 | 5.0 | 5.1 |
Analyzed Fumonisin Concentration, mg/kg | ||
---|---|---|
Item | 7.2 | 35.1 |
Ingredients, % | ||
Corn, 10 mg/kg fumonisin B1 + B2 | 64.70 | -- |
Corn, 50 mg/kg fumonisin B1 + B2 3 | -- | 64.70 |
Soybean meal | 28.00 | 28.00 |
Soybean oil | 3.00 | 3.00 |
Monocalcium phosphate | 0.85 | 0.85 |
Calcium carbonate | 0.75 | 0.75 |
Sodium chloride | 0.60 | 0.60 |
L-Lysine HCl | 0.55 | 0.55 |
DL-Methionine | 0.21 | 0.21 |
L-Threonine | 0.23 | 0.23 |
L-Tryptophan | 0.06 | 0.06 |
L-Valine | 0.16 | 0.16 |
Vitamin premix 4 | 0.25 | 0.25 |
Trace mineral premix 4 | 0.15 | 0.15 |
Phytase 5 | 0.08 | 0.08 |
Total | 100 | 100 |
Calculated analysis Standardized ileal digestible amino acids, % | ||
Lysine | 1.30 | 1.30 |
Isoleucine:lysine 6 | 53 | 53 |
Leucine:lysine | 111 | 111 |
Methionine:lysine | 36 | 36 |
Methionine and cysteine:lysine | 56 | 56 |
Threonine:lysine | 63 | 63 |
Tryptophan:lysine | 20.0 | 20.0 |
Valine:lysine | 69 | 69 |
Histidine:lysine | 35 | 35 |
Net energy, kcal/kg | 2536 | 2536 |
Crude protein, % | 19.8 | 19.8 |
Calcium, % | 0.61 | 0.61 |
STTD P 7, % | 0.44 | 0.44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, Z.-X.; Tokach, M.D.; Woodworth, J.C.; DeRouchey, J.M.; Goodband, R.D.; Calderón, H.I.; Dritz, S.S. Effects of Fumonisin-Contaminated Corn on Growth Performance of 9 to 28 kg Nursery Pigs. Toxins 2020, 12, 604. https://doi.org/10.3390/toxins12090604
Rao Z-X, Tokach MD, Woodworth JC, DeRouchey JM, Goodband RD, Calderón HI, Dritz SS. Effects of Fumonisin-Contaminated Corn on Growth Performance of 9 to 28 kg Nursery Pigs. Toxins. 2020; 12(9):604. https://doi.org/10.3390/toxins12090604
Chicago/Turabian StyleRao, Zhong-Xing, Mike D. Tokach, Jason C. Woodworth, Joel M. DeRouchey, Robert D. Goodband, Hilda I. Calderón, and Steve S. Dritz. 2020. "Effects of Fumonisin-Contaminated Corn on Growth Performance of 9 to 28 kg Nursery Pigs" Toxins 12, no. 9: 604. https://doi.org/10.3390/toxins12090604
APA StyleRao, Z. -X., Tokach, M. D., Woodworth, J. C., DeRouchey, J. M., Goodband, R. D., Calderón, H. I., & Dritz, S. S. (2020). Effects of Fumonisin-Contaminated Corn on Growth Performance of 9 to 28 kg Nursery Pigs. Toxins, 12(9), 604. https://doi.org/10.3390/toxins12090604