Virulence Factors Found in Nasal Colonization and Infection of Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates and Their Ability to Form a Biofilm
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Data Collection
5.2. Samples Acquisition and Characterization
5.3. Antimicrobial Susceptibility Test
5.4. Genotyping
5.5. Evaluation of Biofilm Strength
5.6. Biofilm Scanning Electron Microscopy (SEM) and CFU Counting
5.7. Statistical Analysis
5.8. Ethical Statement
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Sakr, A.; Brégeon, F.; Mège, J.-L.; Rolain, J.-M.; Blin, O. Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Muzy Dias, A.P.; Guimarães, L.C.; Petrucci, L.B.D.V.; Pinheiro, J.A.Z.; Pinheiro, M.G.; Silva, F.R.E.; Póvoa, H.C.C.; Aguiar-Alves, F. Prevalence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus nasal carriage and their clonal diversity among patients attending public health-care facilities. Indian J. Med. Microbiol. 2020, 38, 192–199. [Google Scholar] [CrossRef]
- Rodrigues, D.C.S.; Lima, D.F.; Cohen, R.W.F.; Marques, E.A.; Leão, R.S. Molecular characterization of methicillin-resistant Staphylococcus aureus from chronically colonized cystic fibrosis paediatric patients in Brazil. Epidemiol. Infect. 2020, 148. [Google Scholar] [CrossRef] [PubMed]
- Salgueiro, V.C.; Seixas, M.D.L.; Guimarães, L.C.; de Ferreira, D.C.; Da Cunha, D.C.; Nouér, S.A.; dos Santos, K.R.N. High rate of neonates colonized by methicillin-resistant Staphylococcus species in an Intensive Care Unit. J. Infect. Dev. Ctries. 2019, 13, 810–816. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, P.M.N.; Buonora, S.N.; Souza, C.L.P.; Simões Júnior, R.; da Silva, T.C.; Bom, G.J.T.; Da Teixeira, C.H.S.; Da Silva, A.R.A. Surveillance of multidrug-resistant bacteria in pediatric and neonatal intensive care units in Rio de Janeiro State, Brazil. Rev. Soc. Bras. Med. Trop. 2019, 52. [Google Scholar] [CrossRef] [Green Version]
- Bes, T.M.; Martins, R.R.; Perdigão, L.; Mongelos, D.; Moreno, L.; Moreno, A.; de Oliveira, G.S.; Costa, S.F.; Levin, A.S. Prevalence of methicillin-resistant Staphylococcus aureus colonization in individuals from the community in the city of Sao Paulo, Brazil. Rev. Inst. Med. Trop. Sao Paulo 2018, 60, e58. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, V.; Ghobrial, G.M.; Maulucci, C.M.; Singhal, S.; Prasad, S.K.; Harrop, J.S.; Vaccaro, A.R.; Behrend, C.; Sharan, A.D.; Jallo, J. Nasal MRSA colonization: Impact on surgical site infection following spine surgery. Clin. Neurol. Neurosurg. 2014, 125, 94–97. [Google Scholar] [CrossRef]
- Kao, K.-C.; Chen, C.-B.; Hu, H.-C.; Chang, H.-C.; Huang, C.-C.; Huang, Y.-C. Risk Factors of Methicillin-Resistant Staphylococcus aureus Infection and Correlation With Nasal Colonization Based on Molecular Genotyping in Medical Intensive Care Units: A Prospective Observational Study. Medicine 2015, 94, e1100. [Google Scholar] [CrossRef]
- Tilahun, B.; Faust, A.C.; McCorstin, P.; Ortegon, A. Nasal colonization and lower respiratory tract infections with methicillin-resistant Staphylococcus aureus. Am. J. Crit. Care Off. Public Am. Assoc. Crit. Care Nurses 2015, 24, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Hamilton, S.M.; Alexander, J.A.N.; Choo, E.J.; Basuino, L.; da Costa, T.M.; Severin, A.; Chung, M.; Aedo, S.; Strynadka, N.C.J.; Tomasz, A.; et al. High-Level Resistance of Staphylococcus aureus to β-Lactam Antibiotics Mediated by Penicillin-Binding Protein 4 (PBP4). Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Song, M.D.; Wachi, M.; Doi, M.; Ishino, F.; Matsuhashi, M. Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett. 1987, 221, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.; Riboli, D.F.M.; Pereira, V.C.; de Lourdes Ribeiro de Souza da Cunhaa, M. Molecular characterization of methicillin-resistant Staphylococcus aureus isolated from a Brazilian university hospital. Braz. J. Infect. Dis. 2014, 18, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Diep, B.A.; Gill, S.R.; Chang, R.F.; Phan, T.H.; Chen, J.H.; Davidson, M.G.; Lin, F.; Lin, J.; Carleton, H.A.; Mongodin, E.F.; et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet Lond. Engl. 2006, 367, 731–739. [Google Scholar] [CrossRef]
- Lim, K.T.; Hanifah, Y.A.; Mohd Yusof, M.Y.; Thong, K.L. Investigation of toxin genes among methicillin-resistant Staphylococcus aureus strains isolated from a tertiary hospital in Malaysia. Trop. Biomed. 2012, 29, 212–219. [Google Scholar]
- De Oliveira, C.F.; Morey, A.T.; Santos, J.P.; Gomes, L.V.P.; Cardoso, J.D.; Pinge-Filho, P.; Perugini, M.R.E.; Yamauchi, L.M.; Yamada-Ogatta, S.F. Molecular and phenotypic characteristics of methicillin-resistant Staphylococcus aureus isolated from hospitalized patients. J. Infect. Dev. Ctries. 2015, 9, 743–751. [Google Scholar] [CrossRef] [Green Version]
- De Souza, C.S.M.; Fortaleza, C.M.C.B.; Witzel, C.L.; Silveira, M.; Bonesso, M.F.; Marques, S.A.; de Lourdes Ribeiro de Souza da Cunhaa, M. Toxigenic profile of methicillin-sensitive and resistant Staphylococcus aureus isolated from special groups. Ann. Clin. Microbiol. Antimicrob. 2016, 15. [Google Scholar] [CrossRef] [Green Version]
- Diep, B.A.; Stone, G.G.; Basuino, L.; Graber, C.J.; Miller, A.; des Etages, S.; Jones, A.; Palazzolo-Ballance, A.M.; Perdreau-Remington, F.; Sensabaugh, G.F.; et al. The Arginine Catabolic Mobile Element and Staphylococcal Chromosomal Cassette mec Linkage: Convergence of Virulence and Resistance in the USA300 Clone of Methicillin-Resistant Staphylococcus aureus. J. Infect. Dis. 2008, 197, 1523–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thurlow, L.R.; Joshi, G.S.; Clark, J.R.; Spontak, J.S.; Neely, C.J.; Maile, R.; Richardson, A.R. Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe 2013, 13, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef]
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. J. Clin. Microbiol. 1999, 37, 1771. [Google Scholar] [CrossRef] [Green Version]
- Brites, C.; Silva, N.; Sampaio-Sá, M. Temporal evolution of the prevalence of methicillin-resistant Staphylococcus aureus in a tertiary hospital in Bahia, Brazil: A nine-year evaluation study. Braz. J. Infect. Dis. Off. Public Braz. Soc. Infect. Dis. 2006, 10, 235–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braga, E.D.V.; Aguiar-Alves, F.; de Freitas, M.D.F.N.; de e Silva, M.O.; Correa, T.V.; Snyder, R.E.; de Araújo, V.A.; Marlow, M.A.; Riley, L.W.; Setúbal, S.; et al. High prevalence of Staphylococcus aureus and methicillin-resistant S. aureus colonization among healthy children attending public daycare centers in informal settlements in a large urban center in Brazil. BMC Infect. Dis. 2014, 14, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunnueang, N.; Kongpheng, S.; Yadrak, P.; Rattanachuay, P.; Khianngam, S.; Sukhumungoon, P. Methicillin-resistant staphylococcus aureus: 1-year collection and characterization from patients in two tertiary hospitals, southern Thailand. Southeast Asian J. Trop. Med. Public Health 2016, 47, 234–244. [Google Scholar]
- Ilczyszyn, W.M.; Sabat, A.J.; Akkerboom, V.; Szkarlat, A.; Klepacka, J.; Sowa-Sierant, I.; Wasik, B.; Kosecka-Strojek, M.; Buda, A.; Miedzobrodzki, J.; et al. Clonal Structure and Characterization of Staphylococcus aureus Strains from Invasive Infections in Paediatric Patients from South Poland: Association between Age, spa Types, Clonal Complexes, and Genetic Markers. PLoS ONE 2016, 11, e0151937. [Google Scholar] [CrossRef]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Sumi, A.; Shinagawa, M.; Takahashi, S.; Kobayashi, N. Clonal Diversity and Genetic Characteristics of Methicillin-Resistant Staphylococcus aureus Isolates from a Tertiary Care Hospital in Japan. Microb. Drug Resist. (Larchmt. N. Y.) 2019, 25, 1164–1175. [Google Scholar] [CrossRef]
- Brust, T.; da Costa, T.M.; Amorim, J.C.; Asensi, M.D.; Fernandes, O.; Aguiar-Alves, F. Hospital-associated methicillin-resistant Staphylococcus aureus carrying the PVL gene outbreak in a Public Hospital in Rio de Janeiro, Brazil. Braz. J. Microbiol. Public Braz. Soc. Microbiol. 2013, 44, 865–868. [Google Scholar] [CrossRef] [Green Version]
- Cavalcante, F.S.; Ferreira, D.C.; Chamon, R.C.; da Costa, T.M.; Maia, F.; Barros, E.M.; Dantas, T.S.; dos Santos, K.R.N. Daptomycin and methicillin-resistant Staphylococcus aureus isolated from a catheter-related bloodstream infection: A case report. BMC Res. Notes 2014, 7, 759. [Google Scholar] [CrossRef] [Green Version]
- Chamon, R.C.; Ribeiro, S.D.S.; da Costa, T.M.; Nouér, S.A.; dos Santos, K.R.N.; Chamon, R.C.; Ribeiro, S.D.S.; da Costa, T.M.; Nouér, S.A.; dos Santos, K.R.N. Complete substitution of the Brazilian endemic clone by other methicillin-resistant Staphylococcus aureus lineages in two public hospitals in Rio de Janeiro, Brazil. Braz. J. Infect. Dis. 2017, 21, 185–189. [Google Scholar] [CrossRef] [Green Version]
- WHO. Health Care-Associated Infections Fact Sheet; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Neto, E.D.A.; Guerrero, J.; Snyder, R.E.; Pereira, R.F.A.; de Fátima Nogueira de Freitas, M.; Silva-Santana, G.; Riley, L.W.; Aguiar-Alves, F. Genotypic distribution of Staphylococcus aureus colonizing children and adolescents in daycare centers, an outpatient clinic, and hospitals in a major Brazilian urban setting. Diagn. Microbiol. Infect. Dis. 2020, 97, 115058. [Google Scholar] [CrossRef]
- Neves, F.P.G.; Marlow, M.A.; Rezende-Pereira, G.; Pinheiro, M.G.; Dos Santos, A.F.M.; de Fátima Nogueira de Freitas, M.; Barros, R.R.; Aguiar-Alves, F.; Cardoso, C.A.A.; Riley, L.W. Differences in gram-positive bacterial colonization and antimicrobial resistance among children in a high income inequality setting. BMC Infect. Dis. 2019, 19, 478. [Google Scholar] [CrossRef] [Green Version]
- Stulik, L.; Malafa, S.; Hudcova, J.; Rouha, H.; Henics, B.Z.; Craven, D.E.; Sonnevend, A.M.; Nagy, E. α-Hemolysin activity of methicillin-susceptible Staphylococcus aureus predicts ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 2014, 190, 1139–1148. [Google Scholar] [CrossRef] [Green Version]
- Rabelo, M.A.; Bezerra Neto, A.M.; Loibman, S.O.; da Costa Lima, J.L.; Ferreira, E.L.; Leal, N.C.; Maciel, M.A.V.; Rabelo, M.A.; Bezerra Neto, A.M.; Loibman, S.O.; et al. The occurrence and dissemination of methicillin and vancomycin-resistant Staphylococcus in samples from patients and health professionals of a university hospital in Recife, State of Pernambuco, Brazil. Rev. Soc. Bras. Med. Trop. 2014, 47, 437–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luna, C.M.; Rodríguez-Noriega, E.; Bavestrello, L.; Gotuzzo, E. Tratamento de Staphylococcus aureus resistente à meticilina na América Latina. Braz. J. Infect. Dis. 2010, 14, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Peyrani, P.; Ramirez, J. What is the best therapeutic approach to methicillin-resistant Staphylococcus aureus pneumonia? Curr. Opin. Infect. Dis. 2015, 28, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Silveira, A.C.O.; Cunha, G.R.; Caierão, J.; de Cordova, C.M.; d’Azevedo, P.A. MRSA from Santa Catarina State, Southern Brazil: Intriguing epidemiological differences compared to other Brazilian regions. Braz. J. Infect. Dis. 2015, 19, 384–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, D.M.D.S.; de Andrade, D.F.R.; Ibiapina, A.R.D.S.; Gomes, H.M.D.S.; Nolêto, I.R.D.S.G.; Magalhães, R.D.L.B.; Barreto, H.M.; de Oliveira, I.P.; dos Santos, P.C.; de Freitas, D.R.J.; et al. High rates of methicillin-resistant Staphylococcus aureus colonization in a Brazilian Intensive Care Unit. Intensive Crit. Care Nurs. 2018, 49, 51–57. [Google Scholar] [CrossRef]
- De Carvalho, S.P.; de Almeida, J.B.; Andrade, Y.M.F.S.; da Silva, L.S.C.; de Oliveira, A.C.; Nascimento, F.S.; Campos, G.B.; Oliveira, M.V.; Timenetsky, J.; Marques, L.M. Community-acquired methicillin-resistant Staphylococcus aureus carrying SCCmec type IV and V isolated from healthy children attending public daycares in northeastern Brazil. Braz. J. Infect. Dis. Off. Public Braz. Soc. Infect. Dis. 2017, 21, 464–467. [Google Scholar] [CrossRef]
- Catão, R.M.R.; Pimentel, C. Artigo original prevalência de infecções hospitalares por staphylococcus aureus e perfil de suscetibilidade aos antimicrobianos. J. Nurs. UFPE 2013, 7, 5257–5264. [Google Scholar]
- Caboclo, R.M.F.; Cavalcante, F.S.; Iorio, N.L.P.; Schuenck, R.P.; Olendzki, A.N.; Felix, M.J.; Chamon, R.C.; dos Santos, K.R.N. Methicillin-resistant Staphylococcus aureus in Rio de Janeiro hospitals: Dissemination of the USA400/ST1 and USA800/ST5 SCCmec type IV and USA100/ST5 SCCmec type II lineages in a public institution and polyclonal presence in a private one. Am. J. Infect. Control 2013, 41, 21–26. [Google Scholar] [CrossRef]
- Vieira, M.T.C.; Marlow, M.A.; Aguiar-Alves, F.; Pinheiro, M.G.; de Freitas Alves, M.d.F.N.; Santos Cruz, M.L.; Saavedra Gaspar, M.C.; Rocha, R.; Velarde, L.G.C.; Araújo Cardoso, C.A. Living Conditions as a Driving Factor in Persistent Methicillin-resistant Staphylococcus aureus Colonization Among HIV-infected Youth. Pediatr. Infect. Dis. J. 2016, 35, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.C.; de Lencastre, H. Multiplex PCR Strategy for Rapid Identification of Structural Types and Variants of the mec Element in Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 2155–2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scribel, L.V.; Silva-Carvalho, M.C.; Souza, R.R.; Superti, S.V.; Kvitko, C.H.C.; Figueiredo, A.M.S.; Zavascki, A.P. Clinical and molecular epidemiology of methicillin-resistant Staphylococcus aureus carrying SCCmecIV in a university hospital in Porto Alegre, Brazil. Diagn. Microbiol. Infect. Dis. 2009, 65, 457–461. [Google Scholar] [CrossRef]
- Cavalcante, F.S.; Abad, E.D.; Lyra, Y.C.; Saintive, S.B.; Ribeiro, M.; Ferreira, D.C.; dos Santos, K.R.N. High prevalence of methicillin resistance and PVL genes among Staphylococcus aureus isolates from the nares and skin lesions of pediatric patients with atopic dermatitis. Braz. J. Med. Biol. Res. 2015, 48, 588–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cakır Aktas, N.; Erturan, Z.; Karatuna, O.; Karahasan Yagci, A. Panton-Valentine leukocidin and biofilm production of Staphylococcus aureus isolated from respiratory tract. J. Infect. Dev. Ctries. 2013, 7, 888–891. [Google Scholar] [CrossRef] [Green Version]
- Emaneini, M.; Khoramrooz, S.S.; Shahsavan, S.; Dabiri, H.; Jabalameli, F. Prevalence of Panton-Valentine leucocidin and phenotypic and genotypic characterization of biofilm formation among Staphylococcus aureus strains isolated from children with adenoid hypertrophy. Microb. Pathog. 2015, 89, 150–153. [Google Scholar] [CrossRef]
- Gogoi-Tiwari, J.; Williams, V.; Waryah, C.B.; Costantino, P.; Al-Salami, H.; Mathavan, S.; Wells, K.; Tiwari, H.K.; Hegde, N.; Isloor, S.; et al. Mammary Gland Pathology Subsequent to Acute Infection with Strong versus Weak Biofilm Forming Staphylococcus aureus Bovine Mastitis Isolates: A Pilot Study Using Non-Invasive Mouse Mastitis Model. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Vanhommerig, E.; Moons, P.; Pirici, D.; Lammens, C.; Hernalsteens, J.-P.; Greve, H.D.; Kumar-Singh, S.; Goossens, H.; Malhotra-Kumar, S. Comparison of Biofilm Formation between Major Clonal Lineages of Methicillin Resistant Staphylococcus aureus. PLoS ONE 2014, 9, e104561. [Google Scholar] [CrossRef]
- Urushibara, N.; Kawaguchiya, M.; Kobayashi, N. Two novel arginine catabolic mobile elements and staphylococcal chromosome cassette mec composite islands in community-acquired methicillin-resistant Staphylococcus aureus genotypes ST5-MRSA-V and ST5-MRSA-II. J. Antimicrob. Chemother. 2012, 67, 1828–1834. [Google Scholar] [CrossRef] [Green Version]
- Hon, P.Y.; Chan, K.S.; Holden, M.T.; Harris, S.R.; Tan, T.Y.; Zu, Y.-B.; Krishnan, P.; Oon, L.L.; Koh, T.H.; Hsu, L.Y. Arginine catabolic mobile element in methicillin-resistant Staphylococcus aureus (MRSA) clonal group ST239-MRSA-III isolates in Singapore: Implications for PCR-based screening tests. Antimicrob. Agents Chemother. 2013, 57, 1563–1564. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchiya, M.; Urushibara, N.; Ghosh, S.; Kuwahara, O.; Morimoto, S.; Ito, M.; Kudo, K.; Kobayashi, N. Genetic diversity of emerging Panton-Valentine leukocidine/arginine catabolic mobile element (ACME)-positive ST8 SCCmec-IVa methicillin-resistant Staphylococcus aureus (MRSA) strains and ACME-positive CC5 (ST5/ST764) MRSA strains in Northern Japan. J. Med. Microbiol. 2013, 62, 1852–1863. [Google Scholar] [CrossRef] [PubMed]
- Diep, B.A.; Chan, L.; Tattevin, P.; Kajikawa, O.; Martin, T.R.; Basuino, L.; Mai, T.T.; Marbach, H.; Braughton, K.R.; Whitney, A.R.; et al. Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton-Valentine leukocidin-induced lung inflammation and injury. Proc. Natl. Acad. Sci. USA 2010, 107, 5587–5592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diep, B.A.; Le, V.T.M.; Visram, Z.C.; Rouha, H.; Stulik, L.; Dip, E.C.; Nagy, G.; Nagy, E. Improved Protection in a Rabbit Model of Community-Associated Methicillin-Resistant Staphylococcus aureus Necrotizing Pneumonia upon Neutralization of Leukocidins in Addition to Alpha-Hemolysin. Antimicrob. Agents Chemother. 2016, 60, 6333–6340. [Google Scholar] [CrossRef] [Green Version]
- Pozzi, C.; Waters, E.M.; Rudkin, J.K.; Schaeffer, C.R.; Lohan, A.J.; Tong, P.; Loftus, B.J.; Pier, G.B.; Fey, P.D.; Massey, R.C.; et al. Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog. 2012, 8, e1002626. [Google Scholar] [CrossRef]
- Sogawa, K.; Watanabe, M.; Ishige, T.; Segawa, S.; Miyabe, A.; Murata, S.; Saito, T.; Sanda, A.; Furuhata, K.; Nomura, F. Rapid Discrimination between Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus Using MALDI-TOF Mass Spectrometry. Biocontrol Sci. 2017, 22, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI M100-S23. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2013. [Google Scholar]
- Shopsin, B.; Gomez, M.; Montgomery, S.O.; Smith, D.H.; Waddington, M.; Dodge, D.E.; Bost, D.A.; Riehman, M.; Naidich, S.; Kreiswirth, B.N. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J. Clin. Microbiol. 1999, 37, 3556–3563. [Google Scholar] [CrossRef] [Green Version]
- Enright, M.C.; Day, N.P.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Deurenberg, R.H.; Vink, C.; Kalenic, S.; Friedrich, A.W.; Bruggeman, C.A.; Stobberingh, E.E. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. Off. Public Eur. Soc. Clin. Microbiol. Infect. Dis. 2007, 13, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Lina, G.; Piémont, Y.; Godail-Gamot, F.; Bes, M.; Peter, M.O.; Gauduchon, V.; Vandenesch, F.; Etienne, J. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. Off. Public Infect. Dis. Soc. Am. 1999, 29, 1128–1132. [Google Scholar] [CrossRef]
- Hoseini Alfatemi, S.M.; Motamedifar, M.; Hadi, N.; Sedigh Ebrahim Saraie, H. Analysis of Virulence Genes Among Methicillin-Resistant Staphylococcus aureus (MRSA) Strains. Jundishapur J. Microbiol. 2014, 7, e10741. [Google Scholar] [CrossRef] [Green Version]
- Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Cirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2007, 115, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.A.; Romeiro, R.L.; Costa, A.C.B.P.; Machado, A.K.S.; Junqueira, J.C.; Jorge, A.O.C. Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: An in vitro study. Lasers Med. Sci. 2011, 26, 341–348. [Google Scholar] [CrossRef]
Antibiotics | Colonization | Invasive Infection | p |
---|---|---|---|
(n = 85) | (n = 62) | ||
Ciprofloxacin | 26 (30.59) | 56 (90.32) | <0.001 |
Clindamycin | 29 (34.12) | 53 (85.48) | <0.001 |
Chloramphenicol | 6 (7.06) | 5 (8.06) | 0.818 |
Erythromycin | 43 (50.59) | 54 (87.10) | <0.001 |
Gentamicin | 4 (4.71) | 11 (17.74) | <0.01 |
Nitrofurantoin | 4 (4.71) | 0 | 0.083 |
Rifampin | 9 (10.59) | 19 (30.65) | <0.01 |
Trimethoprim/Sulfamethoxazole | 3 (3.53) | 8 (12.90) | <0.05 |
Tetracycline | 4 (4.71) | 5 (8.06) | 0.401 |
Vancomycin | 2 (2.35) | 0 | 0.224 |
Sequence Type | Spa type | mecA | SCCmec | Genes | Colonization | Invasive Infection |
---|---|---|---|---|---|---|
(n = 85) | (n = 62) | |||||
ST1 | t127 | + | IV | hla, icaC, icaR | 3 | 2 |
t922 | + | IV | hla, icaC, icaR | 0 | 1 | |
ST5 | t002 | + | II | hla, icaC, icaR | 8 | 9 |
+ | IV | hla, icaC, icaR | 30 | 4 | ||
+ | IV | hla, icaR | 1 | 0 | ||
+ | IV | hla, icaC, icaR, pvl | 0 | 1 | ||
+ | IV | hla, icaC, icaR, arcA | 1 | 0 | ||
t045 | + | IV | hla, icaC, icaR | 1 | 0 | |
+ | IV | hla, icaC, icaR, pvl | 1 | 0 | ||
t067 | + | II | hla, icaC, icaR | 4 | 0 | |
t306 | + | IV | hla, icaC, icaR | 0 | 1 | |
t311 | + | IV | hla, icaC, icaR | 1 | 0 | |
t539 | + | II | hla, icaC, icaR | 5 | 14 | |
+ | II | icaC, icaR | 0 | 1 | ||
+ | II | hla, icaC, icaR, arcA | 5 | 13 | ||
+ | III | hla, icaC, icaR | 0 | 2 | ||
+ | IV | hla, icaC, icaR | 1 | 0 | ||
+ | IV | hla, icaC, icaR, arcA | 0 | 1 | ||
ST8 | t008 | + | IV | hla, icaC, icaR, pvl, arcA, opp3AB | 1 | 0 |
+ | IV | hla, icaC, icaR, pvl | 2 | 1 | ||
ST30 | t021 | + | IV | hla, icaC, icaR | 2 | 1 |
+ | IV | hla, icaC, icaR, pvl | 1 | 1 | ||
t318 | + | IV | hla, icaC, icaR | 4 | 0 | |
+ | IV | hla, icaC, icaR, pvl | 3 | 0 | ||
+ | IV | hla, icaR, pvl | 1 | 0 | ||
t433 | + | IV | hla, icaC, icaR | 0 | 1 | |
+ | IV | hla, icaC, icaR, pvl | 0 | 1 | ||
t964 | + | IV | hla, icaC, icaR | 1 | 0 | |
+ | IV | hla, icaC, icaR,pvl | 1 | 0 | ||
ST45 | t004 | + | II | hla, icaC, icaR | 0 | 1 |
t266 | + | II | hla, icaC, icaR | 4 | 0 | |
ST97 | t359 | + | IV | hla, icaC, icaR | 1 | 0 |
+ | IV | hla, icaC, icaR,pvl | 1 | - | ||
ST239 | t037 | + | III | hla, icaC, icaR | 0 | 6 |
+ | III | hla, icaC, icaR, pvl | 0 | 1 | ||
+ | III | hla, icaC, icaR, arcA, opp3AB | 1 | 0 | ||
ST950 | t895 | + | II | hla, icaC, icaR | 1 | 0 |
Total | 85 | 62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, T.S.; Pinheiro, F.R.; Andre, L.S.P.; Pereira, R.F.A.; Correa, R.F.; de Mello, G.C.; Ribeiro, T.A.N.; Penna, B.; Sachs, D.; Aguiar-Alves, F. Virulence Factors Found in Nasal Colonization and Infection of Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates and Their Ability to Form a Biofilm. Toxins 2021, 13, 14. https://doi.org/10.3390/toxins13010014
Machado TS, Pinheiro FR, Andre LSP, Pereira RFA, Correa RF, de Mello GC, Ribeiro TAN, Penna B, Sachs D, Aguiar-Alves F. Virulence Factors Found in Nasal Colonization and Infection of Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates and Their Ability to Form a Biofilm. Toxins. 2021; 13(1):14. https://doi.org/10.3390/toxins13010014
Chicago/Turabian StyleMachado, Thamiris Santana, Felipe Ramos Pinheiro, Lialyz Soares Pereira Andre, Renata Freire Alves Pereira, Reginaldo Fernandes Correa, Gabriela Coutinho de Mello, Tainara Aparecida Nunes Ribeiro, Bruno Penna, Daniela Sachs, and Fábio Aguiar-Alves. 2021. "Virulence Factors Found in Nasal Colonization and Infection of Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates and Their Ability to Form a Biofilm" Toxins 13, no. 1: 14. https://doi.org/10.3390/toxins13010014
APA StyleMachado, T. S., Pinheiro, F. R., Andre, L. S. P., Pereira, R. F. A., Correa, R. F., de Mello, G. C., Ribeiro, T. A. N., Penna, B., Sachs, D., & Aguiar-Alves, F. (2021). Virulence Factors Found in Nasal Colonization and Infection of Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates and Their Ability to Form a Biofilm. Toxins, 13(1), 14. https://doi.org/10.3390/toxins13010014