Adsorbents Reduce Aflatoxin M1 Residue in Milk of Healthy Dairy Cow Exposed to Moderate Level Aflatoxin B1 in Diet and Its Exposure Risk for Humans
Abstract
:1. Introduction
2. Results
2.1. Feed Intake and Lactation Performance
2.2. Serum Parameters
2.3. AFM1 Content in Milk
2.4. Exposure Risk Assessment
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Experimental Design, Diets and Cow Management
5.2. Sample Collection and Analysis
5.3. Risk Assessment of Exposure to AFM1
5.4. Calculations
5.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Battacone, G.; Nudda, A.; Rassu, S.P.G.; Decandia, M.; Pulina, G. Excretion of aflatoxin M1 in milk of goats fed a single dose of aflatoxin B1. J. Dairy Sci. 2012, 95, 2656–2661. [Google Scholar] [CrossRef]
- Xiong, J.L.; Wang, Y.M.; Nennich, T.D.; Li, Y.; Liu, J.X. Transfer of dietary aflatoxin B1 to milk aflatoxin M1 and effect of inclusion of adsorbent in the diet of dairy cows. J. Dairy Sci. 2015, 98, 2545–2554. [Google Scholar] [CrossRef]
- Nina, B.; Đurđica, B.; Maja, Đ.; Sedak, M.; Kolanović, B.S. Assessment of aflatoxin M1 contamination in the milk of four dairy species in Croatia. Food Control 2014, 43, 18–21. [Google Scholar]
- Campagnollo, F.B.; Ganev, K.C.; Khaneghah, A.M.; Portella, J.; Cruz, A.G.; Granato, D.; Corassin, C.H.; Oliveira, C.A.F.; de Souza Sant’Ana, A. The occurrence and effect of unit operations for dairy products processing on the fate of aflatoxin M1: A review. Food Control 2016, 68, 310–329. [Google Scholar] [CrossRef]
- Diaz, D.E.; Hagler, W.M.; Blackwelder, J.T.; Eve, J.A.; Whitlow, L.W. Aflatoxin binders Ⅱ: Reduction of aflatoxin M1 in milk by sequestering agents of cows consuming aflatoxin in feed. Mycopathologia 2004, 157, 233–241. [Google Scholar] [CrossRef]
- Battacone, G.; Nudda, A.; Palomba, M.; Pascale, M.; Nicolussi, P.; Pulina, G. Transfer of aflatoxin B1 from feed to milk and from milk to curd and whey in dairy sheep fed artificially contaminated concentrates. J. Dairy Sci. 2005, 88, 3063–3069. [Google Scholar] [CrossRef]
- Etzel, R.A. Mycotoxins. JAMA J. Am. Med. Assoc. 2002, 287, 425–427. [Google Scholar] [CrossRef]
- Sherif, S.O.; Salama, E.E.; Abdel-Wahhab, M.A. Mycotoxins and child health: The need for health risk assessment. Int. J. Hyg. Environ. Health 2009, 212, 347–368. [Google Scholar] [CrossRef]
- Ismail, A.; Gonçalves, B.L.; de Neeff, D.V.; Ponzilacqua, B.; Coppa, C.F.S.C.; Hintzsche, H.; Sajid, M.; Cruz, A.G.; Corassin, C.H.; Oliveira, C.A.F. Aflatoxin in foodstuffs: Occurrence and recent advances in decontamination. Food Res. Int. 2018, 113, 74–85. [Google Scholar] [CrossRef]
- Peraica, M.; Radi, B.; Luci, A.; Pavlovi, M. Toxic effects of mycotoxins in human. Bull. World Health Organ. 1999, 77, 754–766. [Google Scholar]
- Xiong, J.L.; Zhang, X.F.; Zhou, H.L.; Lei, M.Q.; Liu, Y.L.; Ye, C.; Wu, W.X.; Wang, C.; Wu, L.Y.; Qiu, Y.S. Aflatoxin M1 in pasteurized, ESL and UHT milk products from central China during summer and winter seasons: Prevalence and risk assessment of exposure in different age groups. Food Control 2021, 125, 6. [Google Scholar] [CrossRef]
- Sadia, A.; Jabbar, M.A.; Deng, Y.; Hussain, E.A.; Riffat, S.; Naveed, S.; Arif, M. A survey of aflatoxin M1 in milk and sweets of Punjab, Pakistan. Food Control 2012, 26, 235–240. [Google Scholar] [CrossRef]
- Gallo, A.; Giuberti, G.; Frisvad, J.C.; Bertuzzi, T.; Nielsen, K.F. Review on mycotoxin issues in ruminants: Occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins 2015, 7, 3057–3111. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Guidance for Industry: Action Levels for Poisonous or Deleterious Substances in Human Food and Animal Feed; FDA: Silver Spring, MD, USA, 2000. [Google Scholar]
- China Ministry of Health. Maximum Residue Level of Mycotoxin in Food—National Regulations for Food Safety; National Standard No. 2761-2011; China Ministry of Health: Beijing, China, 2011.
- European Food Safety Authority (EFSA). Opinion of the scientific panel on contaminants in the food chain on a request from the Commission related to aflatoxin B1 as undesirable substance in animal feed. EFSA J. 2004, 2, 39. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Wei, C.; Ma, Q.; Ji, C.; Zhang, J.; Zhao, L. Efficacy of Bacillus subtilis ANSB060 biodegradation product for the reduction of the milk aflatoxin M1 content of dairy cows exposed to aflatoxin B1. Toxins 2019, 11, 161. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.L.; Wang, Y.M.; Ma, M.R.; Liu, J.X. Seasonal variation of aflatoxin M1 in raw milk from the Yangtze River Delta region of China. Food Control 2013, 34, 703–706. [Google Scholar] [CrossRef]
- Xiong, J.L.; Wang, Y.M.; Zhou, H.L.; Liu, J.X. Effects of dietary adsorbent on milk aflatoxin M1 content and the health of lactating dairy cows exposed to long-term aflatoxin B1 challenge. J. Dairy Sci. 2018, 101, 8944–8953. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Han, X.; Peng, S.; Yue, T.; Wang, Z. Occurrence and risk assessment of aflatoxin M1 in commercial milk in Shaanxi. J. Northwest Univ. Nat. Sci. Ed. 2020, 48, 131–137. [Google Scholar]
- Bogalho, F.; Duarte, S.; Cardoso, M.; Almeida, A.; Cabecas, R.; Lino, C.; Pena, A. Exposure assessment of Portuguese infants to Aflatoxin M1 in breast milk and maternal social-demographical and food consumption determinants. Food Control 2018, 90, 140–145. [Google Scholar] [CrossRef]
- Daou, R.; Afif, C.; Joubrane, K.; Khabbaz, L.R.; Maroun, R.; Ismail, A.; El Khoury, A. Occurrence of aflatoxin M-1 in raw, pasteurized, UHT cows’ milk, and dairy products in Lebanon. Food Control 2020, 111, 107055. [Google Scholar] [CrossRef]
- Kuiper-Goodman, T. Uncertainties in the risk assessment of three mycotoxins: Aflatoxin, ochratoxin, and zearalenone. Can. J. Physiol. Pharmacol. 1990, 68, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, I.; Naehrer, K. A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins 2012, 4, 663–675. [Google Scholar] [CrossRef]
- Han, R.W.; Zheng, N.; Wang, J.Q.; Zhen, Y.P.; Xu, X.M.; Li, S.L. Survey of aflatoxin in dairy cow feed and raw milk in China. Food Control 2013, 34, 35–39. [Google Scholar] [CrossRef]
- Selvaraj, J.N.; Wang, Y.; Zhou, L.; Zhao, Y.; Liu, Y. Recent mycotoxin survey data and advanced mycotoxin detection techniques reported from China: A review. Food Addit. Contam. Part A-Chem. 2015, 32, 440–452. [Google Scholar] [CrossRef]
- Biomin Mycotoxin Survey. 2018. Available online: https://engage.biomin.net/hubfs/BIOMIN/Mycotoxin%20Survey%20Report/MAG_MTX-Survey-Report_2018_EN.pdf (accessed on 10 May 2019).
- Biomin Mycotoxin Survey. 2019. Available online: https://cdn2.hubspot.net/hubfs/5480243/BIOMIN/Downloads/MAG_MTXSurveyReport_2019_EN.pdf (accessed on 11 October 2019).
- Jiang, Y.; Ogunade, I.M.; Vyas, D.; Adesogan, A.T. Aflatoxin in Dairy Cows: Toxicity, Occurrence in Feedstuffs and Milk and Dietary Mitigation Strategies. Toxins 2021, 13, 23. [Google Scholar] [CrossRef]
- Jones, M.G.S.; Ewart, J.M. Effects on milk-production associated with consumption of decorticated extracted froundnut meal contaminated with aflatoxin. Vet. Rec. 1979, 105, 492–493. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.D.; Zheng, N.; Guo, L.Y.; Song, X.M.; Zhao, S.G.; Wang, J.Q. Biological system responses of dairy cows to aflatoxin B1 exposure revealed with metabolomic changes in multiple biofluids. Toxins 2019, 11, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Intanoo, M.; Kongkeitkajorn, M.B.; Suriyasathaporn, W.; Phasuk, Y.; Bernard, J.K.; Pattarajinda, V. Effect of supplemental Kluyveromyces marxianus and Pichia kudriavzevii on aflatoxin M1 excretion in milk of lactating dairy cows. Animals 2020, 10, 709. [Google Scholar] [CrossRef] [Green Version]
- Ogunade, I.M.; Arriola, K.G.; Jiang, Y.; Driver, J.P.; Staples, C.R.; Adesogan, A.T. Effects of 3 sequestering agents on milk aflatoxin M1 concentration and the performance and immune status of dairy cows fed diets artificially contaminated with aflatoxin B1. J. Dairy Sci. 2016, 99, 6263–6273. [Google Scholar] [CrossRef]
- Mertens, D.R.; Wyatt, R.D. Acute aflatoxicosis in lactating dairy-cows. J. Dairy Sci. 1977, 60, 153–154. [Google Scholar]
- Patterson, D.S.P.; Anderson, P.H. Recent aflatoxin feeding experiments in cattle. Vet. Rec. 1982, 110, 60–61. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, L.D. Effects of aflatoxin in corn on production and reproduction in dairy cattle. J. Dairy Sci. 1979, 62, 134. [Google Scholar]
- Maki, C.R.; Thomas, A.D.; Elmore, S.E.; Romoser, A.A.; Harvey, R.B.; Ramirez-Ramirez, H.A.; Phillips, T.D. Effects of calcium montmorillonite clay and aflatoxin exposure on dry matter intake, milk production, and milk composition. J. Dairy Sci. 2016, 99, 1039–1046. [Google Scholar] [CrossRef] [Green Version]
- Kutz, R.E.; Sampson, J.D.; Pompeu, L.B.; Ledoux, D.R.; Spain, J.N.; Vázquez-Añón, M.; Rottinghaus, G.E. Efficacy of solis, NovasilPlus, and MTB-100 to reduce aflatoxin M1 levels in milk of early to mid lactation dairy cows fed aflatoxin B1. J. Dairy Sci. 2009, 92, 3959–3963. [Google Scholar] [CrossRef] [Green Version]
- Weatherly, M.E.; Pate, R.T.; Rottinghaus, G.E.; Roberti Filho, F.O.; Cardoso, F.C. Physiological responses to a yeast and clay-based adsorbent during an aflatoxin challenge in Holstein cows. Anim. Feed Sci. Technol. 2018, 235, 147–157. [Google Scholar] [CrossRef]
- Pate, R.T.; Paulus Compart, D.M.; Cardoso, F.C. Aluminosilicate Clay Improves Production Responses and Reduces Inflammation During an Aflatoxin Challenge in Lactating Holstein Cows. J. Dairy Sci. 2018, 101, 11421–11434. [Google Scholar] [CrossRef] [Green Version]
- Sulzberger, S.A.; Melnichenko, S.; Cardoso, F.C. Effects of clay after an aflatoxin challenge on aflatoxin clearance, milk production, and metabolism of Holstein cows. J. Dairy Sci. 2017, 100, 1856–1869. [Google Scholar] [CrossRef]
- Rodrigues, R.O.; Rodrigues, R.O.; Ledoux, D.R.; Rottinghaus, G.E.; Borutova, R.; Averkieva, O.; McFadden, T.B. Feed additives containing sequestrant clay minerals and inactivated yeast reduce aflatoxin excretion in milk of dairy cows. J. Dairy Sci. 2019, 102, 6614–6623. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, O.C.M.; Han, J.H.; Staples, C.R.; Adesogan, A.T. Effect of adding a mycotoxin-sequestering agent on milk aflatoxin M1 concentration and the performance and immune response of dairy cattle fed an aflatoxin B1 contaminated diet. J. Dairy Sci. 2012, 95, 5901–5908. [Google Scholar] [CrossRef]
- Maki, C.R.; Allen, S.; Wang, M.; Ward, S.; Phillips, T. Calcium Montmorillonite Clay for the Reduction of Aflatoxin Residues in Milk and Dairy Products. J. Dairy Vet. Sci. 2017, 2, 555587. [Google Scholar]
- Sumantri, I.; Murti, T.W.; Van der Poel, A.F.B.; Boehm, J.; Agus, A. Carry-over of aflatoxin B1-feed into aflatoxin M1-milk in dairy cows treated with natural sources of aflatoxin and bentonite. J. Indones. Trop. Anim. Agric. 2012, 37, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Masoero, F.; Gallo, A.; Diaz, D.; Piva, G.; Moschini, M. Effects of the procedure of inclusion of a sequestering agent in the total mixed ration on proportional aflatoxin M1 excretion into milk of lactating dairy cows. Anim. Feed Sci. Technol. 2009, 150, 34–45. [Google Scholar] [CrossRef]
- Polat, F.; Aksu, T. Determination of Aflatoxin Levels of Feeds Used in Dairy Cow Farms and Their Effects on Blood Parameters and Milk Aflatoxin Levels in Hatay Province. Ataturk Univ. J. Vet. Sci. 2015, 10, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Mojtahedi, M.; Mesgaran, M.D.; Vakili, S.A.; Ghezeljeh, E.A. Effect of esterified glucomannan on carryover of aflatoxin from feed to milk in lactating Holstein dairy cows. Ann. Rev. Res. Biol. 2013, 3, 76–82. [Google Scholar]
- Costamagna, D.; Gaggiotti, M.; Chiericatti, C.A.; Costabel, L.; Audero, G.M.L.; Taverna, M.; Signorini, M.L. Quantification of aflatoxin M1 carry-over rate from feed to soft cheese. Toxicol. Rep. 2019, 6, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yuan, Y.; Yue, T. Aflatoxin M-1 in Milk Products in China and Dietary Risk Assessment. J. Food Prot. 2013, 76, 849–853. [Google Scholar] [CrossRef]
- Keller, L.; Abrunhosa, L.; Keller, K.; Rosa, C.A.; Cavaglieri, L.; Venancio, A. Zearalenone and its derivatives alpha-zearalenol and beta-zearalenol decontamination by saccharomyces cerevisiae strains isolated from bovine forage. Toxins 2015, 7, 3297–3308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Tian, Y.; Chen, S.; Liesenfeld, O. Performance of the Cobas® influenza A/B assay for rapid Pcr-based detection of influenza compared to prodesse ProFlu+ and viral culture. Eur. J. Microbiol. Immunol. 2015, 5, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Shojaei, T.R.; Tabatabaei, M.; Shawky, S.; Salleh, M.A.M.; Bald, D. A review on emerging diagnostic assay for viral detection: The case of avian influenza virus. Mol. Biol. Rep. 2015, 42, 187–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moschini, M.; Masoero, F.; Gallo, A.; Diaz, D. Mucosal absorption of aflatoxin B1 in lactating dairy cows. Ital. J. Anim. Sci. 2007, 6, 324–326. [Google Scholar] [CrossRef]
- Frobish, R.A.; Bradley, B.D.; Wagner, D.D.; Long-Bradley, P.E.; Hairston, H. Aflatoxin residues in milk of dairy cows after ingestion of naturally contaminated grain. J. Food Prot. 1986, 49, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Britzi, M.; Friedman, S.; Miron, J.; Solomon, R.; Cuneah, O.; Shimshoni, J.A.; Soback, S.; Ashkenazi, R.; Armer, S.; Shlosberg, A. Carry-over of aflatoxin B1 to aflatoxin M1 in high yielding israeli cows in mid- and late-lactation. Toxins 2013, 5, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Masoero, F.; Gallo, A.; Moschini, M.; Piva, G.; Diaz, D. Carryover of aflatoxin from feed to milk in dairy cows low or high somatic cell counts. Animal 2007, 1, 1344–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, A.T.; Takabayashi-Yamashita, C.R.; Ono, E.Y.S.; Bagatin, A.K.; Rigobello, F.F.; Kawamura, O.; Hirooka, E.Y.; Itano, E.N. Exposure Assessment of Infants to Aflatoxin M-1 through Consumption of Breast Milk and Infant Powdered Milk in Brazil. Toxins 2016, 8, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahrami, R.; Shahbazi, Y.; Nikousefat, Z. Aflatoxin M-1 in milk and traditional dairy products from west part of Iran: Occurrence and seasonal variation with an emphasis on risk assessment of human exposure. Food Control 2016, 62, 250–256. [Google Scholar] [CrossRef]
- Serraino, A.; Bonilauri, P.; Kerekes, K.; Farkas, Z.; Giacometti, F.; Canever, A.; Zambrini, A.V.; Ambrus, A. Occurrence of Aflatoxin M1 in Raw Milk Marketed in Italy: Exposure Assessment and Risk Characterization. Front. Microbiol. 2019, 10, 2516. [Google Scholar] [CrossRef]
- Oliveira, C.A.F.; Germano, P.M.L.; Bird, C.; Pinto, C.A. Immunochemical assessment of aflatoxin M(1) in milk powder consumed by infants in Sao Paulo, Brazil. Food Addit. Contam. 1997, 14, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.-Y.; Chen, C.-Y. Prevalence of Aflatoxin M-1 in Milk and Its Potential Liver Cancer Risk in Taiwan. J. Food Prot. 2009, 72, 1025–1029. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; AOAC Int.: Washington, DC, USA, 1995. [Google Scholar]
- Vansoest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhao, L.H.; Yu, F. Occurrence of Mycotoxins in Feed Ingredients and Complete Feeds Obtained From the Beijing Region of China. J. Anim. Sci. Biotechnol. 2014, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health (MoH), China. National Food Safety Standard Determination of Aflatoxin M1 in Milk and Milk Products; National Standard No. 5009.24-2016; Ministry of Health: Beijing, China, 2016.
Item 1 | Dietary Treatment 2 | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | AF | AD1 | AD2 | |||
DMI (kg/d) | 20.88 | 20.73 | 20.86 | 20.82 | 1.84 | 0.65 |
Milk yield (kg/d) | 20.85 | 20.91 | 20.97 | 20.82 | 0.25 | 0.15 |
3.5% FCM (kg/d) | 23.79 | 25.13 | 24.11 | 25.79 | 0.71 | 0.98 |
Fat (%) | 4.87 | 4.88 | 4.78 | 4.85 | 0.09 | 0.98 |
Protein (%) | 4.20 | 4.36 | 4.22 | 4.16 | 0.06 | 0.68 |
Lactose (%) | 4.81 | 4.70 | 4.77 | 4.81 | 0.02 | 0.25 |
Solid (%) | 14.36 | 14.47 | 14.26 | 14.26 | 0.15 | 0.96 |
SCC (× 1000/mL) | 196.20 | 188.50 | 249.65 | 190.75 | 20.52 | 0.73 |
Item 1 | Dietary Treatment 2 | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | AF | AD1 | AD2 | |||
Energy metabolism | ||||||
GLU (mmol/L) | 4.15 | 3.95 | 4.33 | 4.40 | 0.06 | 0.31 |
NEFA (μmol/L) | 73.03 | 60.52 | 69.68 | 73.03 | 3.49 | 0.19 |
BHBA (mmol/L) | 0.62 | 0.41 | 0.48 | 0.59 | 0.05 | 0.12 |
Liver function | ||||||
ALT (U/L) | 21.80 | 26.16 | 25.76 | 22.01 | 0.57 | 0.12 |
AST (U/L) | 54.34 | 59.81 | 61.82 | 54.07 | 1.09 | 0.70 |
TP (g/L) | 73.13 | 72.42 | 74.14 | 75.54 | 0.60 | 0.53 |
Oxidative stress | ||||||
T-AOC (U/mL) | 9.49 | 10.45 | 8.84 | 8.64 | 0.37 | 0.61 |
GSHPx (μmol/L) | 385.86 | 409.89 | 402.73 | 401.43 | 9.60 | 0.29 |
SOD (U/mL) | 40.46 | 37.85 | 41.51 | 41.14 | 1.02 | 0.99 |
MDA (nmol/mL) | 3.13 | 2.77 | 3.13 | 3.17 | 0.19 | 0.58 |
Gastrointestinal permeability | ||||||
DAO (ng/mL) | 5.37 | 4.52 | 3.99 | 4.68 | 0.31 | 0.56 |
D-LA (μmol/mL) | 16.59 | 13.34 | 13.97 | 15.83 | 1.13 | 0.18 |
LPS (EU/L) | 352.72 | 311.95 | 331.15 | 348.74 | 23.25 | 0.99 |
Item | Dietary Treatments 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | AF | AD1 | AD2 | |||
AFB1 intake (μg/d) | ND | 168 | 168 | 168 | ||
AFM1 concentration in milk (ng/L) | ND | 93 a | 46 b | 51 b | 7 | 0.04 |
AFM1 excretion 2 (μg/d) | ND | 1.94 a | 0.96 b | 1.06 b | 0.14 | <0.01 |
Transfer rate 3 (%) | \ | 1.16 a | 0.57 b | 0.63 b | 0.01 | <0.01 |
Study | DIM 1 (days) | AFB1 Source 2 | AFB1 Dosage (μg/kg) | Milk Yield (kg/day) | Detoxification Agent | Agent Dosage (%) 3 | Transfer Rate (%) |
---|---|---|---|---|---|---|---|
Maki et al., 2016 [37] | 114 ± 14 | Ap (NRRL-2999) culture (758 mg/kg) | 117 | 21.30 | \ | \ | 1.07 |
21.20 | NovaSil Plus | 0.5% | 0.52 | ||||
20.60 | NovaSil Plus | 1% | 0.32 | ||||
Kutz et al., 2009 [38] | 163 ± 54 | Ap (NRRL-2999) culture (760 mg/kg) | 112.2 | 34.19 | \ | \ | 2.65 |
34.13 | Solis | 0.56% | 1.48 | ||||
33.73 | NovasilPlus | 0.56% | 1.42 | ||||
34.43 | MTB-100 | 0.56% | 2.52 | ||||
Weatherly et al., 2018 [39] | 153 ± 83 | Ap (NRRL-2999) culture (102 mg/kg) | 100 | 32.3 | \ | \ | \ |
35.0 | adsorbent | 30 g/day | \ | ||||
32.1 | adsorbent | 60 g/day | \ | ||||
33.7 | PROT | 60 g/day | \ | ||||
Pate et al., 2018 [40] | 157 ± 43 | Ap (NRRL-2999) culture (102 mg/kg) | 100 | 35.59 | \ | \ | 0.45 |
38.14 | FloMatrix | 113 g/day | 0.49 | ||||
37.17 | FloMatrix | 227 g/day | 0.39 | ||||
Sulzberger et al., 2017 [41] | 146 ± 69 | Ap (NRRL-2999) culture (102 mg/kg) | 100 | 37.83 | \ | \ | 1.37 |
37.57 | Clay | 0.5% | 1.01 | ||||
37.28 | Clay | 1% | 0.98 | ||||
36.44 | Clay | 2% | 0.74 | ||||
Rodrigues et al., 2019 [42] | 183 ± 70 | Ap (NRRL-2999) culture (650 mg/kg) | 76.87 | 37.1 | \ | \ | 2.70 |
77.65 | 36.1 | Toxy-Nil | 0.4% | 1.00 | |||
73.97 | 37.8 | Unike Plus | 0.4% | 1.30 | |||
Ogunade et al., 2016 [33] | 150–200 | Ap (NRRL-2999) culture (Not described) | 75 | 26.6 | \ | \ | 1.13 |
26.5 | SEQ1 | 20 g/day | 1.14 | ||||
26.7 | SEQ2 | 20 g/day | 1.11 | ||||
26.1 | SEQ3 | 20 g/day | 1.08 | ||||
Queiroz et al., 2012 [43] | 295 ± 45 | Ap (NRRL-2999) culture (640 mg/kg) | 75 | 18.9 | \ | \ | 0.61 |
19.9 | Calibrin A | 0.2% | 0.75 | ||||
19.1 | Calibrin A | 1% | 0.51 | ||||
Guo et al., 2019 [17] | 254 ± 19 | Pure AFB1 | 63 | 20 | \ | \ | 1.06 |
64 | 20 | BDP (ANSB060) | 0.2% | 0.76 | |||
Maki et al., 2017 [44] | Not described | Ap (NRRL 2999) culture (758 mg/kg) | 50 | 36.45 | \ | \ | 1.78 |
36.27 | Novasil Plus | 0.125% | 1.50 | ||||
36.18 | Novasil Plus | 0.25% | 1.46 | ||||
Xiong et al., 2015 [2] | 271 ± 29 | Af (No. 3.4409) culture (28.8 mg/kg) | 20 | 21.3 | \ | \ | 0.56 |
21.3 | Solis Mos | 0.25% | 0.46 | ||||
40 | 22.4 | \ | \ | 0.59 | |||
22.6 | Solis Mos | 0.25% | 0.57 | ||||
Sumantri et al., 2012 [45] | 84–98 | Naturally contaminated ground peanut meal (1358 and 13 μg/kg) | 0.30 | 6.75 | \ | \ | 0.12 |
30.62 | 6.72 | \ | \ | 0.10 | |||
30.81 | 6.85 | Bentonite | 0.5% | 0.10 | |||
30.65 | 7.27 | Bentonite | 2.0% | 0.10 | |||
Intanoo et al., 2020 [32] | 180 ± 21 | Naturally contaminated diet (22.28 μg/kg) | 22.28 | 10.03 | \ | \ | 7.26 |
10.23 | CPY1 | 2 g/day | 1.18 | ||||
10.18 | RSY5 | 2 g/day | 1.44 | ||||
10.10 | YSY2 | 2 g/day | 1.69 | ||||
Xiong et al., 2018 [19] | 33 ± 7 | Af (No. 3.4409) culture (28.8 mg/kg) | 20 | 35.7 | \ | \ | 1.38 |
35.5 | Solis Mos | 0.25% | 0.89 | ||||
Masoeroa et al., 2009 [46] | 120 ± 22 | Naturally contaminated corn meal (32.13μg/kg) and Pmx (4.13 μg/kg) | 7.31 | 31.03 | \ | \ | 3.80 |
7.47 | 33.25 | Cay SA | 0.83% | 2.10 | |||
Polat et al., 2015 [47] | Passed peak | Naturally contaminated diet from 20 dairy farms | 5.778 | 19.9 | \ | \ | 2.66 |
Mojtahedi et al., 2013 [48] | 95 ± 17 | Naturally contaminated diet (4.6 μg/kg) | 4.6 | 37.8 | \ | 1.30 | |
37.3 | EG | 18 g/day | 1.47 | ||||
37.6 | EG | 27 g/day | 1.86 | ||||
37.6 | EG | 36 g/day | 1.24 | ||||
Costamagna et al., 2019 [49] | <90 | Naturally contaminated diet (3.4μg/kg) | 3.4 | 34.12 | \ | \ | 0.88 |
90–150 | 30.54 | \ | \ | 1.09 | |||
>150 | 20.15 | \ | \ | 0.56 | |||
Present study | 270 ± 22 | Pure AFB1 | 8 | 20.85 | \ | \ | 1.16 |
20.91 | adsorbent 1 | 15 g/day | 0.57 | ||||
20.97 | adsorbent 2 | 15 g/day | 0.63 |
Age | Milk Consumption 1 (mL/d) | Average Body Weight 2 (kg) | EDI 3 | HI 4 | ||||
---|---|---|---|---|---|---|---|---|
AF | AD1 | AD2 | AF | AD1 | AD2 | |||
2–4 | 151.7 | 13.8 | 1.02 | 0.51 | 0.56 | 5.11 | 2.53 | 2.80 |
4–7 | 130.2 | 17.9 | 0.68 | 0.33 | 0.37 | 3.38 | 1.67 | 1.85 |
7–11 | 136.8 | 25.6 | 0.50 | 0.25 | 0.27 | 2.49 | 1.23 | 1.36 |
11–14 | 141.0 | 36.3 | 0.36 | 0.18 | 0.20 | 1.81 | 0.89 | 0.99 |
14–18 | 133.8 | 49.2 | 0.25 | 0.13 | 0.14 | 1.26 | 0.63 | 0.69 |
18–30 | 120.5 | 57.7 | 0.19 | 0.10 | 0.11 | 0.97 | 0.48 | 0.53 |
30–45 | 109.0 | 60.1 | 0.17 | 0.08 | 0.09 | 0.84 | 0.42 | 0.46 |
45–60 | 118.9 | 59.7 | 0.19 | 0.09 | 0.10 | 0.93 | 0.46 | 0.51 |
60–70 | 127.2 | 57.0 | 0.21 | 0.10 | 0.11 | 1.04 | 0.51 | 0.57 |
>70 | 142.4 | 53.6 | 0.25 | 0.12 | 0.14 | 1.24 | 0.61 | 0.68 |
Ingredients 1 | Amount (% of DM) |
---|---|
Corn silage | 41.72 |
Alfalfa silage | 8.83 |
Oat hay | 4.07 |
Corn-steam flaked | 7.94 |
Soybean meal | 5.96 |
Ground Corn | 12.35 |
Wheat bran | 1.99 |
Cottonseed meal | 7.62 |
Extruded soybean | 1.53 |
DDGS | 2.8 |
Bicarb | 1.48 |
Premix 2 | 2.87 |
Magnesium oxide | 0.48 |
Yeast | 0.36 |
Chemical levels (% of DM) | |
CP | 16.03 |
EE | 3.04 |
NDF | 31.85 |
ADF | 18.5 |
Ash | 8.16 |
NEL 3 (MJ/kg) | 1.59 |
Ca (g/kg) | 0.8 |
P (g/kg) | 0.4 |
Aflatoxin B1, B2, G1, G2 (μg/kg) | ND 4 |
Deoxynivalenol (μg/kg) | ND |
T-2 toxin (μg/kg) | ND |
Zearalenone (μg/kg) | ND |
Ochratoxin A (μg/kg) | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, M.; Wang, E.; Hao, Y.; Ji, S.; Huang, S.; Zhao, L.; Wang, W.; Shao, W.; Wang, Y.; Li, S. Adsorbents Reduce Aflatoxin M1 Residue in Milk of Healthy Dairy Cow Exposed to Moderate Level Aflatoxin B1 in Diet and Its Exposure Risk for Humans. Toxins 2021, 13, 665. https://doi.org/10.3390/toxins13090665
Cha M, Wang E, Hao Y, Ji S, Huang S, Zhao L, Wang W, Shao W, Wang Y, Li S. Adsorbents Reduce Aflatoxin M1 Residue in Milk of Healthy Dairy Cow Exposed to Moderate Level Aflatoxin B1 in Diet and Its Exposure Risk for Humans. Toxins. 2021; 13(9):665. https://doi.org/10.3390/toxins13090665
Chicago/Turabian StyleCha, Manqian, Erdan Wang, Yangyi Hao, Shoukun Ji, Shuai Huang, Lihong Zhao, Wei Wang, Wei Shao, Yajing Wang, and Shengli Li. 2021. "Adsorbents Reduce Aflatoxin M1 Residue in Milk of Healthy Dairy Cow Exposed to Moderate Level Aflatoxin B1 in Diet and Its Exposure Risk for Humans" Toxins 13, no. 9: 665. https://doi.org/10.3390/toxins13090665
APA StyleCha, M., Wang, E., Hao, Y., Ji, S., Huang, S., Zhao, L., Wang, W., Shao, W., Wang, Y., & Li, S. (2021). Adsorbents Reduce Aflatoxin M1 Residue in Milk of Healthy Dairy Cow Exposed to Moderate Level Aflatoxin B1 in Diet and Its Exposure Risk for Humans. Toxins, 13(9), 665. https://doi.org/10.3390/toxins13090665