Knockout of ABC Transporter ABCG4 Gene Confers Resistance to Cry1 Proteins in Ostrinia furnacalis
Abstract
:1. Introduction
2. Results
2.1. Establishment of Homozygotes ABCG4-KO Knockout Strain
2.2. Resistance Level of ABCG4-KO Strain to Cry1 Proteins
2.3. Larva and Pupal Development Duration and Adult Lifespan of ABCG4-KO and ACB-BtS Strain
2.4. Pupation Rate, Emergency Rate and Oviposition Numbers per Female of ABCG4-KO and ACB-BtS Strains
2.5. Population Parameters of ABCG4-KO and ACB-BtS Strains
3. Discussion
4. Materials and Methods
4.1. Insect Strains
4.2. Design and Preparation of Single Guide RNA (sgRNA)
4.3. Microinjection of Cas9 Protein and sgRNA into Embryos
4.4. Identification of ABCG4 Mutations Induced by CRISPR/Cas9
4.5. Homozygous Mutant Strain Construction
4.6. Bt Toxins and Bioassays
4.7. Life Parameter Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nafus, D.M.; Schreiner, I.H. Review of the biology and control of the Asian corn borer, Ostrinia furnacalis (Lep: Pyralidae). Trop. Pest Manag. 1991, 37, 41–56. [Google Scholar] [CrossRef]
- Li, J.; Coates, B.S.; Kim, K.S.; Bourguet, D.; Ponsard, S.; He, K.; Wang, Z. The genetic structure of Asian corn borer, Ostrinia furnacalis, populations in China: Haplotype variance in Northern populations and potential impact on management of resistance to transgenic maize. J. Hered. 2014, 105, 642–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregor, J.D.; Michael, J.F. Insecticide use: Contexts and ecological consequences. Agric. Hum. Values 2007, 24, 281–306. [Google Scholar]
- Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 775–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, C. A global overview of biotech (GM) crops: Adoption, impact and future prospects. GM Crop. 2010, 1, 8–12. [Google Scholar] [CrossRef]
- Hofmann, C.; Lüthy, P.; Hütter, R.; Pliska, V. Binding of the delta endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur. J. Biochem. 1988, 173, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Mark, E.W.; Byron, A.W. Bt: Mode of action and use. Arch. Insect Biochem. Physiol. 2003, 54, 200–211. [Google Scholar]
- Tabashnik, B.E.; Cushing, N.L.; Finson, N.N.; Johnson, M.W. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Èntomol. 1990, 83, 1671–1676. [Google Scholar] [CrossRef]
- Janmaat, A.F.; Myers, J. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proc. R. Soc. Lond. Ser. B 2003, 270, 2263–2270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabashnik, B.E.; Carrière, Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat. Biotechnol. 2017, 35, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Carrière, Y. Global patterns of resistance to Bt crops highlighting pink bollworm in the United States, China, and India. J. Econ. Èntomol. 2019, 112, 2513–2523. [Google Scholar] [CrossRef] [PubMed]
- Calles-Torrez, V.; Knodel, J.J.; Boetel, M.A.; French, B.W.; Fuller, B.W.; Ransom, J.K. Field-evolved resistance of northern and western corn rootworm (Coleoptera: Chrysomelidae) populations to corn hybrids expressing single and pyramided Cry3Bb1 and Cry34/35Ab1 Bt proteins in North Dakota. J. Econ. Entomol. 2019, 112, 1875–1886. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Brévault, T.; Carrière, Y. Insect resistance to Bt crops: Lessons from the first billion acres. Nat. Biotechnol. 2013, 31, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Gholamreza, S.J.; Elena, V.; Reza, S. Bacillus thuringiensis: A successful insecticide with new environmental features and tidings. Appl. Microbiol. Biotechnol. 2017, 101, 2691–2711. [Google Scholar]
- Labbe, R.; Caveney, S.; Donly, C. Genetic analysis of the xenobiotic resistance associated ABC gene subfamilies of the Lepidoptera. Insect Mol. Biol. 2010, 20, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Pu, J.; Chen, F.; Wang, J.; Han, Z. Multiple ATP-binding cassette transporters are involved in insecticide resistance in the small brown planthopper, Laodelphax striatellus. Insect Mol. Biol. 2017, 26, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Gujar, H.; Gordon, J.R.; Haynes, K.F.; Potter, M.F.; Palli, S.R. Bed bugs evolved unique adaptive strategy to resist pyrethroid insecticides. Sci. Rep. 2013, 14, 1456. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.J.; Sun, D.; Kang, S.; Zhou, J.L.; Gong, L.J.; Qin, J.Y.; Guo, L.; Zhu, L.H.; Bai, Y.; Luo, L.; et al. CRISPR/Cas9 mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.). Insect Biochem. Mol. Biol. 2019, 107, 31–38. [Google Scholar] [CrossRef]
- Jin, M.; Yang, Y.; Shan, Y.; Chakrabarty, S.; Cheng, Y.; Soberón, M.; Bravo, A.; Liu, K.; Wu, K.; Xiao, Y. Two ABC transporters are differentially involved in the toxicity of two Bacillus thuringiensis Cry1 toxins to the invasive crop-pest Spodoptera frugiperda (J. E. Smith). Pest Manag. Sci. 2020, 77, 1492–1501. [Google Scholar] [CrossRef]
- Wang, J.; Ma, H.; Zhao, S.; Huang, J.; Yang, Y.; Tabashnik, B.E.; Wu, Y. Functional redundancy of two ABC transporter proteins in mediating toxicity of Bacillus thuringiensis to cotton bollworm. PLoS Pathog. 2020, 16, e1008427. [Google Scholar] [CrossRef]
- Gunnar, B.; Tobias, K.; Marcé, L.; Hans, M. Function analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genomics 2013, 14, 1471–2164. [Google Scholar]
- Mummery-Widmer, J.L.; Yamazaki, M.; Stoeger, T.; Novatchkova, M.; Bhalerao, S.; Chen, D.; Dietzl, G.; Dickson, B.J.; Knoblich, J.A. Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 2009, 458, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewart, G.D.; Howells, A.J. ABC transporters involved in transport of eye pigment precursors in Drosophila melanogaster. Methods Enzymol. 1998, 292, 213–224. [Google Scholar] [CrossRef]
- Tsuji, T.; Gotoh, H.; Morita, S.; Hirata, J.; Minakuchi, Y.; Yaginuma, T.; Toyoda, A.; Niimi, T. Molecular characterization of eye pigmentation-related ABC transporter genes in the ladybird beetle Harmonia axyridis reveals striking gene duplication of the white gene. Zool. Sci. 2018, 35, 260–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Coates, B.S.; Wang, Y.; Wang, Y.; Bai, S.; Wang, Z.; He, K. Down-regulation of aminopeptidase N and ABC transporter subfamily G transcripts in Cry1Ab and Cry1Ac resistant Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae). Int. J. Biol. Sci. 2017, 13, 835–851. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Y.; Wang, Z.; Alejandra, B.; Mario, S.; He, K. Genetic basis of Cry1F-resistance in a laboratory selected Asian corn borer strain and its cross-resistance to other Bacillus thuringiensis toxins. PLoS ONE 2016, 11, e0161189. [Google Scholar] [CrossRef]
- Jurat-Fuentes, J.L.; Heckel, D.G.; Ferré, J. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annu. Rev. Èntomol. 2021, 66, 121–140. [Google Scholar] [CrossRef]
- Caccia, S.; Moar, W.J.; Chandrashekhar, J. Association of CrylAc toxin resistance in Helicoverpa zea (Bod die) with increased alkaline phosphatase levels in the midget lumen. Appl. Environ. Microbiol. 2012, 78, 5690–5698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiewsiri, K.; Wang, P. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin CrylAc in cabbage looper. Proc. Natl. Acad. Sci. USA 2011, 108, 14037–14042. [Google Scholar] [CrossRef] [Green Version]
- Jin, T.; Chang, X.; Catehouse, A.; Wang, Z.; Edwards, M.; He, K. Down regulation and mutation of a cadherin gene associated with CrylAc resistance in the Asian corn borer, Ostrinia. furnacalis (Guenée). Toxins 2014, 6, 2676–2693. [Google Scholar] [CrossRef] [Green Version]
- Yannick, P.; Anne, B.; Sylvie, A.; David, G.H. A P-Glycoprotein is linked to resistance to the Bacillus thuringiensis Cry3Aa toxin in a leaf beetle. Toxins 2016, 8, 362. [Google Scholar]
- Gahan, L.J.; Pauchet, Y.; Vogel, H.; Heckel, D.G. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet. 2010, 6, e1001248. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Chen, W.; Song, X.; Ma, X.; Cotto-Rivera, R.O.; Kain, W.; Chu, H.; Chen, Y.-R.; Fei, Z.; Wang, P. Mutation of ABC transporter ABCA2 confers resistance to Bt toxin Cry2Ab in Trichoplusia ni. Insect Biochem. Mol. Biol. 2019, 112, 103209. [Google Scholar] [CrossRef] [PubMed]
- Fabrick, J.A.; LeRoy, D.M.; Mathew, L.G.; Wu, Y.; Unnithan, G.C.; Yelich, A.J.; Carrière, Y.; Li, X.; Tabashnik, B.E. CRISPR-mediated mutations in the ABC transporter gene ABCA2 confer pink bollworm resistance to Bt toxin Cry2Ab. Sci. Rep. 2021, 11, 10377. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Guo, Z.; Kang, S.; Qin, J.; Gong, L.; Sun, D.; Guo, L.; Zhu, L.; Bai, Y.; Zhang, Z.; et al. Reduced expression of the P-glycoprotein gene PxABCB1 is linked to resistance to Bacillus thuringiensis Cry1Ac toxin in Plutella xylostella (L.). Pest Manag. Sci. 2019, 76, 712–720. [Google Scholar] [CrossRef]
- Jin, M.; Cheng, Y.; Guo, X.; Li, M.; Chakrabarty, S.; Liu, K.; Wu, K.; Xiao, Y. Down-regulation of lysosomal protein ABCB6 increases gossypol susceptibility in Helicoverpa armigera. Insect Biochem. Mol. Biol. 2020, 122, 103387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Jin, M.; Yang, Y.; Zhang, J.; Yang, Y.; Liu, K.; Soberón, M.; Bravo, A.; Xiao, Y.; Wu, K. Synergistic resistance of Helicoverpa armigera to Bt toxins linked to cadherin and ABC transporters mutations. Insect Biochem. Mol. Biol. 2021, 137, 103635. [Google Scholar] [CrossRef]
- Guo, Z.; Kang, S.; Zhu, X.; Xia, J.; Wu, Q.; Wang, S.; Xie, W.; Zhang, Y. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management. Sci. Rep. 2015, 5, 13728. [Google Scholar] [CrossRef] [Green Version]
- Shan, J.; Sun, X.; Li, R.; Zhu, B.; Liang, P.; Gao, X. Identification of ABCG transporter genes associated with chlorantraniliprole resistance in Plutella xylostella (L.). Pest Manag. Sci. 2021, 77, 3491–3499. [Google Scholar] [CrossRef]
- Negri, A.; Ferrari, M.; Nodari, R.; Coppa, E.; Mastrantonio, V.; Zanzani, S.; Porretta, D.; Bandi, C.; Urbanelli, S.; Epis, S. Gene silencing through RNAi and antisense vivo-Morpholino increases the efficacy of pyrethroids on larvae of Anopheles stephensi. Malar. J. 2019, 18, 294. [Google Scholar] [CrossRef]
- He, C.; Liang, J.; Liu, S.; Wang, S.; Wu, Q.; Xie, W.; Zhang, Y. Changes in the expression of four ABC transporter genes in response to imidacloprid in Bemisia tabaci Q (Hemiptera: Aleyrodidae). Pestic. Biochem. Physiol. 2019, 153, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Merzendorfer, H.; Kim, H.S.; Chaudhari, S. Genomic and proteomic studies on the effects of the insect growth regulator diflubenzuron in the model beetle species Tribolium castaneum. Insect Biochem. Mol. Biol. 2012, 42, 264–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, J.C.; Lin, Y.Y.; Chang, C.C.; Hua, K.H.; Chen, M.J.M.; Huang, L.H.; Chen, C.Y. Discovery of organophosphate resistance-related genes associated with well-known resistance mechanisms of Plutella xylostella (L.) (Lepidoptera: Plutellidae) by RNA-Seq. J. Econ. Entomol. 2016, 109, 1378–1386. [Google Scholar] [CrossRef]
- Shang, F.; Niu, J.; Ding, B.-Y.; Zhang, W.; Wei, D.-D.; Wei, D.; Jiang, H.-B.; Wang, J.-J. The miR-9b microRNA mediates dimorphism and development of wing in aphids. Proc. Natl. Acad. Sci. USA 2020, 117, 8404–8409. [Google Scholar] [CrossRef]
- Christou, P.; Capell, T.; Kohli, A.; Gatehouse, J.; Gatehouse, A. Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci. 2006, 11, 302–308. [Google Scholar] [CrossRef]
- Chi, H.; Liu, H. Two new methods for the study of insect population ecology. Acad. Sin. 1985, 24, 225–240. [Google Scholar]
- Chi, H. Life-Table Analysis Incorporating Both Sexes and Variable Development Rates Among Individuals. Environ. Èntomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Chi, H. TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis; National Chung Hsing University: Taichung, Taiwan, 2020. [Google Scholar]
Different Stages | ACB-BtS | ABCG4-KO | ||
---|---|---|---|---|
n | Development Times (d) | n | Development Times (d) | |
1st instar | 140 | 2.19 ± 0.03 a | 131 | 2.67 ± 0.05 b |
2nd instar | 139 | 2.81 ± 0.03 a | 130 | 2.34 ± 0.04 b |
3rd instar | 138 | 1.10 ± 0.03 a | 129 | 1.17 ± 0.04 a |
4th instar | 137 | 2.00 ± 0.03 a | 128 | 2.03 ± 0.04 a |
5th instar | 134 | 4.41 ± 0.07 a | 121 | 5.35 ± 0.12 a |
Pupa stage | 130 | 6.71 ± 0.05 a | 118 | 6.76 ± 0.08 a |
Adult | 111 | 6.67 ± 0.23 a | 102 | 7.62 ± 0.27 a |
Colony | Pupation Rates (%) | Emergency Rates (%) | Oviposition Numbers per Female |
---|---|---|---|
ACB-BtS | 90.28 ± 1.11 a | 85.38 ± 2.74 a | 478.98 ± 38.99 a |
ABCG4-KO | 81.94 ± 2.68 b | 86.44 ± 2.98 a | 406.00 ± 65.04 a |
Colony | Mean Generation Times T (d) | Net Reproductive Rates R0 | Intrinsic Growth Rates r | Finite Increase Rates λ |
---|---|---|---|---|
ACB-BtS | 26.14 ± 0.16 a | 161.60 ± 24.06 a | 0.19 ± 0.06 a | 1.21 ± 0.01 a |
ABCG4-KO | 28.70 ± 0.34 b | 56.53 ± 15.56 b | 0.14 ± 0.01 b | 1.15 ± 0.01 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Q.; Lin, Y.; Wang, X.; Jing, D.; Wang, Z.; He, K.; Bai, S.; Zhang, Y.; Zhang, T. Knockout of ABC Transporter ABCG4 Gene Confers Resistance to Cry1 Proteins in Ostrinia furnacalis. Toxins 2022, 14, 52. https://doi.org/10.3390/toxins14010052
Gao Q, Lin Y, Wang X, Jing D, Wang Z, He K, Bai S, Zhang Y, Zhang T. Knockout of ABC Transporter ABCG4 Gene Confers Resistance to Cry1 Proteins in Ostrinia furnacalis. Toxins. 2022; 14(1):52. https://doi.org/10.3390/toxins14010052
Chicago/Turabian StyleGao, Qing, Yaling Lin, Xiuping Wang, Dapeng Jing, Zhenying Wang, Kanglai He, Shuxiong Bai, Yongjun Zhang, and Tiantao Zhang. 2022. "Knockout of ABC Transporter ABCG4 Gene Confers Resistance to Cry1 Proteins in Ostrinia furnacalis" Toxins 14, no. 1: 52. https://doi.org/10.3390/toxins14010052
APA StyleGao, Q., Lin, Y., Wang, X., Jing, D., Wang, Z., He, K., Bai, S., Zhang, Y., & Zhang, T. (2022). Knockout of ABC Transporter ABCG4 Gene Confers Resistance to Cry1 Proteins in Ostrinia furnacalis. Toxins, 14(1), 52. https://doi.org/10.3390/toxins14010052