Shotgun Metagenomic Sequencing to Assess Cyanobacterial Community Composition following Coagulation of Cyanobacterial Blooms
Abstract
:1. Introduction
2. Results and Discussions
2.1. Cyanobacterial Community Composition Assessed by Shotgun Metagenomic Sequencing
2.2. Impact of Coagulation on Cyanobacterial Richness and Diversity
2.2.1. Principal Component Analysis on the Relative Abundance of Cyanobacterial Community
2.2.2. Effect of Coagulation on Cyanobacterial Community Richness and Diversity
2.3. Impact of Environmental Conditions on Cyanobacterial Community Composition in the Mesocosms before and after Coagulation
3. Conclusions
- The shotgun metagenomic sequencing method is a more robust method that is used to identify cyanobacterial communities when it is compared with the microscopic methods.
- In the beginning of the sampling period, Dolichospermum was the predomiant genus in Missisquoi Bay, while Microcystis was a common genus in all of the mesocosms in Petit Lac St. François.
- The change in the cyanobacterial composition at the genus level in the mesocosms after two days varied across the studied sites and over the sampling time. Therefore, the choice to use Fe2(SO4)3 as an onsite source-control treatment should be made while considering its impact on the cyanobacterial community structure.
- Synechococcus may be satisfactorily removed in coagulated mesocosms.
- The intracellular microcystin concentrations were strongly associated with the presence of Microcystis.
- The cyanobacterial community richness and diversity did not change significantly after the coagulation by Fe2(SO4)3 in any of the mesocosms at either of the sites.
- The dissolved nitrogen content was related to Microcystis in both Missisquoi Bay and Petit Lac St. François, while Synechococcus was influenced by the total nitrogen, dissolved nitrogen, dissolved organic carbon, and dissolved phosphorus contents.
- The source water coagulation process is a potential option for removing toxin-producing cyanobacterial species and intracellular toxins from the water column.
4. Materials and Methods
4.1. Study Sites Description
4.2. Description of the Mesocosm Experiments
4.3. Preparation and Application of Chemical Coagulant
4.4. Sampling and Filtration Procedure
4.5. Sample Analysis
4.5.1. Taxonomic Cell Counts
4.5.2. Nutrient Analysis
4.5.3. Toxin Analysis
4.5.4. DNA Extraction, Metagenomics Preparation and Bioinformatics Analysis
4.5.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atia, A.; Saad, A. Review on Freshwater Blue-Green Algae (Cyanobacteria): Occurrence, Classification and Toxicology. Biosci. Biotechnol. Res. Asia 2014, 11, 1319–1325. [Google Scholar] [CrossRef]
- Whitton, B.A. Diversity, Ecology, and Taxonomy of the Cyanobacteria. In Photosynthetic Prokaryotes; Mann, N.H., Carr, N.G., Eds.; Springer: Boston, MA, USA, 1992; pp. 1–51. [Google Scholar]
- Zamyadi, A.; MacLeod, S.L.; Fan, Y.; McQuaid, N.; Dorner, S.; Sauvé, S.; Prévost, M. Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: A monitoring and treatment challenge. Water Res. 2012, 46, 1511–1523. [Google Scholar] [CrossRef] [PubMed]
- Merel, S.; Walker, D.; Chicana, R.; Snyder, S.; Baurès, E.; Thomas, O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 2013, 59, 303–327. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.; Lambling, P.; Bustamante, H.; Duker, P.; Newcombe, G. Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies. Water Res. 2011, 45, 2954–2964. [Google Scholar] [CrossRef]
- Moradinejad, S.; Trigui, H.; Guerra Maldonado, J.F.; Shapiro, J.; Terrat, Y.; Zamyadi, A.; Dorner, S.; Prévost, M. Diversity Assessment of Toxic Cyanobacterial Blooms during Oxidation. Toxins 2020, 12, 728. [Google Scholar] [CrossRef]
- He, X.; Liu, Y.-L.; Conklin, A.; Westrick, J.; Weavers, L.K.; Dionysiou, D.D.; Lenhart, J.J.; Mouser, P.J.; Szlag, D.; Walker, H.W. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae 2016, 54, 174–193. [Google Scholar] [CrossRef]
- Jalili, F.; Trigui, H.; Guerra Maldonado, J.F.; Dorner, S.; Zamyadi, A.; Shapiro, B.J.; Terrat, Y.; Fortin, N.; Sauvé, S.; Prévost, M. Can Cyanobacterial Diversity in the Source Predict the Diversity in Sludge and the Risk of Toxin Release in a Drinking Water Treatment Plant? Toxins 2021, 13, 25. [Google Scholar] [CrossRef]
- Sun, F.; Pei, H.-Y.; Hu, W.-R.; Li, X.-Q.; Ma, C.-X.; Pei, R.-T. The cell damage of Microcystis aeruginosa in PACl coagulation and floc storage processes. Sep. Purif. Technol. 2013, 115, 123–128. [Google Scholar] [CrossRef]
- Pei, H.; Xu, H.; Wang, J.; Jin, Y.; Xiao, H.; Ma, C.; Sun, J.; Li, H. 16S rRNA Gene Amplicon Sequencing Reveals Significant Changes in Microbial Compositions during Cyanobacteria-Laden Drinking Water Sludge Storage. Environ. Sci. Technol. 2017, 51, 12774–12783. [Google Scholar] [CrossRef]
- Xu, H.; Pei, H.; Jin, Y.; Ma, C.; Wang, Y.; Sun, J.; Li, H. High-throughput sequencing reveals microbial communities in drinking water treatment sludge from six geographically distributed plants, including potentially toxic cyanobacteria and pathogens. Sci. Total Environ. 2018, 634, 769–779. [Google Scholar] [CrossRef]
- Le, K.T.; Goitom, E.; Trigui, H.; Sauvé, S.; Prévost, M.; Dorner, S. The Effects of Ferric Sulfate (Fe2(SO4)3) on the Removal of Cyanobacteria and Cyanotoxins: A Mesocosm Experiment. Toxins 2021, 13, 753. [Google Scholar] [CrossRef] [PubMed]
- Zamyadi, A.; Dorner, S.; Sauvé, S.; Ellis, D.; Bolduc, A.; Bastien, C.; Prévost, M. Species-dependence of cyanobacteria removal efficiency by different drinking water treatment processes. Water Res. 2013, 47, 2689–2700. [Google Scholar] [CrossRef]
- Tromas, N.; Fortin, N.; Bedrani, L.; Terrat, Y.; Cardoso, P.; Bird, D.; Greer, C.W.; Shapiro, B.J. Characterising and predicting cyanobacterial blooms in an 8-year amplicon sequencing time course. ISME J. 2017, 11, 1746–1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vatani, P. Fate of Cyanobacteria after Pre-Oxidation Using H2O2 and CuSO4: A Mesocosm Experiment. Master’s Thesis, Polytechnique Montréal, Montréal, QC, Canada, 2021. [Google Scholar]
- West, M.; Louda, J.W. Effect of external ph on cyanobacterial pigment expression. Fla. Sci. 2011, 74, 181–186. [Google Scholar]
- Kallas, T.; Castenholz, R.W. Rapid transient growth at low pH in the cyanobacterium Synechococcus sp. J. Bacteriol. 1982, 149, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Kallas, T.; Castenholz, R.W. Internal pH and ATP-ADP pools in the cyanobacterium Synechococcus sp. during exposure to growth-inhibiting low pH. J. Bacteriol. 1982, 149, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Yoon, Y.; Hong, W.-Y.; Kim, J.; Cho, Y.-C.; Hwang, S.-J. Application of metagenome analysis to characterize the molecular diversity and saxitoxin-producing potentials of a cyanobacterial community: A case study in the North Han River, Korea. Appl. Biol. Chem. 2018, 61, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Sogge, H.; Lagesen, K.; Tooming-Klunderud, A.; Jakobsen, K.S.; Rohrlack, T. Use of High Throughput Sequencing and Light Microscopy Show Contrasting Results in a Study of Phytoplankton Occurrence in a Freshwater Environment. PLoS ONE 2014, 9, e106510. [Google Scholar] [CrossRef]
- Xu, H.; Pei, H.; Xiao, H.; Jin, Y.; Li, X.; Hu, W.; Ma, C.; Sun, J.; Li, H. Behaviors of Microcystis aeruginosa cells during floc storage in drinking water treatment process. Sci. Rep. 2016, 6, 34943. [Google Scholar] [CrossRef] [Green Version]
- Medinger, R.; Nolte, V.; Pandey, R.; Jost, S.; Ottenwälder, B.; Schlötterer, C.; Boenigk, J. Diversity in a hidden world: Potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol. Ecol. 2010, 19 (Suppl. 1), 32–40. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.H.; Siddle, K.J.; Park, D.J.; Sabeti, P.C. Benchmarking Metagenomics Tools for Taxonomic Classification. Cell 2019, 178, 779–794. [Google Scholar] [CrossRef] [PubMed]
- Giani, A.; Bird, D.; Prairie, Y.; Lawrence, J.F. Empirical study of cyanobacterial toxicity along a trophic gradient of lakes. Can. J. Fish. Aquat. Sci. 2005, 62, 2100–2109. [Google Scholar] [CrossRef]
- Calle, M.L. Statistical Analysis of Metagenomics Data. Genom. Inf. 2019, 17, e6. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.C. Diversity, Taxonomic versus Functional. In Encyclopedia of Biodiversity, 2nd ed.; Levin, S.A., Ed.; Academic Press: Waltham, MA, USA, 2013; pp. 648–656. [Google Scholar]
- Magrann, T.; Dunbar, S.; Boskovic, D.; Hayes, W. Impacts of Microcystis on Algal Biodiversity and Use of New Technology to Remove Microcystis and Dissolved Nutrients. Lakes Reserv. Res. Manag. 2012, 17, 231–239. [Google Scholar] [CrossRef]
- Harke, M.J.; Davis, T.W.; Watson, S.B.; Gobler, C.J. Nutrient-Controlled Niche Differentiation of Western Lake Erie Cyanobacterial Populations Revealed via Metatranscriptomic Surveys. Environ. Sci. Technol. 2016, 50, 604–615. [Google Scholar] [CrossRef] [PubMed]
- Gobler, C.J.; Burkholder, J.M.; Davis, T.W.; Harke, M.J.; Johengen, T.; Stow, C.A.; Van de Waal, D.B. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 2016, 54, 87–97. [Google Scholar] [CrossRef]
- Monchamp, M.-E.; Pick, F.; Beisner, B.; Maranger, R. Nitrogen Forms Influence Microcystin Concentration and Composition via Changes in Cyanobacterial Community Structure. PLoS ONE 2014, 9, e85573. [Google Scholar] [CrossRef]
- Fortin, N.; Munoz-Ramos, V.; Bird, D.; Lévesque, B.; Whyte, L.G.; Greer, C.W. Toxic cyanobacterial bloom triggers in missisquoi bay, lake champlain, as determined by next-generation sequencing and quantitative PCR. Life 2015, 5, 1346–1380. [Google Scholar] [CrossRef] [Green Version]
- Galvez, R.; Levine, S. Research Gate Home Page. Available online: https://www.researchgate.net/publication/237823409Canada-USA_agreement_on_eutrophication_control_and_protection_of_lake_champlain (accessed on 2 June 2022).
- Zamyadi, A.; McQuaid, N.; Prévost, M.; Dorner, S. Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources. J. Environ. Monit. 2012, 14, 579–588. [Google Scholar] [CrossRef]
- McQuaid, N.; Zamyadi, A.; Prevost, M.; Bird, D.F.; Dorner, S. Use of in vivophycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinkingwater source. J. Environ. Monit. 2011, 13, 455–463. [Google Scholar] [CrossRef]
- Wood, S. Increasing Microcystis cell density enhances microcystin synthesis: A mesocosm study. Inland Waters 2012, 2, 17–22. [Google Scholar] [CrossRef]
- Edler, L.; Elbrächter, M. The Utermöhl method for quantitative phytoplankton analysis. Microsc. Mol. Methods Quant. Phytoplankton Anal. 2010, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Lund, J.W.G. A Simple Counting Chamber for Nannoplankton1. Limnol. Oceanogr. 1959, 4, 57–65. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Method 353.2, Revision 2.0: Determination of Nitrate-Nitrite Nitrogen by Automated Colorimetry; United States Environmental Protection Agency: Washington, DC, USA, 1993; pp. 1–15.
- United States Environmental Protection Agency (USEPA). Method 415.1. Organic Carbon, Total (Combustion or Oxidation); United States Environmental Protection Agency: Washington, DC, USA, 1974; pp. 1–3.
- United States Environmental Protection Agency (USEPA). Method 365.3: Phosphorous, All Forms (Colorimetric, Ascorbic Acid, Two Reagent); United States Environmental Protection Agency: Washington, DC, USA, 1978; pp. 1–5.
- Cox, M.P.; Peterson, D.A.; Biggs, P.J. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform. 2010, 11, 485. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Hahn, A.S.; Wu, S.; Hanson, N.W.; Konwar, K.M.; Hallam, S.J. FragGeneScan-plus for scalable high-throughput short-read open reading frame prediction. In Proceedings of the 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Niagara Falls, ON, Canada, 12–15 August 2015; pp. 1–8. [Google Scholar]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Graffelman, J. Compositional Data Analysis in Practice; Greenacre, M.J., Ed.; CRC Press: London, UK, 2018; 136p, ISBN 978-1-138-31661-4. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.B.; Simpson, G.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R Package Version. 2.0-10. CRAN. 2013. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 16 June 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, K.T.N.; Maldonado, J.F.G.; Goitom, E.; Trigui, H.; Terrat, Y.; Nguyen, T.-L.; Husk, B.; Shapiro, B.J.; Sauvé, S.; Prévost, M.; et al. Shotgun Metagenomic Sequencing to Assess Cyanobacterial Community Composition following Coagulation of Cyanobacterial Blooms. Toxins 2022, 14, 688. https://doi.org/10.3390/toxins14100688
Le KTN, Maldonado JFG, Goitom E, Trigui H, Terrat Y, Nguyen T-L, Husk B, Shapiro BJ, Sauvé S, Prévost M, et al. Shotgun Metagenomic Sequencing to Assess Cyanobacterial Community Composition following Coagulation of Cyanobacterial Blooms. Toxins. 2022; 14(10):688. https://doi.org/10.3390/toxins14100688
Chicago/Turabian StyleLe, Kim Thien Nguyen, Juan Francisco Guerra Maldonado, Eyerusalem Goitom, Hana Trigui, Yves Terrat, Thanh-Luan Nguyen, Barry Husk, B. Jesse Shapiro, Sébastien Sauvé, Michèle Prévost, and et al. 2022. "Shotgun Metagenomic Sequencing to Assess Cyanobacterial Community Composition following Coagulation of Cyanobacterial Blooms" Toxins 14, no. 10: 688. https://doi.org/10.3390/toxins14100688
APA StyleLe, K. T. N., Maldonado, J. F. G., Goitom, E., Trigui, H., Terrat, Y., Nguyen, T. -L., Husk, B., Shapiro, B. J., Sauvé, S., Prévost, M., & Dorner, S. (2022). Shotgun Metagenomic Sequencing to Assess Cyanobacterial Community Composition following Coagulation of Cyanobacterial Blooms. Toxins, 14(10), 688. https://doi.org/10.3390/toxins14100688