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Abstract: The emerging Fusarium mycotoxins enniatins (ENNs) have been the focus of new research
because of their well-documented existence in various cereal and grain products. Research findings in-
dicate that reproductive disorders may be caused by exposure to Fusarium mycotoxins, but little work
has evaluated ENNs on reproductive function. Therefore, to determine the effects of ENNA on the
proliferation and steroidogenesis of granulosa cells (GC), experiments were conducted using bovine
GC cultures. In vitro, ENNA (1–5 µM) inhibited (p < 0.05) hormone-induced GC progesterone and
estradiol production. The inhibitory effect of ENNA on estradiol production was more pronounced
in small- than large-follicle GC. In large-follicle GC, 0.3 µM ENNA had no effect (p > 0.10) whereas
1 and 3 µM ENNA inhibited GC proliferation. In small-follicle GC, ENNA (1–5 µM) dramatically
decreased (p < 0.05) GC proliferation. Using cell number data, the IC50 of ENNA was estimated at
2 µM for both follicle sizes. We conclude that ENNA can directly inhibit ovarian function in cattle,
decreasing the proliferation and steroid production of GC.

Keywords: enniatin A; estradiol; progesterone; granulosa cell; in vitro

Key Contribution: In vitro effects of the emerging mycotoxin enniatin A were evaluated on bovine
granulosa cells; demonstrating a decrease of cell proliferation and steroid production.

1. Introduction

Molds produce several species of mycotoxins [1–3] that contaminate various foodstuffs,
feedstuffs, and cereals worldwide including wheat, barley, corn, and rice [4,5]. These myco-
toxins have acute and chronic toxicity and cause carcinogenic and mutagenic effects as well
as reproductive toxicity [4,6–8]. Among the emerging mycotoxins, defined as “mycotoxins,
which are neither routinely determined, nor legislatively regulated” [9] are the enniatins
(ENNs; A, A1, B, B1) which have been isolated in food and feed products and pose a
serious risk on human and animal health [10–13]. Some data exists regarding ENNs toxicity,
concentration levels, occurrence, and metabolism [7,8,14–18]. A recent review summarizes
the effects of ENNB in vivo as well as its in vitro toxicity in several non-reproductive cell
lines [8]. After oral administration of ENNB1 in pigs, fast gastrointestinal absorption
occurred [19]. Intravenous administered ENNB1 caused moderate distribution in pigs and
chickens [11,19,20]. However, the effects of ENNs, particularly ENNA on reproductive
function in farm animals are lacking. Recent studies suggest that ENNs are cytotoxic to
embryos [21,22]. Using mouse blastocysts, 5 and 10 µM ENNB1 exerted cytotoxic effects
and induced a reduction of inner cell mass cells in blastocysts [22]. In ovarian studies, the
effects of other Fusarium mycotoxins (e.g., fumonisin B1 and beauvericin) on granulosa cell
(GC) function have shown that they inhibit cell proliferation and steroidogenesis in cultured
GC from pigs [23] and cattle [24]. However, the effects of ENNs on ovarian function have
not been explored. Therefore, the goal of the present study was to determine the effects of
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ENNA on reproductive function in cattle, and in particular, if ENNA has direct effects on
granulosa cell (GC) proliferation and steroidogenesis.

2. Results
2.1. Experiment 1: Inhibitory Effects of ENNA on Large-Follicle GC Numbers and
Steroid Production

Numbers of large-follicle GC decreased by 30% (p = 0.09) and 60% (p < 0.01) when
ENNA was applied for 2 days at 1 and 3 µM, respectively (Figure 1A). However, 0.3 µM
ENNA had no effect (p > 0.10) on GC numbers.
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Figure 1. Effect of enniatin A on cell numbers after 48 h exposure at 0, 0.3, 1, and 3 µM on bovine
granulosa cells (GC) harvested from large follicles (A). Effect of enniatin A on cell numbers after 48 h
exposure at 0, 1, 3, and 5 µM on bovine GC harvested from small follicles (B). Within a panel, means
without a common letter (a–c) differ (p < 0.05); asterisk indicates mean tends to differ (p < 0.10) from
0 and 0.3 µM means in Panel A.

In large-follicle GC, the main effect of ENNA was significant causing a dose-dependent
decrease (p < 0.05) in estradiol (Figure 2A) and progesterone (Figure 2B) production.
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After 1 and 2 days of treatment, ENNA at 0.3, 1 and 3 µM inhibited (p < 0.0001) estradiol
production by large-follicle GC by over 80% (Figure 2A) and progesterone production by
over 70% (Figure 2B).

2.2. Experiment 2: Inhibitory Effects of ENNA on Small-Follicle GC Numbers and
Steroid Production

In small-follicle GC, the main effect of ENNA was significant causing a dose-dependent
decrease (p < 0.05) in cell proliferation (Figure 1B) and estradiol (Figure 3A) and proges-
terone (Figure 3B) production.

Specifically, 2-day treatment with ENNA significantly reduced GC numbers by 10, 90,
and 95% when applied at 1, 3, and 5 µM, respectively (Figure 1B). ENNA at 1, 3, and 5 µM
inhibited (p < 0.0001) estradiol production by over 99% after 1-day and 2-day exposure
(Figure 3A). Similarly, progesterone production was inhibited (p < 0.01) by over 90% after
exposure to ENNA at 1, 3 and 5 µM (Figure 3B). Using cell number data, the IC50 of ENNA
was estimated at 2 µM for both follicle sizes.
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Figure 3. Effect of enniatin A on estradiol (A) and progesterone (B) production after 24 h and 48 h
exposure at 0, 1, 3, and 5 µM on bovine granulosa cells (GC) harvested from small follicles. Note the
log scale for steroid production. Within a panel, means without a common letter (a–e) differ (p < 0.05).

3. Discussion

Results of the present study indicate that: (1) ENNA inhibited steroid production
induced by FSH plus IGF1 in GC and that the inhibitory effect of ENNA on estradiol
production was much more pronounced in small- vs. large-follicle GC; and (2) ENNA
inhibited proliferation of GC. Thus, the results of the present study indicate for the first
time that ENNA may directly inhibit ovarian follicular function in cattle.

The effects of ENNA on steroid production by GC have not been previously reported.
However, other Fusarium mycotoxins such as beauvericin [7,24], deoxynivalenol [5,23],
and fumonisin B1 [23,24] have been shown to inhibit estradiol and progesterone secretion
as well as GC proliferation in porcine and bovine GC [5,7,11,23,24]. Some of these previous
studies have suggested direct mycotoxin inhibition of CYP19A1 and CYP11A1 mRNA
abundance [23,24], and thus should be the focus of future studies with ENNA. Interestingly,
0.3 µM ENNA had no effect on large-follicle GC numbers but significantly reduced both
estradiol and progesterone production suggesting that the steroidogenic machinery of GC
is more sensitive to ENNA than is the processes of cell proliferation.

Regarding cell proliferation, Fusarium mycotoxins such as ENNB have been reported
to disturb the normal cell cycle and thus have anti-proliferative effects on several cell
types [25]. For example, Gammelsrud et al. (2012) [26] using the murine monocyte-
macrophage RAW 267.4 cell line found that 24 h treatment with ENNB (from 1.25 to 10 µM)
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caused an increase in the percentage of cells in G0/G1 phase. Similarly, Juan-García et al.
(2013) [27] found that ENNB increased the percentage of HepG2 cells arrested at G0/G1
at 48 h suggesting an anti-proliferative activity of ENNB. In Caco-2 cells, 2-day to 3-day
treatment of ENNB (3 µM) caused the arrest of the cell cycle in the G2/M phase [28,29]. The
present study is the first to show potent inhibitory effects of ENNA on the proliferation of
ovarian GC. Previous studies evaluating the effects of Fusarium mycotoxins on granulosa
cell proliferation show that fumonisin B1 and beauvericin reduce cell growth after 24 h
and 48 h of treatment [23,24] but the mechanism of inhibition was not evaluated. A recent
study has reported that beauvericin reduces the mRNA abundance of ubiquitin-like with
plant homeodomain and really interesting new gene finger domains 1 (UHRF1), a multi-
domain nuclear protein that plays an important role in DNA repair and DNA replication
controlling the onset of S phase [30], but whether ENNA affects GC proliferation via UHRF1
will require further study. Further work will also be required to determine the stage of the
cell cycle that is disrupted by ENNA as well as evaluate if ENNA activates programmed
cell death. The ENNA IC50 identified for GC proliferation in the present study (i.e., 2 µM) is
similar to toxicity assay IC50 reported for other cell types including J774 macrophages [31],
CHO-K1 cells [32], and neuroblastoma cells [33].

Other possible modes of action of ENNA can be inferred from studies of Hoornstra and
co-workers [34] who found that 500 ng/mL (0.7 µM) ENNA, ENNA1, ENNB, and ENNB1
inhibited sperm motility by depolarizing the mitochondria and hyperpolarizing the plasma
membrane of sperm cells [34]. Also, it was observed that sperm cells exposed to 0.6 µg/mL
(1 µM) ENNB in media with 4 mM (physiological) or 1 mM (low) concentration of K+, had
depolarization of mitochondrial membrane potential [35]. Mitochondria play a key role in
GC steroidogenesis [36–38], but whether depolarization of mitochondria is involved in how
ENNA affects steroid production in GC will require further study. Perhaps this is why steroid
production of large-follicle GC was more sensitive to ENNA than cell proliferation in the
present study. In Leydig cells, 0.01–10 µM ENNB did not affect the viability of cells, whereas
100 µM ENNB caused a 21% loss of cell viability in LH-stimulated Leydig cells [39]. In
LH-stimulated Leydig cells, 0.01 and 10 µM ENNB had no effect on testosterone production
whereas 100 µM ENNB reduced estradiol and testosterone production suggesting that at high
(100 µM) doses, ENNB inhibits Leydig cell viability and steroid production. Kalayou et al.
(2015) [39] also reported that 10 µM ENNB inhibited progesterone and cortisol production
by human adrenocortical carcinoma cells. In the present study, much lower doses of ENNA
(i.e., 0.3–5 µM) inhibited steroid production by GC. Thus, ENNs significantly reduced steroid
production in testicular, adrenal, and ovarian cells. Based on concentrations of ENNA
reported in livestock feed [40–43], maximal concentrations of ENNA achieved in the blood of
cattle would be estimated to range between 0.4 nM and 2.8 µM. Because ENNs co-occur with
other mycotoxins in food and feed, additional in vitro studies evaluating ENNs and other
emerging mycotoxin combinations are needed [8,16,36].

4. Conclusions

In conclusion, these results demonstrate that ENNA inhibits bovine granulosa cell
proliferation and steroidogenesis in a dose-dependent manner suggesting its potential to
impair reproductive function in cattle and act as a natural endocrine disruptor. Additional
research is required to ascertain the intracellular mechanism(s) by which GC proliferation
and steroidogenesis are inhibited by ENNA. Moreover, it is clear that more data on ENNs,
alone or in a mixture, are urgently required for a correct risk assessment, and a future
legislative approach.

5. Materials and Methods
5.1. Tissues, Hormones, and Reagents

There were no live animals used in this study, so no ethical approval was required.
Bovine ovaries were collected at an abattoir where humane slaughter practices were followed,
according to USDA guidelines. The hormones and reagents used in cell culture were: ovine
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follicle-stimulating hormone (FSH; NIDDK-oFSH-20; activity: 175 × NIH-FSH-S1 U/mg)
from the National Hormone and Pituitary Program (Torrance, CA, USA), recombinant human
IGF1 from R&D Systems (Minneapolis, MN, USA); testosterone from Steraloids (Wilton, NH,
USA); and fetal calf serum (FCS) from Atlanta Biologicals (Atlanta, GA, USA); ENNA, Dul-
becco’s modified Eagle’s medium (DMEM), Ham’s nutrient mixture F-12 (F12), collagenase,
DNase, gentamycin, glutamine, and sodium bicarbonate from Sigma-Aldrich, Inc. (St. Louis,
MO, USA).

5.2. Cell Culture

Ovaries from non-pregnant beef cows were collected from a local abattoir and based
on surface diameter, GC was collected and prepared from small (1 to 5 mm) and large (8 to
22 mm) follicles as previously described [24,44]. The viability of GC from small and large
follicles was determined by the trypan blue exclusion method and averaged 58 ± 7% and
64 ± 6%, respectively, and is similar to viabilities reported in previous studies [45–48].

Viable cells (2 × 105 cells in 28–75 µL of medium) were plated on 24-well Falcon
multiwell plates (Becton Dickinson, Lincoln Park, NJ, USA) in basal medium (1 mL) con-
taining 10% FCS (v/v) and cultured at 38.5 ◦C in 10% FCS for the first 48 h as previously
described [23,24,45,49]. The various treatments were applied in serum-free medium contain-
ing testosterone (500 ng/mL, as an estrogen precursor) for 48 h with a medium change at 24 h.
The medium was collected for steroid radioimmunoassay (RIA) and cells were collected for
cell counting (see Section 5.3). The concentrations of FSH and IGF1 were selected based on
previous studies [24,45,50]. Because steroid production in this culture system is maximized
with a combined treatment of FSH and IGF1 and only weakly responsive to either FSH or
IGF1 alone [24,45], FSH was used in combination with IGF1 for all experiments.

Experiment 1 evaluated the dose-response effect of ENNA on hormone-induced
proliferation and steroidogenesis of bovine GC from large follicles. The GC from large
follicles was collected, cultured for 48 h in 10% FCS and then cultured for an additional
48 h in the presence of FSH (30 ng/mL), IGF1 (30 ng/mL), and testosterone (500 ng/mL, as
an estrogen precursor) with various doses of 0, 0.3, 1 and 3 µM ENNA. The medium was
changed every 24 h. Cells were enumerated on day 2 and the medium was collected on
days 1 and 2 for RIA to measure estradiol and progesterone concentrations (see Section 5.3).
Doses of ENNA were selected based on previous in vitro studies [21,22,34,51].

Experiment 2 evaluated the dose-response effect of ENNA on hormone-induced cell
numbers and steroid production of small-follicle GC. Cells were cultured for 48 h in 10%
FCS and then cultured for an additional 48 h in the presence of FSH (30 ng/mL), IGF1
(30 ng/mL), and testosterone (500 ng/mL) with or without various doses of ENNA (0, 1, 3
and 5 µM). Cells were counted on day 2 and the medium was collected on days 1 and 2
for RIA to measure estradiol and progesterone concentrations (see Section 5.3). Doses of
ENNA were selected based on previous in vitro studies [21,22,34,51]. The 24 h and 48 h
treatment durations in Experiments 1 and 2 were selected based on our previous studies
with other mycotoxins [23,24].

5.3. Determination of Steroid Concentrations and Cell Numbers

The medium was collected from individual wells and frozen at −20 ◦C for subsequent
determination of concentrations of estradiol and progesterone via RIA as previously de-
scribed [24,48]. A 24 h period of testosterone exposure to GC allows for a direct measure
of functional aromatase activity [49]. The intra-assay coefficients of variation averaged
5.8% and 9.3% for the progesterone and estradiol RIA, respectively. The numbers of
cells in the same wells in that medium was collected were determined as previously de-
scribed [24,48,52] using a Coulter counter (model Z2; Beckman Coulter, Inc., Miami, FL,
USA). The intra-assay coefficients of variation averaged 2.0 ± 0.8%.
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5.4. Statistical Analysis

Data are presented as the least squares means (± SEM) of measurements from three
pools of cells (i.e., biological replicates) with each pool of cells collected from at least
10 individual animals for small-follicle GC and at least 5 individual animals for large-follicle
GC, and each replicated experiment (i.e., a pool of cells) had three technical replicates of
cells per treatment. Treatment effects and interactions were determined via ANOVA using
the general linear models procedure of SAS for Windows (ver. 9.4, SAS Institute Inc., Cary,
NC, USA). Exp. 1 and 2 were analyzed as 2 × 4 factorial ANOVA with day and ENNA
dose as the main effects and their interactions. Specific differences in cell numbers and
steroid production were determined using Fisher’s protected least significant difference
procedure [53]. Significance was declared at p < 0.05.
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