Occurrence and Determination of Alternaria Mycotoxins Alternariol, Alternariol Monomethyl Ether, and Tentoxin in Wheat Grains by QuEChERS Method
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemicals and Reagents
5.2. Sample Collection, Spiking, and Extraction
5.3. Instrumentation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shewry, P.R.; Hey, S.J. The Contribution of Wheat to Human Diet and Health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef] [PubMed]
- Horrigan, L.; Lawrence, R.S.; Walker, P. How Sustainable Agriculture Can Address the Environmental and Human Health Harms of Industrial Agriculture. Environ. Health Perspect. 2002, 110, 445–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topping, D. Cereal Complex Carbohydrates and Their Contribution to Human Health. J. Cereal Sci. 2007, 46, 220–229. [Google Scholar] [CrossRef]
- Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.; Willing, B.P. Dietary Fiber and Intestinal Health of Monogastric Animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data (accessed on 2 September 2022).
- Shiferaw, B.; Smale, M.; Braun, H.-J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops That Feed the World 10. Past Successes and Future Challenges to the Role Played by Wheat in Global Food Security. Food Sec. 2013, 5, 291–317. [Google Scholar] [CrossRef] [Green Version]
- McDonald, A.J.; Balwinder-Singh; Keil, A.; Srivastava, A.; Craufurd, P.; Kishore, A.; Kumar, V.; Paudel, G.; Singh, S.; Singh, A.K.; et al. Time Management Governs Climate Resilience and Productivity in the Coupled Rice–Wheat Cropping Systems of Eastern India. Nat. Food 2022, 3, 542–551. [Google Scholar] [CrossRef]
- Bergh, K.; Chew, A.; Gugerty, M.K.; Anderson, C.L. Wheat Value Chain: Ethiopia. Gates Open Res 2019, 3, 1380. [Google Scholar] [CrossRef]
- Hunt, E.; Femia, F.; Werrell, C.; Christian, J.I.; Otkin, J.A.; Basara, J.; Anderson, M.; White, T.; Hain, C.; Randall, R.; et al. Agricultural and Food Security Impacts from the 2010 Russia Flash Drought. Weather Clim. Extrem. 2021, 34, 100383. [Google Scholar] [CrossRef]
- Noort, M.W.J.; Renzetti, S.; Linderhof, V.; du Rand, G.E.; Marx-Pienaar, N.J.M.M.; de Kock, H.L.; Magano, N.; Taylor, J.R.N. Towards Sustainable Shifts to Healthy Diets and Food Security in Sub-Saharan Africa with Climate-Resilient Crops in Bread-Type Products: A Food System Analysis. Foods 2022, 11, 135. [Google Scholar] [CrossRef]
- Delcour, J.A.; Joye, I.J.; Pareyt, B.; Wilderjans, E.; Brijs, K.; Lagrain, B. Wheat Gluten Functionality as a Quality Determinant in Cereal-Based Food Products. Annu. Rev. Food Sci. Technol. 2012, 3, 469–492. [Google Scholar] [CrossRef]
- Day, L.; Augustin, M.A.; Batey, I.L.; Wrigley, C.W. Wheat-Gluten Uses and Industry Needs. Trends Food Sci. Technol. 2006, 17, 82–90. [Google Scholar] [CrossRef]
- Igrejas, G.; Branlard, G. The Importance of Wheat. In Wheat Quality For Improving Processing And Human Health; Igrejas, G., Ikeda, T.M., Guzmán, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–7. ISBN 978-3-030-34163-3. [Google Scholar]
- Contò, F.; Antonazzo, A.P.; Conte, A.; Cafarelli, B. Consumers Perception of Traditional Sustainable Food: An Exploratory Study on Pasta Made from Native Ancient Durum Wheat Varieties. Ital. Rev. Agric. Econ. 2016, 71, 325–337. [Google Scholar] [CrossRef]
- Vapa Tankosić, J.; Puvača, N.; Giannenas, I.; Tufarelli, V.; Ignjatijević, S. Food Safety Policy in the European Union. J Agron Technol. Eng. Manag. 2022, 5, 712–717. [Google Scholar] [CrossRef]
- Heshmati, A.; Mozaffari Nejad, A.S.; Mehri, F. Occurrence, Dietary Exposure, and Risk Assessment of Aflatoxins in Wheat Flour from Iran. Int. J. Environ. Anal. Chem. 2021, 1–14. [Google Scholar] [CrossRef]
- Tebben, L.; Shen, Y.; Li, Y. Improvers and Functional Ingredients in Whole Wheat Bread: A Review of Their Effects on Dough Properties and Bread Quality. Trends Food Sci. Technol. 2018, 81, 10–24. [Google Scholar] [CrossRef]
- Khatkar, B.S.; Fido, R.J.; Tatham, A.S.; Schofield, J.D. Functional Properties of Wheat Gliadins. II. Effects on Dynamic Rheological Properties of Wheat Gluten. J. Cereal Sci. 2002, 35, 307–313. [Google Scholar] [CrossRef]
- de Solier, I. TV Dinners: Culinary Television, Education and Distinction. Continuum 2005, 19, 465–481. [Google Scholar] [CrossRef]
- Young, W.; Hwang, K.; McDonald, S.; Oates, C.J. Sustainable Consumption: Green Consumer Behaviour When Purchasing Products. Sustain. Dev. 2010, 18, 20–31. [Google Scholar] [CrossRef]
- Vejdovszky, K.; Hahn, K.; Braun, D.; Warth, B.; Marko, D. Synergistic Estrogenic Effects of Fusarium and Alternaria Mycotoxins in Vitro. Arch. Toxicol. 2017, 91, 1447–1460. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.E.H.; Urban, K.; Köppen, R.; Siegel, D.; Korn, U.; Koch, M. Mycotoxins as Antagonistic or Supporting Agents in the Interaction between Phytopathogenic Fusarium and Alternaria Fungi. World Mycotoxin J. 2015, 8, 311–321. [Google Scholar] [CrossRef]
- Medina, Á.; Valle-Algarra, F.M.; Mateo, R.; Gimeno-Adelantado, J.V.; Mateo, F.; Jiménez, M. Survey of the Mycobiota of Spanish Malting Barley and Evaluation of the Mycotoxin Producing Potential of Species of Alternaria, Aspergillus and Fusarium. Int. J. Food Microbiol. 2006, 108, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Tittlemier, S.A.; Blagden, R.; Chan, J.; Gaba, D.; Mckendry, T.; Pleskach, K.; Roscoe, M. Fusarium and Alternaria Mycotoxins Present in Canadian Wheat and Durum Harvest Samples. Can. J. Plant Pathol. 2019, 41, 403–414. [Google Scholar] [CrossRef]
- Patriarca, A.; Fernández Pinto, V. Prevalence of Mycotoxins in Foods and Decontamination. Curr. Opin. Food Sci. 2017, 14, 50–60. [Google Scholar] [CrossRef]
- Pinto, V.E.F.; Patriarca, A. Alternaria Species and Their Associated Mycotoxins. In Mycotoxigenic Fungi; Moretti, A., Susca, A., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; Volume 1542, pp. 13–32. ISBN 978-1-4939-6705-6. [Google Scholar]
- Dall’Asta, C.; Cirlini, M.; Falavigna, C. Mycotoxins from Alternaria: Toxicological Implications. In Advances in Molecular Toxicology; Fishbein, J.C., Heilman, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 8, pp. 107–121. [Google Scholar]
- Müller, M.E.H.; Korn, U. Alternaria Mycotoxins in Wheat—A 10 Years Survey in the Northeast of Germany. Food Control 2013, 34, 191–197. [Google Scholar] [CrossRef]
- Mallmann, C.A.; Simões, C.T.; Vidal, J.K.; da Silva, C.R.; de Lima Schlösser, L.M.; de Almeida, C.A.A. Occurrence and Concentration of Mycotoxins in Maize Dried Distillers’ Grains Produced in Brazil. World Mycotoxin J. 2021, 14, 259–268. [Google Scholar] [CrossRef]
- Mao, J.; Zheng, N.; Wen, F.; Guo, L.; Fu, C.; Ouyang, H.; Zhong, L.; Wang, J.; Lei, S. Multi-Mycotoxins Analysis in Raw Milk by Ultra High Performance Liquid Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry. Food Control 2018, 84, 305–311. [Google Scholar] [CrossRef]
- Sengun, I.; Yaman, D.; Gonul, S. Mycotoxins and Mould Contamination in Cheese: A Review. World Mycotoxin J. 2008, 1, 291–298. [Google Scholar] [CrossRef]
- Benkerroum, N. Mycotoxins in Dairy Products: A Review. Int. Dairy J. 2016, 62, 63–75. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, J.; Yan, Z.; Li, Z.; Cheng, Y.; Chang, W. Occurrence and Co-Occurrence of Mycotoxins in Nuts and Dried Fruits from China. Food Control 2018, 88, 181–189. [Google Scholar] [CrossRef]
- Molyneux, R.J.; Mahoney, N.; Kim, J.H.; Campbell, B.C. Mycotoxins in Edible Tree Nuts. Int. J. Food Microbiol. 2007, 119, 72–78. [Google Scholar] [CrossRef]
- Luo, S.; Du, H.; Kebede, H.; Liu, Y.; Xing, F. Contamination Status of Major Mycotoxins in Agricultural Product and Food Stuff in Europe. Food Control 2021, 127, 108120. [Google Scholar] [CrossRef]
- Whitaker, T.B. Detecting Mycotoxins in Agricultural Commodities. Mol. Biotechnol. 2003, 23, 61–71. [Google Scholar] [CrossRef]
- Scott, P.M. Analysis of Agricultural Commodities and Foods for Alternaria Mycotoxins. J. Aoac Int. 2001, 84, 1809–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.B.; Patriarca, A.; Magan, N. Alternaria in Food: Ecophysiology, Mycotoxin Production and Toxicology. Mycobiology 2015, 43, 93–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, A.; Gkrillas, A.; Dorne, J.L.; Dall’Asta, C.; Palumbo, R.; Lima, N.; Battilani, P.; Venâncio, A.; Giorni, P. Pre- and Postharvest Strategies to Minimize Mycotoxin Contamination in the Rice Food Chain. Compr. Rev. Food Sci. Food Saf. 2019, 18, 441–454. [Google Scholar] [CrossRef]
- Čolović, R.; Puvača, N.; Cheli, F.; Avantaggiato, G.; Greco, D.; Đuragić, O.; Kos, J.; Pinotti, L. Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed. Toxins 2019, 11, 617. [Google Scholar] [CrossRef] [Green Version]
- Vuković, G.; Stojanović, T.; Konstantinović, B.; Bursić, V.; Puvača, N.; Popov, M.; Samardžić, N.; Petrović, A.; Marinković, D.; Roljević Nikolić, S.; et al. Atropine and Scopolamine in Maize Products from the Retail Stores in the Republic of Serbia. Toxins 2022, 14, 621. [Google Scholar] [CrossRef]
- Puvača, N.; Bursić, V.; Vuković, G.; Budakov, D.; Petrović, A.; Merkuri, J.; Avantaggiato, G.; Cara, M. Ascomycete Fungi (Alternaria Spp.) Characterization as Major Feed Grains Pathogens. J. Agron. Technol. Eng. Manag. 2020, 3, 499–505. [Google Scholar]
- Cara, M.; Toska, M.; Frasheri, D.; Baroncelli, R.; Sanzani, S.M. Alternaria Species Causing Pomegranate and Citrus Fruit Rots in Albania. J. Plant Dis. Prot. 2022, 129, 1095–1104. [Google Scholar] [CrossRef]
- Walravens, J.; Mikula, H.; Rychlik, M.; Asam, S.; Devos, T.; Njumbe Ediage, E.; Diana Di Mavungu, J.; Jacxsens, L.; Van Landschoot, A.; Vanhaecke, L.; et al. Validated UPLC-MS/MS Methods To Quantitate Free and Conjugated Alternaria Toxins in Commercially Available Tomato Products and Fruit and Vegetable Juices in Belgium. J. Agric. Food Chem. 2016, 64, 5101–5109. [Google Scholar] [CrossRef] [Green Version]
- Prendes, L.P.; Merín, M.G.; Zachetti VG, L.; Pereyra, A.; Ramirez, M.L.; Morata de Ambrosini, V.I. Impact of Antagonistic Yeasts from Wine Grapes on Growth and Mycotoxin Production by Alternaria Alternata. J. Appl. Microbiol. 2021, 131, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Fraeyman, S.; Croubels, S.; Devreese, M.; Antonissen, G. Emerging Fusarium and Alternaria Mycotoxins: Occurrence, Toxicity and Toxicokinetics. Toxins 2017, 9, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrader, T.J.; Cherry, W.; Soper, K.; Langlois, I. Further Examination of the Effects of Nitrosylation on Alternaria Alternata Mycotoxin Mutagenicity in Vitro. Mutat. Res. /Genet. Toxicol. Environ. Mutagen. 2006, 606, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O.; Pan, Z.; Bajsa-Hirschel, J. Proving the Mode of Action of Phytotoxic Phytochemicals. Plants 2020, 9, 1756. [Google Scholar] [CrossRef]
- Solhaug, A.; Karlsøen, L.M.; Holme, J.A.; Kristoffersen, A.B.; Eriksen, G.S. Immunomodulatory Effects of Individual and Combined Mycotoxins in the THP-1 Cell Line. Toxicol. Vitr. 2016, 36, 120–132. [Google Scholar] [CrossRef] [Green Version]
- Tiemann, U.; Tomek, W.; Schneider, F.; Müller, M.; Pöhland, R.; Vanselow, J. The Mycotoxins Alternariol and Alternariol Methyl Ether Negatively Affect Progesterone Synthesis in Porcine Granulosa Cells in Vitro. Toxicol. Lett. 2009, 186, 139–145. [Google Scholar] [CrossRef]
- Solfrizzo, M. Recent Advances on Alternaria Mycotoxins. Curr. Opin. Food Sci. 2017, 17, 57–61. [Google Scholar] [CrossRef]
- Arcella, D.; Eskola, M.; Gómez Ruiz, J.A. Dietary Exposure Assessment to Alternaria Toxins in the European Population. EFSA J. 2016, 14, e04654. [Google Scholar] [CrossRef]
- Topi, D.; Tavčar-Kalcher, G.; Pavšič-Vrtač, K.; Babič, J.; Jakovac-Strajn, B. Alternaria Mycotoxins in Grains from Albania: Alternariol, Alternariol Monomethyl Ether, Tenuazonic Acid and Tentoxin. World Mycotoxin J. 2019, 12, 89–99. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, J.; Yan, Z.; Li, Z.; Cheng, Y.; Farooq, S. Multi-Mycotoxin Exposure and Risk Assessments for Chinese Consumption of Nuts and Dried Fruits. J. Integr. Agric. 2018, 17, 1676–1690. [Google Scholar] [CrossRef]
- Shi, H.; Li, S.; Bai, Y.; Prates, L.L.; Lei, Y.; Yu, P. Mycotoxin Contamination of Food and Feed in China: Occurrence, Detection Techniques, Toxicological Effects and Advances in Mitigation Technologies. Food Control 2018, 91, 202–215. [Google Scholar] [CrossRef]
- Bhat, R.; Rai, R.V.; Karim, A. Mycotoxins in Food and Feed: Present Status and Future Concerns. Compr. Rev. Food Sci. Food Saf. 2010, 9, 57–81. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.-F.; Zhou, X.-W.; Wang, F.; Shen, Y.-D.; Xiao, Z.-L.; Zhang, S.-W.; Li, Y.-J.; Wang, H. Development of a Monoclonal Antibody-Based ELISA for the Detection of Alternaria Mycotoxin Tenuazonic Acid in Food Samples. Food Anal. Methods 2020, 13, 1594–1602. [Google Scholar] [CrossRef]
- Man, Y.; Liang, G.; Li, A.; Pan, L. Analytical Methods for the Determination of Alternaria Mycotoxins. Chromatographia 2017, 80, 9–22. [Google Scholar] [CrossRef]
- Hickert, S.; Bergmann, M.; Ersen, S.; Cramer, B.; Humpf, H.-U. Survey of Alternaria Toxin Contamination in Food from the German Market, Using a Rapid HPLC-MS/MS Approach. Mycotoxin Res. 2016, 32, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Fernández Pinto, V. Detection and Determination of Alternaria Mycotoxins in Fruits and Vegetables. In Mycotoxins in Fruits and Vegetables; Barkai-Golan, R., Paster, N., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 271–278. ISBN 978-0-12-374126-4. [Google Scholar]
- Myresiotis, C.K.; Testempasis, S.; Vryzas, Z.; Karaoglanidis, G.S.; Papadopoulou-Mourkidou, E. Determination of Mycotoxins in Pomegranate Fruits and Juices Using a QuEChERS-Based Method. Food Chem. 2015, 182, 81–88. [Google Scholar] [CrossRef]
- Stojanovic, T.; Vukovic, G.; Petrovic, A.; Konstantinovic, B.; Puvača, N.; Marinkovic, D.; Gvozdenac, S.; Bursic, V. Determination of Tropane Alkaloids in Corn Puffs by the LC-MS/MS. Zb. Matice Srp. Za Prir. Nauk. 2021, 141, 69–80. [Google Scholar] [CrossRef]
- Juan, C.; Mañes, J.; Font, G.; Juan-García, A. Determination of Mycotoxins in Fruit Berry By-Products Using QuEChERS Extraction Method. LWT 2017, 86, 344–351. [Google Scholar] [CrossRef]
- Tamura, M.; Uyama, A.; Mochizuki, N. Development of a Multi-Mycotoxin Analysis in Beer-Based Drinks by a Modified QuEChERS Method and Ultra-High-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry. Anal. Sci. 2011, 27, 629. [Google Scholar] [CrossRef] [Green Version]
- Tolosa, J.; Barba, F.J.; Font, G.; Ferrer, E. Mycotoxin Incidence in Some Fish Products: QuEChERS Methodology and Liquid Chromatography Linear Ion Trap Tandem Mass Spectrometry Approach. Molecules 2019, 24, 527. [Google Scholar] [CrossRef] [Green Version]
- Frenich, A.G.; Romero-González, R.; Gómez-Pérez, M.L.; Vidal, J.L.M. Multi-Mycotoxin Analysis in Eggs Using a QuEChERS-Based Extraction Procedure and Ultra-High-Pressure Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry. J. Chromatogr. A 2011, 1218, 4349–4356. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No 401/2006 of 23 February 2006 Laying down the Methods of Sampling and Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs (Text with EEA Relevance); European Union: Brussels, Belgium, 2006; Volume 070.
- Commission Recommendation (EU) 2022/553 of 5 April 2022 on Monitoring the Presence of Alternaria Toxins in Food; European Union: Brussels, Belgium, 2022; Volume 107.
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Szarka, N.; Haufe, H.; Lange, N.; Schier, F.; Weimar, H.; Banse, M.; Sturm, V.; Dammer, L.; Piotrowski, S.; Thrän, D. Biomass Flow in Bioeconomy: Overview for Germany. Renew. Sustain. Energy Rev. 2021, 150, 111449. [Google Scholar] [CrossRef]
- Tralamazza, S.M.; Piacentini, K.C.; Iwase, C.H.T.; Rocha, L.d.O. Toxigenic Alternaria Species: Impact in Cereals Worldwide. Curr. Opin. Food Sci. 2018, 23, 57–63. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to Prevent Mycotoxin Contamination of Food and Animal Feed: A Review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef]
- Afsah-Hejri, L.; Jinap, S.; Hajeb, P.; Radu, S.; Shakibazadeh, S. A Review on Mycotoxins in Food and Feed: Malaysia Case Study. Compr. Rev. Food Sci. Food Saf. 2013, 12, 629–651. [Google Scholar] [CrossRef]
- Romero Bernal, Á.R.; Reynoso, C.M.; García Londoño, V.A.; Broggi, L.E.; Resnik, S.L. Alternaria Toxins in Argentinean Wheat, Bran, and Flour. Food Addit. Contam. Part B 2019, 12, 24–30. [Google Scholar] [CrossRef]
- Kiseleva, M.G.; Sedova, I.B.; Chalyy, Z.A.; Zakharova, L.P.; Aristarkhova, T.V.; Tutelyan, V.A. Multi-Mycotoxin Screening of Food Grain Produced in Russia in 2018. Agric. Biol. 2021, 56, 559–577. [Google Scholar] [CrossRef]
- Vuković, G.; Bursić, V.; Stojanović, T.; Puvača, N.; Marinković, D.; Petrović, A.; Konstantinović, B.; Samardžić, N.; Popov, M. A “Dilute-and-Shoot” Method for the Alternaria Mycotoxins Determination in Wheat. Acta Agric. Serbica 2022, 27, 73–78. [Google Scholar] [CrossRef]
- Castañares, E.; Pavicich, M.A.; Dinolfo, M.I.; Moreyra, F.; Stenglein, S.A.; Patriarca, A. Natural Occurrence of Alternaria Mycotoxins in Malting Barley Grains in the Main Producing Region of Argentina. J. Sci. Food Agric. 2020, 100, 1004–1011. [Google Scholar] [CrossRef]
- Gashgari, R.; Ameen, F.; Al-Homaidi, E.; Gherbawy, Y.; Al Nadhari, S.; Vijayan, V. Mycotoxigenic Fungi Contaminating Wheat; Toxicity of Different Alternaria Compacta Strains. Saudi J. Biol. Sci. 2019, 26, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Masiello, M.; Somma, S.; Susca, A.; Ghionna, V.; Logrieco, A.F.; Franzoni, M.; Ravaglia, S.; Meca, G.; Moretti, A. Molecular Identification and Mycotoxin Production by Alternaria Species Occurring on Durum Wheat, Showing Black Point Symptoms. Toxins 2020, 12, 275. [Google Scholar] [CrossRef] [Green Version]
- Schiro, G.; Verch, G.; Grimm, V.; Müller, M. Alternaria and Fusarium Fungi: Differences in Distribution and Spore Deposition in a Topographically Heterogeneous Wheat Field. JoF 2018, 4, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kifer, D.; Sulyok, M.; Jakšić, D.; Krska, R.; Šegvić Klarić, M. Fungi and Their Metabolites in Grain from Individual Households in Croatia. Food Addit. Contam. Part B 2021, 14, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Streit, E.; Schwab, C.; Sulyok, M.; Naehrer, K.; Krska, R.; Schatzmayr, G. Multi-Mycotoxin Screening Reveals the Occurrence of 139 Different Secondary Metabolites in Feed and Feed Ingredients. Toxins 2013, 5, 504–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novak, B.; Rainer, V.; Sulyok, M.; Haltrich, D.; Schatzmayr, G.; Mayer, E. Twenty-Eight Fungal Secondary Metabolites Detected in Pig Feed Samples: Their Occurrence, Relevance and Cytotoxic Effects In Vitro. Toxins 2019, 11, 537. [Google Scholar] [CrossRef] [Green Version]
- Puvača, N.; Tanasković, S.; Bursić, V.; Petrović, A.; Merkuri, J.; Shtylla Kika, T.; Marinković, D.; Vuković, G.; Cara, M. Optical Characterization of Alternaria Spp. Contaminated Wheat Grain and Its Influence in Early Broilers Nutrition on Oxidative Stress. Sustainability 2021, 13, 4005. [Google Scholar] [CrossRef]
- Contaminants in the Food Chain. Scientific Opinion on the Risks for Animal and Public Health Related to the Presence of Alternaria Toxins in Feed and Food. EFSA J. 2011, 9, 2407. [Google Scholar] [CrossRef]
Mycotoxins | Rt, min | LOD, µg/kg | LOQ, µg/kg | R2 | Recovery, % (%RSDr) |
---|---|---|---|---|---|
AOH | 6.25 | 0.5 | 2.0 | 0.9998 | 107.6 ± 6.5 |
AME | 7.93 | 0.3 | 2.0 | 0.9998 | 108.0 ± 6.5 |
TEN | 6.26 | 0.5 | 2.0 | 0.9915 | 110.1 ± 6.5 |
AOH | AME | TEN | ||||
---|---|---|---|---|---|---|
Sample Origin | Serbia | Albania | Serbia | Albania | Serbia | Albania |
Mean (μg/kg) ± SD | 3.3 ± 1.3 | - | 2.2 ± 0.1 | - | - | - |
Minimal concentration (μg/kg) | 2.1 | - | 2.2 | - | - | - |
Maximal concentration (μg/kg) | 5.3 | <LOQ | 2.3 | <LOQ | <LOQ | <LOQ |
Number of positive samples | 4 | 0 | 2 | 0 | 0 | 0 |
Pooled SE | 0.2 | - | 0. 0 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puvača, N.; Avantaggiato, G.; Merkuri, J.; Vuković, G.; Bursić, V.; Cara, M. Occurrence and Determination of Alternaria Mycotoxins Alternariol, Alternariol Monomethyl Ether, and Tentoxin in Wheat Grains by QuEChERS Method. Toxins 2022, 14, 791. https://doi.org/10.3390/toxins14110791
Puvača N, Avantaggiato G, Merkuri J, Vuković G, Bursić V, Cara M. Occurrence and Determination of Alternaria Mycotoxins Alternariol, Alternariol Monomethyl Ether, and Tentoxin in Wheat Grains by QuEChERS Method. Toxins. 2022; 14(11):791. https://doi.org/10.3390/toxins14110791
Chicago/Turabian StylePuvača, Nikola, Giuseppina Avantaggiato, Jordan Merkuri, Gorica Vuković, Vojislava Bursić, and Magdalena Cara. 2022. "Occurrence and Determination of Alternaria Mycotoxins Alternariol, Alternariol Monomethyl Ether, and Tentoxin in Wheat Grains by QuEChERS Method" Toxins 14, no. 11: 791. https://doi.org/10.3390/toxins14110791
APA StylePuvača, N., Avantaggiato, G., Merkuri, J., Vuković, G., Bursić, V., & Cara, M. (2022). Occurrence and Determination of Alternaria Mycotoxins Alternariol, Alternariol Monomethyl Ether, and Tentoxin in Wheat Grains by QuEChERS Method. Toxins, 14(11), 791. https://doi.org/10.3390/toxins14110791