Effects of Various Marine Toxins on the Mouse Intestine Organoid Model
Abstract
:1. Introduction
2. Results
2.1. Construction of MIO Model
2.2. Detection of MIO Activity after Exposure to Marine Toxins
2.3. Detection of ATPase Activity in MIO after Exposure to Marine Toxins
2.4. Detection of Apoptosis in MIOs after Exposure to Marine Toxins
2.5. High-Throughput mRNA-Seq of MIOs after Exposure to Marine Toxins
2.5.1. Differential Gene Analysis
2.5.2. GO and Pathway Analysis
2.5.3. GSEA
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Primary Culture of MIO
5.2. Subculture of MIO
5.3. Identification of MIO
5.4. Preparation and Exposure of Marine Toxins
5.5. MIO Activity Experiment
5.6. ATPase Activity Assay
5.7. TUNEL
5.8. High-Throughput mRNA-seq
5.8.1. Background Introduction
5.8.2. Database Building Process
Total RNA Quality Inspection
Library Construction and Quality Inspection
Computer Sequencing
5.8.3. RNA Sequencing and Differentially Expressed Genes Analysis
5.8.4. Quantitative Results
Quantification and Visualization of Sample RNA
Quantitative Result Display
- Statistics of Gene Expression Distribution
- 2.
- Correlation
- 3.
- PCA
Difference Analysis
- Volcano Map
- 2.
- Heatmap
- 3.
- Gene Function Search
GO and Pathway
Gene Set Enrichment Analysis (GSEA)
5.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abal, P.; Louzao, M.C.; Suzuki, T.; Watanabe, R.; Vilariño, N.; Carrera, C.; Botana, A.M.; Vieytes, M.R.; Botana, L.M. Toxic Action Reevaluation of Okadaic Acid, Dinophysistoxin-1 and Dinophysistoxin-2: Toxicity Equivalency Factors Based on the Oral Toxicity Study. Cell. Physiol. Biochem. 2018, 49, 743–757. [Google Scholar] [CrossRef] [Green Version]
- Abal, P.; Louzao, M.C.; Vilarino, N.; Vieytes, M.R.; Botana, L.M. Acute Toxicity Assessment: Macroscopic and Ultrastructural Effects in Mice Treated with Oral Tetrodotoxin. Toxins 2019, 11, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjørn-Yoshimoto, W.; Ramiro, I.; Yandell, M.; McIntosh, J.; Olivera, B.; Ellgaard, L.; Safavi-Hemami, H. Curses or Cures: A Review of the Numerous Benefits Versus the Biosecurity Concerns of Conotoxin Research. Biomedicines 2020, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Bodero, M.; Hoogenboom, R.L.A.P.; Bovee, T.F.H.; Portier, L.; de Haan, L.; Peijnenburg, A.; Hendriksen, P.J. Whole genome mRNA transcriptomics analysis reveals different modes of action of the diarrheic shellfish poisons okadaic acid and dinophysis toxin-1 versus azaspiracid-1 in Caco-2 cells. Toxicol. In Vitro 2018, 46, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Cavin, J.-B.; Cuddihey, H.; MacNaughton, W.K.; Sharkey, K.A. Acute regulation of intestinal ion transport and permeability in response to luminal nutrients: The role of the enteric nervous system. Am. J. Physiol.-Gastrointest. Liver Physiol. 2020, 318, G254–G264. [Google Scholar] [CrossRef]
- Bader, S.; Diener, M. Segmental differences in the non-neuronal cholinergic system in rat caecum. Pflug. Arch. 2018, 470, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, J.; Grass, I.; Günzel, D.; Herek, S.; Braeuning, A.; Lampen, A.; Hessel-Pras, S. The marine biotoxin okadaic acid affects intestinal tight junction proteins in human intestinal cells. Toxicol. In Vitro 2019, 58, 150–160. [Google Scholar] [CrossRef]
- Gao, W.; Kanahara, Y.; Yamada, M.; Tatsuno, R.; Yoshikawa, H.; Doi, H.; Takatani, T.; Arakawa, O. Contrasting Toxin Selectivity between the Marine Pufferfish Takifugu pardalis and the Freshwater Pufferfish Pao suvattii. Toxins 2019, 11, 470. [Google Scholar] [CrossRef] [Green Version]
- Kosker, A.R.; Özogul, F.; Durmus, M.; Ucar, Y.; Ayas, D.; Šimat, V.; Özogul, Y. First report on TTX levels of the yellow spotted pufferfish (Torquigener flavimaculosus) in the Mediterranean Sea. Toxicon 2018, 148, 101–106. [Google Scholar] [CrossRef]
- Alarcan, J.; Barbé, S.; Kopp, B.; Hessel-Pras, S.; Braeuning, A.; Lampen, A.; Le Hégarat, L.; Fessard, V. Combined effects of okadaic acid and pectenotoxin-2, 13-desmethylspirolide C or yessotoxin in human intestinal Caco-2cells. Chemosphere 2019, 228, 139–148. [Google Scholar] [CrossRef]
- Bazzoni, A.M.; Mudadu, A.G.; Lorenzoni, G.; Soro, B.; Bardino, N.; Arras, I.; Sanna, G.; Vodret, B.; Bazzardi, R.; Marongiu, E.; et al. Detection of Dinophysis Species and Associated Okadaic Acid in Farmed Shellfish: A Two-year Study from The Western Mediterranean Area. J. Vet. Res. 2018, 62, 137–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, C.H.; Yang, C.R. Neuroprotective Studies of Evodiamine in an Okadaic Acid-Induced Neurotoxicity. Int. J. Mol. Sci. 2021, 22, 5347. [Google Scholar] [CrossRef] [PubMed]
- Jin, A.-H.; Muttenthaler, M.; Dutertre, S.; Himaya, S.; Kaas, Q.; Craik, D.J.; Lewis, R.; Alewood, P.F. Conotoxins: Chemistry and Biology. Chem. Rev. 2019, 119, 11510–11549. [Google Scholar] [CrossRef]
- Lu, A.; Yang, L.; Xu, S.; Wang, C. Various conotoxin diversifications revealed by a venomic study of Conus flavidus. Mol. Cell. Proteom. 2014, 13, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Zhu, X.; Xu, P.; Li, R.; Fu, Y.; Dong, S.; Zhangsun, D.; Wu, Y.; Luo, S. d-Amino Acid Substitution of alpha-Conotoxin RgIA Identifies its Critical Residues and Improves the Enzymatic Stability. Mar. Drugs 2019, 17, 142. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Ji, Z.; Li, Z.; Pan, B. Prevention of scar hyperplasia in the skin by conotoxin: A prospective review. J. Cosmet. Dermatol. 2021, 20, 1885–1888. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Qiang, Y.; Zhang, G.; Zhou, M. Acute toxicity and micronucleus test of conotoxin lt14a in mice. Basic Clin. Pharmacol. Toxicol. 2021, 129, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Yates, P.; Koester, J.A.; Taylor, A.R. Brevetoxin and Conotoxin Interactions with Single-Domain Voltage-Gated Sodium Channels from a Diatom and Coccolithophore. Mar. Drugs 2021, 19, 140. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Stange, D.E.; Ferrante, M.; Vries, R.G.J.; Van Es, J.H.; Van Den Brink, S.; Van Houdt, W.J.; Pronk, A.; Van Gorp, J.; Siersema, P.D.; et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 2011, 141, 1762–1772. [Google Scholar] [CrossRef]
- Lancaster, M.A.; Knoblich, J.A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science 2014, 345, 1247125. [Google Scholar] [CrossRef]
- Crystal, A.S.; Shaw, A.T.; Sequist, L.V.; Friboulet, L.; Niederst, M.J.; Lockerman, E.L.; Frias, R.L.; Gainor, J.F.; Amzallag, A.; Greninger, P.; et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 2014, 346, 1480–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crespo, M.; Vilar, E.; Tsai, S.-Y.; Chang, K.; Amin, S.; Srinivasan, T.; Zhang, T.; Pipalia, N.H.; Chen, H.J.C.S.; Witherspoon, M.; et al. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat. Med. 2017, 23, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Clevers, H. Modeling Development and Disease with Organoids. Cell 2016, 165, 1586–1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancaster, M.A.; Huch, M. Disease modelling in human organoids. Dis. Model. Mech. 2019, 12, dmm039347. [Google Scholar] [CrossRef] [Green Version]
- Paltoglou, S.; Das, R.; Townley, S.L.; Hickey, T.E.; Tarulli, G.A.; Coutinho, I.; Fernandes, R.; Hanson, A.R.; Denis, I.; Carroll, J.S.; et al. Novel Androgen Receptor Coregulator GRHL2 Exerts Both Oncogenic and Antimetastatic Functions in Prostate Cancer. Cancer Res. 2017, 77, 3417–3430. [Google Scholar] [CrossRef] [Green Version]
- Sachs, N.; de Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H.; et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell 2018, 172, 373–386.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takebe, T.; Wells, J.M. Organoids by design. Science 2019, 364, 956–959. [Google Scholar] [CrossRef]
- Xu, H.; Jiao, D.; Liu, A.; Wu, K. Tumor organoids: Applications in cancer modeling and potentials in precision medicine. J. Hematol. Oncol. 2022, 15, 58. [Google Scholar] [CrossRef]
- Alessandri, K.; Feyeux, M.; Gurchenkov, B.; Delgado, C.; Trushko, A.; Krause, K.-H.; Vignjević, D.; Nassoy, P.; Roux, A. A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC). Lab. Chip 2016, 16, 1593–1604. [Google Scholar] [CrossRef] [Green Version]
- Gurumurthy, R.K.; Koster, S.; Kumar, N.; Meyer, T.F.; Chumduri, C. Patient-derived and mouse endo-ectocervical organoid generation, genetic manipulation and applications to model infection. Nat. Protoc. 2022, 17, 1658–1690. [Google Scholar] [CrossRef] [PubMed]
- Nengzhuang, W.; Jiaming, S.; Minghua, L.I.U.; Long, M.; Lina, Q.I.N.; Xuemei, G.E.; Hongli, Y.A.N. A brief history of testicular organoids: From theory to the wards. J. Assist. Reprod. Genet. 2022, 39, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Dedhia, P.H.; Bertaux-Skeirik, N.; Zavros, Y.; Spence, J.R. Organoid Models of Human Gastrointestinal Development and Disease. Gastroenterology 2016, 150, 1098–1112. [Google Scholar] [CrossRef] [Green Version]
- Francies, H.E.; Barthorpe, A.; McLaren-Douglas, A.; Barendt, W.J.; Garnett, M.J. Drug Sensitivity Assays of Human Cancer Organoid Cultures. In Organoids: Stem Cells, Structure, and Function; Turksen, K., Ed.; Springer: New York, NY, USA, 2019; pp. 339–351. [Google Scholar]
- Zhao, W.; Xiong, Y.; Zhangsun, D.; Luo, S. DSPE-PEG Modification of alpha-Conotoxin TxID. Mar. Drugs 2019, 17, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdiglesias, V.; Prego-Faraldo, M.V.; Pasaro, E.; Mendez, J.; Laffon, B. Okadaic acid: More than a diarrheic toxin. Mar. Drugs 2013, 11, 4328–4349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-González, C.; Ceada, G.; Greco, F.; Matejčić, M.; Gómez-González, M.; Castro, N.; Menendez, A.; Kale, S.; Krndija, D.; Clark, A.G.; et al. Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration. Nat. Cell Biol. 2021, 23, 745–757. [Google Scholar] [CrossRef]
- Puschhof, J.; Pleguezuelos-Manzano, C.; Clevers, H. Organoids and organs-on-chips: Insights into human gut-microbe interactions. Cell Host Microbe 2021, 29, 867–878. [Google Scholar] [CrossRef]
- Nigusse, T.; Zhang, L.; Wang, R.; Wang, X.N.; Li, J.; Liu, C. Flavonoids in a crude extract of Catha edulis inhibit rat intestinal contraction via blocking Ca(2+) channels. Neurogastroenterol. Motil. 2019, 31, e13602. [Google Scholar] [CrossRef]
- Louzao, M.C.; Costas, C.; Abal, P.; Suzuki, T.; Watanabe, R.; Vilariño, N.; Carrera, C.; Boente-Juncal, A.; Vale, C.; Vieytes, M.R.; et al. Serotonin involvement in okadaic acid-induced diarrhoea in vivo. Arch. Toxicol. 2021, 95, 2797–2813. [Google Scholar] [CrossRef]
- Drost, J.; van Boxtel, R.; Blokzijl, F.; Mizutani, T.; Sasaki, N.; Sasselli, V.; de Ligt, J.; Behjati, S.; Grolleman, J.E.; van Wezel, T.; et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science 2017, 358, 234–238. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Vries, R.G.; Snippert, H.J.; Van De Wetering, M.; Barker, N.; Stange, D.E.; Van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009, 459, 262–265. [Google Scholar] [CrossRef]
- Fu, L.L.; Zhao, X.Y.; Ji, L.D.; Xu, J. Okadaic acid (OA): Toxicity, detection and detoxification. Toxicon 2019, 160, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Zhang, K.; Geng, N.; Wu, M.; Yi, X.; Liu, R.; Challis, J.K.; Codling, G.; Xu, E.G.; Giesy, J.P. Molecular mechanisms of zooplanktonic toxicity in the okadaic acid-producing dinoflagellate Prorocentrum lima. Environ. Pollut. 2021, 279, 116942. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zheng, J.-W.; Peng, X.-C.; Li, H.-Y.; Huang, L.; Li, D.-W.; Liu, J.-S.; Yang, W.-D. Changes in colonic microbiotas in rat after long-term exposure to low dose of okadaic acid. Chemosphere 2020, 254, 126874. [Google Scholar] [CrossRef]
- Yu, S.; Yang, B.; Yan, L.; Dai, Q. Sensitive Detection of alpha-Conotoxin GI in Human Plasma Using a Solid-Phase Extraction Column and LC-MS/MS. Toxins 2017, 9, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.; Bardia, A.; Aceto, N.; Bersani, F.; Madden, M.W.; Donaldson, M.C.; Desai, R.; Zhu, H.; Comaills, V.; Zheng, Z.; et al. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 2014, 345, 216–220. [Google Scholar] [CrossRef] [Green Version]
- Drost, J.; Van Jaarsveld, R.H.; Ponsioen, B.; Zimberlin, C.; Van Boxtel, R.; Buijs, A.; Sachs, N.; Overmeer, R.M.; Offerhaus, G.J.; Begthel, H.; et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 2015, 521, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Shostak, K.; Wathieu, C.; Tielens, S.; Chariot, A. NF-kappaB Signaling in Ex-Vivo Mouse Intestinal Organoids. Methods Mol. Biol. 2021, 2366, 283–292. [Google Scholar] [CrossRef]
- Xu, H.-X.; Zhu, P.; Zheng, Y.-Y.; Zhang, X.; Chen, Y.-Q.; Qiao, L.-C.; Zhang, Y.-F.; Jiang, F.; Li, Y.-R.; Chen, H.-J.; et al. Molecular screening and clinicopathologic characteristics of Lynch-like syndrome in a Chinese colorectal cancer cohort. Am. J. Cancer Res. 2020, 10, 3920–3934. [Google Scholar]
- Yoo, J.H.; Donowitz, M. Intestinal enteroids/organoids: A novel platform for drug discovery in inflammatory bowel diseases. World J. Gastroenterol. 2019, 25, 4125–4147. [Google Scholar] [CrossRef]
UpDown | Type | GeneSymbol |
---|---|---|
DOWN | protein_coding | Ngfr |
DOWN | protein_coding | Ifrd1 |
DOWN | protein_coding | Ccne1 |
DOWN | protein_coding | Peg3 |
DOWN | protein_coding | Klf4 |
DOWN | protein_coding | Slbp |
DOWN | protein_coding | Hmox1 |
DOWN | protein_coding | Trim28 |
DOWN | protein_coding | Adamts4 |
DOWN | protein_coding | Tgfbr1 |
DOWN | protein_coding | Hnrnph1 |
DOWN | protein_coding | Carhsp1 |
DOWN | protein_coding | Slc3a2 |
DOWN | protein_coding | Zfp296 |
DOWN | protein_coding | Dnajb9 |
DOWN | protein_coding | Gadd45b |
DOWN | protein_coding | Sqstm1 |
DOWN | protein_coding | Plagl1 |
DOWN | protein_coding | Tnfaip3 |
DOWN | protein_coding | Sirt1 |
UpDown | Type | GeneSymbol |
---|---|---|
DOWN | protein_coding | Peg3 |
DOWN | protein_coding | Zim1 |
UP | protein_coding | Fosb |
UP | protein_coding | Cdc20 |
UP | protein_coding | Sulf2 |
DOWN | protein_coding | Id3 |
DOWN | protein_coding | Slc16a12 |
DOWN | protein_coding | B4galnt2 |
DOWN | protein_coding | 2310057J18Rik |
DOWN | protein_coding | Tmprss6 |
DOWN | protein_coding | Gabrp |
DOWN | protein_coding | Cpm |
DOWN | protein_coding | Id2 |
UP | protein_coding | Olfm4 |
UP | protein_coding | Tgm1 |
UP | protein_coding | Nr4a1 |
DOWN | protein_coding | Sult1c2 |
DOWN | protein_coding | Cldn6 |
DOWN | protein_coding | Cacna1h |
UP | protein_coding | Il33 |
Ontology | Description |
---|---|
CC | mitochondrial inner membrane |
CC | organelle inner membrane |
CC | mitochondrial protein-containing complex |
BP | mitochondrion organization |
CC | Golgi apparatus subcompartment |
CC | mitochondrial matrix |
BP | organophosphate biosynthetic process |
BP | nucleoside phosphate metabolic process |
BP | nucleotide metabolic process |
BP | generation of precursor metabolites and energy |
Ontology | Description |
---|---|
MF | receptor ligand activity |
CC | anchored component of membrane |
BP | organic acid biosynthetic process |
BP | wound healing |
CC | collagen-containing extracellular matrix |
BP | carboxylic acid biosynthetic process |
BP | cell-substrate adhesion |
BP | leukocyte migration |
BP | cell chemotaxis |
BP | negative regulation of locomotion |
Description |
---|
Chemical carcinogenesis–reactive oxygen species |
Prion disease |
Peroxisome |
Pathways of neurodegeneration–multiple diseases |
Thermogenesis |
Alzheimer disease |
Salmonella infection |
Parkinson disease |
Oxidative phosphorylation |
TNF signaling pathway |
Description |
---|
Cytokine-cytokine receptor interaction |
Calcium signaling pathway |
Cholesterol metabolism |
Arachidonic acid metabolism |
Mineral absorption |
Hippo signaling pathway |
Axon guidance |
PPAR signaling pathway |
Gastric acid secretion |
Sulfur metabolism |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Liu, M.; Bi, F.; Ma, L.; Qin, L.; Wang, Y.; Gu, K.; Ge, X.; Yan, H. Effects of Various Marine Toxins on the Mouse Intestine Organoid Model. Toxins 2022, 14, 829. https://doi.org/10.3390/toxins14120829
Wang N, Liu M, Bi F, Ma L, Qin L, Wang Y, Gu K, Ge X, Yan H. Effects of Various Marine Toxins on the Mouse Intestine Organoid Model. Toxins. 2022; 14(12):829. https://doi.org/10.3390/toxins14120829
Chicago/Turabian StyleWang, Nengzhuang, Minghua Liu, Fengrui Bi, Long Ma, Lina Qin, Yao Wang, Kai Gu, Xuemei Ge, and Hongli Yan. 2022. "Effects of Various Marine Toxins on the Mouse Intestine Organoid Model" Toxins 14, no. 12: 829. https://doi.org/10.3390/toxins14120829
APA StyleWang, N., Liu, M., Bi, F., Ma, L., Qin, L., Wang, Y., Gu, K., Ge, X., & Yan, H. (2022). Effects of Various Marine Toxins on the Mouse Intestine Organoid Model. Toxins, 14(12), 829. https://doi.org/10.3390/toxins14120829