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Abstract: Mycotoxins are secondary metabolites produced by fungus. Due to their widespread
distribution, difficulty in removal, and complicated subsequent harmful by-products, mycotoxins
pose a threat to the health of humans and animals worldwide. Increasing studies in recent years
have highlighted the impact of mycotoxins on the gut microbiota. Numerous researchers have
sought to illustrate novel toxicological mechanisms of mycotoxins by examining alterations in the gut
microbiota caused by mycotoxins. However, few efficient techniques have been found to ameliorate
the toxicity of mycotoxins via microbial pathways in terms of animal husbandry, human health
management, and the prognosis of mycotoxin poisoning. This review seeks to examine the crosstalk
between five typical mycotoxins and gut microbes, summarize the functions of mycotoxins-induced
alterations in gut microbes in toxicological processes and investigate the application prospects of
microbes in mycotoxins prevention and therapy from a variety of perspectives. The work is intended
to provide support for future research on the interaction between mycotoxins and gut microbes, and
to advance the technology for preventing and controlling mycotoxins.

Keywords: mycotoxins; gut microbiota; cross-talk; alleviation

Key Contribution: Cross-talk between mycotoxins and bacteria is a massive and complex subject
that requires extensive research. This review summarizes the research on the crosstalk between
mycotoxins and microbiota in recent years and provides new ideas for controlling the harm of
mycotoxins by micro-organisms.

1. Introduction

Mycotoxin is a naturally occurring substance produced by fungi. Consumption of low
concentrations of mycotoxins in animals would result in severe hazardous symptoms [1].
The first credible evidence of the hazardous of mycotoxins effects dates back to the 11th
century when ergot intoxication caused widespread human and animal poisoning and
even mortality in Europe [2]. With detection and analysis technology advances, hundreds
of mycotoxins have been discovered [3]. Five of these mycotoxins, aflatoxin B1 (AFB1),
deoxynivalenol (DON), zearalenone (ZEA), fumonisin B1 (FB1), and ochratoxin A (OTA),
have historically been major objects of mycotoxin study because of their high detection
rates and significant toxicities in feed raw materials and foodstuffs [4]. Due to the extensive
prevalence of fungi in the environment, grains have been contaminated with mycotoxins
during the growth process, and almost all agricultural commodities are susceptible to fungi
infection and the production of mycotoxins if improper storage [5]. Mycotoxins not only
lower livestock productivity and result in significant economic losses, but also pose a threat
to human health because of their accumulation along the food chain. Severe clinical symp-
toms occur during animal breeding with mycotoxin-contaminated feed, including diarrhea,
liver and kidney damage, pulmonary edema, vomiting, bleeding, and tumors [6–11]. Addi-
tionally, mycotoxins have a synergistic effect, typically including a combination of toxins,
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which results in human and animal poisoning upon consumption [12]. This complicates
the toxicological mechanism of mycotoxins.

The gut serves as the first line of defense and protection against mycotoxins and the
first location of mycotoxins’ absorption into the body [13,14]. The gut microbiota plays a
critical role in forming the intestinal barrier and maintaining intestinal homeostasis [15].
With the introduction of new concepts such as the brain-gut axis, liver-gut axis, and kidney-
gut axis [16–19], as well as the widespread use and advancement of microbial sequencing
technology, an increasing number of studies are focusing on the impact of mycotoxins in
intestinal microbiota. Meanwhile, scientists are investigating the role of intestinal microbial
changes in the process of mycotoxin poisoning and detoxification. The deleterious effects
conferred by mycotoxins-induced microbial alterations would be brought to the forefront
for investigating toxicological effects and response of the host.

Interpreting the crosstalk between various mycotoxins and microbes will be crucial
for mycotoxin control and prevention. The crosstalk mechanisms between AFB1, DON,
ZEA, FB1 and OTA with intestinal microbes are described in this review. The potential for
microbial applications in mycotoxin hazardous mitigation is also discussed with present
viewpoints. This paper aims to shed light on the interaction between various mycotoxins
and microbes, discover new toxicological processes for mycotoxins, and identify potential
treatment targets.

2. Toxicity of Mycotoxins to Intestinal Epithelial Cells

As the “transit point” of animals ingesting mycotoxins, intestinal epithelial cells are
the first barrier where mycotoxins contact the animal body [14]. Numerous animal studies
have demonstrated that mycotoxins such as DON, ZEA, FB, OTA and AFB1 trigger direct
epithelial cell damage (Table 1). The most noticeable symptom is that mycotoxin directly
limits the growth and structural destruction of the small intestinal villi, the outer wall
consisting of a single layer of epithelial cells [20–23]. Recently, studies on the mechanism
of directive injury of mycotoxins on the intestinal epithelium were well investigated. By
studying changes in the physiological functions of intestinal cells exposed to mycotoxins,
researchers initially explored the direct toxicological effects of mycotoxins in the absence of
gut microbiota and have achieved considerable progress.

Table 1. Direct toxicity of mycotoxins to intestinal epithelial cells.

Mycotoxin Exposure
Treatment Sample Types Toxicity to Intestinal Epithelial Cells Reference

DON, 0.5 µM, incubation 6 or
12 h

Pig, intestinal epithelial cells
(IPEC-J2)

Activates diamine oxidase (DAO),
Significantly decreased expression levels of

TFF2, TFF3, and Claudin-4 genes
[24]

DON, 1300 and 2200 µg/kg
feed, 60 d Pig, duodenal epithelial cells

Activates DAO, Low-dose group:
endoplasmic reticulum swelling, irregular
chromatin distribution; high-dose group:

chromatin condensation, nuclear pyknosis,
mitochondrial swelling and vacuolization

[25]

DON, 1008 µg/kg feed, 42 d Pig, Cecal epithelial cells
Decreases numbers of immune cells TLR2

and TLR4 in cecal epithelial cells,
up-regulated NFκB signaling pathway

[26]

DON, 0.1, 1, 10, 100 µM,
incubation 10–14 d

Human, colon cancer cells
(HT29-16E cells) and colorectal
adenocarcinoma cells, (CACO-2

cells)

Dose-dependently inhibits the expression of
TFF family genes by regulating the

expression of protein kinase R and MAP
kinase (MAPK) p38 and ERK1/2

[27]



Toxins 2022, 14, 859 3 of 22

Table 1. Cont.

Mycotoxin Exposure
Treatment Sample Types Toxicity to Intestinal Epithelial Cells Reference

DON, 2 µM, incubation 24 h Pig, intestinal epithelial cells
(IPEC-J2)

Decreases the protein stability and
accelerates the degradation of TJP in the

lysosome
[28]

ZEA, 6 and 8 µg/mL,
incubation 12, 24 and 36 h

Pig, intestinal epithelial cells
(IPEC-J2) Up-regulates ROS, causing oxidative stress [29]

ZEA, 20 µg/mL, incubation
24 h

Pig, intestinal epithelial cells
(IPEC-J2) Up-regulates ROS, causing oxidative stress [30]

ZEA, 6 and 8 µg/mL,
incubation 24 h

Pig, intestinal epithelial cells
(IPEC-J2) and mice, peritoneal

macrophages

Increases NLRP3 inflammasome expression
and cytokine release [31]

ZEA, 40 µM, incubation 24 h Pig, intestinal epithelial cells
(IPEC-J2)

Inhibits cell proliferation and causes
intestinal cell damage [32]

OTA, 5, 10, 20, 40, 80 µM,
incubation 12 h

Pig, intestinal epithelial cells
(IPEC-J2)

Induces ROS generation causes barrier
dysfunction, and disrupts tight junctions [33]

OTA, 0.0005, 0.005 and
4 µg/mL, incubation 48 h

Human, colorectal
adenocarcinoma cells, (CACO-2

cells)

Perturbs functional gene expression and
induces apoptosis in a dose-dependent

manner
[34]

FB1, 10, 25 and 50 µg/mL,
incubation 24 or 48 h

Pig, intestinal epithelial cells
(IPEC-J2)

Inhibits cell proliferation and damages tight
junction proteins [35]

FB1, 5 mg/kg feed, 42 d Mice, duodenal epithelial cells
Causes epithelial cells of duodenal villi to
slough off and partial necrosis of intestinal

glands
[36]

AFB1, 0.6 mg/kg feed, 21 d Chicken, intestinal epithelial cells

Pathological changes in the ultrastructure of
duodenal mitochondria, complete shedding
of microvilli on the surface of the jejunum,

reduce the number of mitochondria

[37]

AFB1, 0.12 and 12 µM,
incubation

Human, colorectal
adenocarcinoma cells, (CACO-2

cells)
Disrupts gut-tight junction proteins [38]

2.1. DON

The disclosure of the direct toxicological effects of DON on the intestinal epithelium
has made great progress, and a systematic explanation mechanism has been constructed
from multiple perspectives. It is assumed that the detrimental effects of DON on intestinal
epithelial cells are mediated predominantly through the following three pathways: (I) DON
activates DAO, up-regulates NF-κB signaling pathway, increases the levels of inflammatory
cytokines in the intestine, and ultimately mediates intestinal epithelial apoptotic [24–26].
(II) DON decreases the expression of the trefoil factor family (TFFs) of peptides (a type
of bioactive substance that could govern tissue regeneration, improve barrier function,
and decrease proinflammatory expression) via triggering the MAPK signaling pathway,
hence inhibiting intestinal epithelial cell self-repair. This mechanism has been validated
in human intestinal cell line HT29-16E and swine intestinal explants [24,27]. (III) Recently,
a new perspective on the enterotoxicity of DON has also been proposed. It was revealed
that DON can also decrease the stability of intercellular compact proteins in the intestinal
epithelium [28]. Along with accelerating tight junction protein degradation in the fusion
medium, DON would activate the p38 (MAPK) signaling pathway, resulting in the swal-
lowing and degradation of Occluding and ZO-1 in lysozyme, and eventually destroying
the small intestine villus structure and increasing intestinal permeability. Collectively, DON
can activate immune pathways and induce inflammatory responses in the intestinal epithe-
lium. And it can activate lysosomes to engulf connexins between intestinal epithelial cells,
resulting in structural collapse. In addition, DON also inhibits the self-repair process of the
intestine, which eventually leads to the death and autophagy of intestinal epithelial cells.
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2.2. ZEA

ZEA generates oxidative stress at the cellular level and increases lactate dehydroge-
nase activity, further impairing the organism’s scavenging of reactive oxygen species (ROS)
and increasing the amount of oxidative stress in intestinal cells [29,30]. In addition, ZEA
also mediates the activation of NLRP3 inflammasome in mouse intestine, which in turn pro-
motes the level of Caspase-1, up-regulates inflammatory cytokines, leads to the expansion
of inflammatory cells in intestinal epithelial cells, and produces apoptosis [31]. On the other
hand, ZEA also leads to aberrant G2/M transition in IPEC-J2 cells by disrupting the cell
cycle signaling system, consequently reducing cell proliferation and producing intestinal
epithelial damage [32]. Intestinal epithelial cells have the shortest cell cycle and are the
fastest-renewing somatic cells. Therefore, the perturbation of cell cycle signals by ZEA will
greatly inhibit the development and self-repair process of the intestinal epithelium.

2.3. OTA

The mechanism of OTA cytotoxicity in the intestinal epithelium is mostly based on
the production of ROS and the stimulation of apoptosis-regulating genes. Wang et al. [33]
found that OTA may generate reactive oxygen species (ROS) in IPEC-J2 cells, which ele-
vated the activity of the Ca2+ and MLCK Signaling pathways and ultimately resulted in
barrier malfunction and destruction. Comparative transcriptomics demonstrated that OTA
enhanced the expression of apoptosis-related genes such as casp3, cdc25B and egr1 in Caco-2
cells, elucidated the genome-wide biological reaction perspective of OTA controlling intesti-
nal epithelial damage [34]. The researchers also explained the toxicological mechanism of
OTA on intestinal epithelial cells from various aspects. It is worth noting that OTA appears
to be a dose-dependent amplifier of apoptotic signaling to intestinal exposed-epithelial
cells. OTA showed a perturbation of functional gene expression of human intestinal cells at
a very low dose (0.0005 µg/mL).

2.4. FB1

FB1 regulates the secretion of mucin by stimulating the ERK phosphorylation pathway,
lowering the expression level of intestinal tight junction protein, and inhibiting the viability
of IPEC-J2 cells [35]. Mucin secreted by intestinal epithelial goblet cells is a glycoprotein
composed of mucopolysaccharides that protects intestinal cells. The network of mucins
makes it difficult for chemical irritants, digested foods, toxins, and bacteria to pass through,
protects the intestinal epithelium from damage, and prevents pathogens from binding to the
intestinal epithelium. The digestion of mucin by FB1 is likely to be an important inducement
for it to enter the body and cause multi-organ toxicity. It is worth noting that FB1 could
regulate the mouse intestinal aryl hydrocarbon receptor (AHR), the constitutive androstane
receptor (CAR), the pregnane X receptor (PXR), and downstream target genes (CYP450s) to
disrupt nuclear xenobiotic receptor (NXR) homeostasis, and meanwhile induce intestinal
villus and epithelial layer shedding, intestinal gland atrophy, and necrosis [36].

2.5. AFB1

There are few studies on the mechanism of AFB1 intestinal epithelial toxicity. By
observing the ultrastructure of intestinal epithelial cells exposed to AFB1, the researchers
found that AFB1 is significantly toxic to the organelles of intestinal epithelial cells. AFB1
causes mitochondrial vacuolization in small intestinal cells, leads to the disappearance
of mitochondrial cristae, junctional complexes, and terminal reticulum, and then induces
apoptosis [37]. Notably, AFB1 also reduced the ratio of goblet cells in epithelial cells in
this study. This result indicates that FB1 and AFB1 also seem to have certain effects on the
differentiation of intestinal epithelial cells, but whether the underlying mechanism is the
toxic effect on goblet cells or the direct induction of the cell differentiation process remains
to be further investigated. In addition, researchers have revealed that AFBI exposure
increases p42/44 (MAPK) phosphorylation in Caco-2 cells, inhibiting tight junction protein
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synthesis between epithelial cells, increasing intestinal permeability, and weakening the
intestinal barrier [38].

In conclusion, based on the results of direct mycotoxin exposure assays on intestinal
epithelial cells, mycotoxins usually directly inhibit the normal division and proliferation of
intestinal epithelial cells and cause apoptosis through modulation of cell signaling pathways.

3. Crosstalk between Mycotoxins and Intestinal Microbiota

Regarding the critical function of the gut microbiota in maintaining gut homeostasis,
the enterotoxicity of mycotoxins in animals is inseparable from the interaction with the in-
testinal microbiota. In recent years, increasing experiments have focused on gut microbiota
changes under the stress of mycotoxin exposure (Table 2). Mycotoxins have been proven
to disrupt intestinal microbiota community homeostasis, and the underlying mechanisms
have been gradually explored.

Table 2. Effects of mycotoxins exposure on gut microbiota.

Mycotoxin Exposure Treatment Animal Models Toxicity to Gut Microbiota Reference

DON, 10 µg/kg BW, 1–280 d Mice
Up-regulates the relative abundance of pathogens

highly associated with chronic intestinal diseases at
the phylum, family, and genus levels.

[39]

DON, 3.02 mg/kg feed, 14–20 d and
35–41 d Pig

This leads to altered fecal microbiota composition and
microbial biological functions associated with

mycotoxin detoxification
[40]

DON, 5 mg/kg feed, 1–35 d Chicken Promotes the Campylobacter jejuni colonization and
translocation in intestinal epithelial cells [41]

DON, 5 mg/kg feed, 1–21 d Chicken
Manipulates microbiota community composition and

metabolite production, disrupts host metabolic
processes

[42]

DON, 2.5, 5 and 10 mg/kg feed,
1–35 d Chicken Disrupts the composition of the cecal microbiota and

reduces the microbial diversity [43]

DON, 2 and 10 mg/kg BW, 1–28 d Rat Exacerbates the genotoxicity of Escherichia coli [44]

DON, 1 and 5 mg/kg, every other
day for 1–14 d Mice

Alters the composition of gut microbiota, affects
microbial biosynthetic and degradative functions, and

further contributes to host metabolic dysfunction
[45]

OTA, 0.21, 0.5 and 1.5 mg/kg BW,
1–28 d Mice Disrupts the structure and diversity of gut microbial

communities [46]

OTA, 235 µg/kg BW, 1–21 d Duck Disrupts gut microbial composition and
lipopolysaccharide biosynthesis function [47]

ZEA, 400, 800 and 1600 µg/kg BW,
1–28 d Rabbit

Affects the cecal microbiota balance and reduces the
abundance of bacteria with important metabolic

functions
[48]

ZEA, 0.2, 1 and 5 mg/kg BW, 1–28 d Rat Disrupts the integrity and function of the mucus layer,
induces imbalance of gut microbiota [49]

ZEA, 5, 10 and 15 µg/kg BW, 1–42 d Pig Affects the colony counts of intestinal microbiota [50]

ZEA, 20 and 40 µg/kg BW, 1–14 d Mice Inhibits the glycerophospholipid metabolic pathway
of gut microbiota [51]

ZEA, 20 mg/kg BW, 1–21 d Mice Disrupts microbial metabolism of lipid molecules and
organic acids [52]

ZEA, 0.8 mg/kg feed and DON,
8 mg/kg feed, 1–28 d Pig The combination of DON and ZEA disrupts the gut

microbial composition [53]

ZEA, 1.36 mg/kg feed and DON,
0.87 g/kg feed, 1–28 d Pig

Alters gut microbial composition and downregulates
abundance of the microbial ribosome and pentose

phosphate pathway functional genes
[54]

AFB1, 5, 25, and 75 µg/kg BW, 1–28 d Rat Disrupts gut microbiota-dependent organic acid
metabolism [55]

3.1. DON

It is now widely recognized that DON and OTA can exacerbate harmful effects by
altering intestinal bacteria. Exposure to DON at either long-term low-dose or short-term
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medium-to-high doses significantly perturbed the gut microbial composition of animals.
When using pigs as experimental animal models, DON can directly affect the variety of
gut microbiota. In the short term, the composition of fecal bacteria may be drastically
altered [39,40]. In addition to perturbing the gut microbial community as a whole, DON
operates synergistically with pathogenic bacteria, aggravating the disease process in the
host. Ruhnau et al. [41] proved that DON collaborated with Campylobacter jejuni to enhance
intestinal load, disrupt the intestinal barrier, and expedite intestinal pathogen translocation
into the liver and kidney. In addition, DON is also demonstrated to enhance the relative
abundance of Clostridium perfringens in the jejunum of broilers, thereby increasing the
digestive load [42]. Meanwhile, DON enhanced the abundance of pathogenic Escherichia coli
in the colon and exacerbated the Escherichia-induced intestinal cell DNA damage [43,44].
Metagenomic analysis revealed that DON severely disrupted the intestinal microbiota
in mice and impaired biosynthesis and repair functions. A high dose of DON damages
the nerve sphingolipid, protein digestion and absorption, and lipoic acid metabolism
pathways [45].

3.2. OTA

Regarding the perturbing effect of OTA on gut microbes, many studies have shown
that OTA had a substantial effect on the relative number of Firmicutes, increased the relative
abundance of Bacteroides, and decreased the β diversity of the intestinal microbiota [46]. No-
tably, Wang et al. [47] explored the OTA-induced alterations via intestinal microbiota in its
toxicological mechanism and estimated that OTA-mediated liver inflammation was micro-
bially dependent. OTA increased the relative abundance of lipopolysaccharide-producing
bacteria (Bacteroidetes), elevated the intestinal LPS load, weakened the intestinal barrier, and
ultimately induced liver inflammation via LPS-specific activation of the liver TLR4/MyD88
signaling pathway. The researchers constructed a pseudo-sterile animal model with antibi-
otics, and the fecal bacteria transplantation experiment proved that OTA-induced changes
in gut microbes are an important incentive for OTA-induced liver validation.

3.3. ZEA

When animals were exposed to ZEA alone, no substantial changes in their gut bacteria
occurred, and ZEA had no discernible influence on the composition of intestinal microbes.
By stimulating the RhoA/ROCK pathway, ZEA tended to inhibit microbial involvement in
intestinal mucin formation [48–50]. These results suggest that ZEA may have little effect on
the overall microbial community in the gut, but through its effect on the mucus layer of the
intestinal epithelium, it is likely to have some effects on the parasitic bacteria that adhere
to mucin or decompose mucin. This series of changes may further negatively affect the
construction of the intestinal barrier. Studies have shown that ZEA has a significant impact
on the overall functional gene level of gut microbes. ZEA inhibits intestinal microorganism
glycerophospholipid metabolism, which may be one of the reasons contributing to ZEA-
induced ovarian reproductive damage [51,52].

The combined presence of more than two mycotoxins frequently occurs in naturally
moldy cereals and grains. Therefore, it is more applicable for investigation in combined
mycotoxins impact on gut microbiota. As ZEA combined with DON, the organization of
the intestinal microbiota was drastically altered [53]. High doses of DON and ZEA changed
the number of proteins involved in microbial metabolism, genetic processing, and oxidative
stress responses (related to the ribosome and pentose phosphate pathways), resulting
in structural modification of the gut microbiome [54]. Additionally, combined ZEA and
DON suppressed costimulatory molecule expression on intestinal CD4+ T cells and il-
4R-mediated Th2 cell development, hence impairing intestinal resistance and pathogen
clearance [56]. These results reflected the additive effect among mycotoxins, whereas, in
reality, multiple mycotoxins are often combined and generate in grains and feeds. ZEA has
a high detection rate in grains, therefore the combined effects of other toxins and ZEA, and
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the harmful effects of other mixed mycotoxins on intestinal microbes are urgently needed
to advance research.

3.4. AFB1

AFB1 exposure also induces gut microbial dysfunction. Fermentation of carbohydrates
and proteins and amino acids to produce short-chain fatty acids (SCFA) is an important
function of intestinal microorganisms. SCFA produced by intestinal microorganisms is not
only an important source of energy for intestinal cells but also drives the absorption of nu-
trients and hormone production in the intestine. After four weeks of AFB1-exposed, SCFA,
pyruvate-related pathways, amino acids, bile acids, and long-chain fatty acid metabolic
pathways were all eliminated in the intestinal bacteria of rats. The efficiency of the host
digestive system, energy supply, intestinal immunity, neurotransmitter synthesis, and
enterohepatic crosstalk was also affected [55]. When studying the hazards of exposure
to mycotoxins, researchers tend to overlook this indirect effect of gut microbial dysbiosis.
Little is known about changes in gut microbial communities under mycotoxin exposure.
As an important “organ” that performs host digestion, metabolism, absorption, and im-
mune processes, the gut microbiome deserves more attention. There is little experimental
evidence on the changes of intestinal microorganisms in animals exposed to FB1, therefore
we do not summarize FB1 related information in this part. With the increasing amount
of research focusing on changes in the gut microbiome upon exposure to mycotoxins, the
understanding of the role of the gut microbial community under toxin perturbation will
become improved. This will also contribute to a more complete revelation of the underlying
toxicological mechanisms of mycotoxins.

4. Alleviate Mycotoxins Harm by Microbiota

As the crosstalk between mycotoxins and animal gut microbiota discussed, mycotoxin-
induced damage in the host organism is partially attributed to microbiota-mediated entero-
toxicity and pathological changes. Thus, strengthening the intestinal barrier by modulation
of the gut microbiota may represent a unique strategy for minimizing the harm caused
by mycotoxins.

At the present, there are three primary strategies for mitigating the harm caused by my-
cotoxins transmitted by microorganisms: (I) directly degrade mycotoxins in food through
microbial pretreatment and reduce toxin intake; (II) by increasing probiotic colonization,
the formation of bacterial-toxin complexes is inhibited, thereby reducing toxin absorption
in the intestinal tract; and (III) by regulating the intestinal microecology with probiotics or
prebiotics, remodeling the intestinal microflora, enhancing the intestinal barrier, relieving
intestinal toxicity, and reducing toxin penetration.

As several recent pieces of literature reviewed the mycotoxin degradation by microor-
ganisms, we summarized the topic of mycotoxin degradation by microbiota in Section 4.1.
This review focused here on the alleviation of mycotoxins in the host by reshaping and
modulating intestinal microorganisms via microbiota adhesion effect or supplemental
nutrients etc.

4.1. Alleviate Mycotoxins Harm by Microbiota Degradation

With the development and utilization of microbial culturomics and sequencing tech-
nology, an increasing number of microorganisms may be cultured individually in the
laboratory. Recently, an increasing number of microorganisms have been shown to degrade
mycotoxins with high efficiency and specificity.

We list the microbes that can directly and efficiently degrade mycotoxins (Table 3).
With the advancement of food fermentation technology and the pre-storage treatment
process, it is anticipated that the direct elimination of toxins by microorganisms will
become increasingly prevalent.
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Table 3. The degradation rate of mycotoxins by different microorganisms.

Mycotoxin Microbiota Culture Conditions Degradation Rate Reference

AFB1

Bacillus shackletonii 37 ◦C, 72 h 92.1% [57]
Pseudomonas fluorescens 37 ◦C, 72 h 99% [58]

Bacillus sp. Strains 37 ◦C, 72 h 58–96.9% [59]
lactobacillus plantarum 37 ◦C, 24 h 56% [60]

OTA
Brevibacterium 30 ◦C, 6 d 100% [61]

bacillus amyloliquefaciens. ASAG1 31 ◦C, 72 h 99.7% [62]
Bacillus. CW14 30 ◦C, 24 h 97.6% [63]

FB1

S. marcescens 329-2 25 ◦C, 24 h 37% [64]
L. plantarum MYS6 30 ◦C, 30 d 61.7% [65]

lactobacillus plantarum CECT 749 25 ◦C, 15 d 90.6% [66]
Lactobacillus brevis 18–25 ◦C, 141 d 90% [67]

ZEA

E. coli-Lactobacillus shuttle vector pNZ3004 14 h 99.3% [68]
Lactobacillus reuteri 37 ◦C, 4 h 100% [69]

R. percolatus JCM 10087 28 ◦C, 7 d 90% [70]
Bacillus subtilis ANSB01G 37 ◦C, 48 h 100% [71]

DON Pelagibacterium halotolerans ANSP101 40 ◦C, 6 h 81% [72]

While microbial degradation of mycotoxins has the advantage of being highly efficient
and specific, it also has drawbacks, including limited degradation efficiency of mycotoxins
complexes, severe pretreatment conditions, and complex fermentation products.

4.2. Alleviate Mycotoxins Harm by Microbiota Adhesion Effect

Mycotoxins in feed and food are typically in the form of mycotoxins-glycoconjugates
generated from plants. These conjugates break down hardly in vivo and are often not
digested in the stomach or small intestine, resulting in large intestinal colon toxicity. In-
creased colonization of high-adhesion probiotics results in the formation of bacteria-toxin
complexes in the intestinal segment, which effectively reduces toxin absorption in the large
intestine [73]. Lactic acid bacteria adsorption capacity for mycotoxins is a prominent study
area in recent studies, owing to their distinctive secretory mucin layer with strong adhesion
and their ease of cultivation [74].

The adsorption capacity of ZEA by lactic acid bacteria was first reported in 2017 and
examined the durability of the ZEA-lactic acid bacteria combination. It was found that ZEA
had a 68.2 percent adsorption capacity on lactic acid bacteria and that 15.8 percent of ZEA
remained adsorbed in the complex particles after three bleaching cycles. The potential of
lactic acid bacteria as ZEA bioactive adsorbents was demonstrated in this study [75]. With
the advancement of microbial culturomics, increasing isolated Lactobacillus species were
assessed for the adsorption impact, and the FTIR (Fourier Transform Infrared) technique
was utilized to determine the mechanism of microbial adsorption. Lactobacillus plantarum
has been found to limit the bioavailability of ZEA in the gastrointestinal system by adhesion,
hence reducing the genotoxicity and nephrotoxicity of ZEA [76].

ZEA was absorbed by L. plantarum BCC 47723 with the effect of hydrophobic adsorp-
tion rather than electrostatic adsorption. The adsorption efficacy of L. plantarum could be
increased further by altering the bacterial cell structure via heat treatment [77].

High-performance liquid chromatography analysis indicated that Lactobacillus para-
cei might decrease ZEA to α-Zol and β-Zol, resulting in less harmful byproducts [78].
Król et al., found that Lactococcus lactis is capable of neutralizing ZEA via bacterial proteins
and deprotonated carboxyl groups in peptidoglycans (asparagine and glutamine) [79].

Except for ZEA, lactic acid bacteria were also capable of adsorbing AFB1 and
DON [79,80]. It is demonstrated that Lactobacillus Plantarum could adsorb 82% of AFB1
in vitro and that the resulting complex retained high stability after five washes [81]. It
was also reported that Lactobacillus para cel live cells bind AFB1 98 percent of the time and
dramatically lower AFB1 levels in the serum of rats exposed to the toxin [82]. Lactobacillus
para cel LHZ-1, isolated from yogurt, the cell wall had the highest rate of DON absorption,
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up to 40.7 percent, supporting that the S protein released by the lactobacillus cell wall had a
major role in adhesion [83].

4.3. Alleviate Mycotoxins Harm by Shaping the Microbiota

As shown in the table below, many studies have demonstrated the detoxification
effect of additional supplemental nutrients such as non-flavonoid polyphenols, flavonoids,
dietary fibers, terpenoid carotenoids, and fatty acids on the toxic effects of mycotoxins
(Table 4); the crosstalk between the aforementioned substances and gut microbes, however,
was not considered. The gut microbiota is an important link that maintains the host’s
metabolic function, immune function, and nutrient absorption. Recently, growing studies
have revealed the effects of nutrients on gut microbes and entire metabolic processes
passing through the digestive tract. Combining the potential mechanisms of nutrients
to mitigate mycotoxins hazards, as well as the interactions between nutrients and gut
microbes, will help us to clarify the possibility of gut microbes as potential targets for
antagonizing mycotoxins.

Table 4. Compounds that mitigate the effects of mycotoxins.

Mycotoxin Exposure
Treatment Antidote Treatment Animal Models Reference

AFB1, 1 mg/kg feed, 1–28 d Curcumin, 300 mg/kg feed, 1–28 d Chicken [84]
AFB1, 0.75 mg/kg BW, 1–30 d Curcumin, 200 mg/kg BW, 1–30 d Mice [85]
AFB1, 0.75 mg/kg BW, 1–21 d Curcumin, 400 mg/kg feed, 1–21 d Duck [86]
AFB1, 0.75 mg/kg BW, at 70 d Curcumin, 500 mg/kg feed, 1–70 d Duck [87]
AFB1, 0.75 mg/kg BW, at 70 d Curcumin, 500 mg/kg feed, 1–70 d Duck [88]

AFB1, 50 µg/kg BW, 1–12 d Caffeic acid, 40 mg/kg BW, 1–12 d Rat [89]
AFB1, 168.3 µg/kg BW, 1–58 d Myoinositol, 527.9 mg/kg feed, 1–58 d Litopenaeus vannamei [90]

AFB1, 1 mg/kg feed,1–28 d Proanthocyanidin, 250 mg/kg feed, 1–28 d Chicken [91]
AFB1, 1 mg/kg feed,1–28 d Proanthocyanidin, 250 mg/kg feed, 1–28 d Chicken [92]

AFB1, 500 µg/kg feed,1–60 d Silymarin, 500 mg/kg feed, 1–60 d Japanese quail [93]
AFB1, 100 µg/kg feed, 1–42 d Lycopene, 200 mg/kg feed, 1–42 d Chicken [94]
AFB1, 0.75 mg/kg BW, 1–31 d Lycopene, 5 mg/kg BW, 1–31 d Mice [95]
AFB1, 0.75 mg/kg BW, 1–31 d Lycopene, 5 mg/kg BW, 1–31 d Mice [96]
AFB1, 0.75 mg/kg BW,1–28 d Luteolin, 50 mg/kg BW,1–28 d Mice [97]
AFB1, 300 µg/kg BW, 1–42 d Ferulic acid, 120 mg/kg BW,1–42 d Rat [98]
AFB1, 100 µg/kg feed, 1–28 d Marine-algal polysaccharides, 2500 mg/kg feed, 1–28 d Chicken [99]
AFB1, 100 mg/kg BW, 1–14 d Fucoidan, 200 mg/kg BW, 1–14 d Rat [100]
AFB1, 0.1 mg/kg BW, 1–28 d Selenium, 1 mg/kg BW, 1–28 d Duck [101]
AFB1, 0.3 mg/kg feed, 1–21 d Selenium, 0.6 mg/kg feed, 1–21 d Chicken [102]
AFB1, 0.3 mg/kg BW, at 70 d Resveratrol, 500 mg/kg feed, 1–70 d Duck [103]
AFB1, 74 µg/kg BW, 1–21 d Lipoic acid, 300 mg/kg feed, 1–21 d Chicken [104]
DON, 4 mg/kg feed, 1–14 d 0.5% Baicalin-Zinc complex feed, 1–14 d Weaned piglets [105]
DON, 4 mg/kg feed, 1–21 d Baicalin-Copper, 5 g /kg feed, 1–21 d Weaned piglets [106]
DON, 4 mg/kg feed, 1–14 d 0.1% Baicalin feed, 1–14 d Weaned piglets [107]
DON, 3 mg/kg BW, 1–12 d Lycopene, 10 mg/kg BW, 1–12 d Mice [108]

DON, 3.8 mg/kg feed, 1–28 d Resveratrol, 300 mg/kg feed, 1–28 d Weaned piglets [109]
DON, 3.8 mg/kg feed, 1–28 d Resveratrol, 300 mg/kg feed, 1–28 d Weaned piglets [110]
DON, 2.65 mg/kg feed, 1–21 d Resveratrol, 300 mg/kg, 1–21 d Weaned piglets [111]

DON, 4 mg/kg feed, 1–28 d 0.2% Sodium butyrate feed, 1–28 d Weaned piglets [112]
DON, 2 mg/kg BW, 4–9 d Zinc L-Aspartate, 20 mg/kg BW, 1–6 d Mice [113]
DON, 3 mg/kg BW, 1–10 d l-Carnosine, 300 mg kg BW, 1–10 d Mice [114]
DON, 3 mg/kg BW, 1–15 d Ginsenoside Rb1, 50 mg/kg BW, 1–15 d Mice [115]
DON, 2 mg/kg BW, 1–10 d Lauric acid, 10 mg/kg BW, 1–10 d Mice [116]

DON, 1 mg/kg BW, 11–17 d Chloroquine, 10 mg/kg BW, 4–10 d Weaned piglets [117]
DON, 2 mg/kg BW, 4–8 d Methionine, 300 mg /kg BW, 1–11 d Mice [118]

DON, 4 mg/kg feed, 1–36 d 2% glutamic acid feed, 1–36 d Weaned piglets [119]
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Table 4. Cont.

Mycotoxin Exposure
Treatment Antidote Treatment Animal Models Reference

FB1, 1 mg/kg BW, 1–28 d Alginate oligosaccharides, 200 mg/kg BW, 1–28 d Mice [120]
FB1, 400 ppb feed, 1–42 d Glycerol monolaurate, 4 mg/kg feed, 1–42 d Chicken [121]
FB1, 5 mg/kg feed, 1–42 d Moringa leaf, 20 g/kg feed, 1–42 d Rabbit [122]

ZEA, 0.25 mg/kg feed, 8–14 d Betulinic acid, 0.5 mg/kg feed, 1–14 d Mice [123]
ZEA, 20 mg/kg feed, 1–42 d Silymarin, 500 mg/kg feed, 1–42 d Rat [124]

ZEA, 0.27 mg/kg feed, 1–14 d Fructo oligosaccharide10 g/d feed, 1–14 d Cattle [125]
ZEA, 40 mg/kg feed, 1–30 d Hyperoside, 100 mg/kg feed, 1–30 d Mice [126]

ZEA, 5 mg/kg feed, 1–7 d Baicalin, 80 mg/kg feed, 5–7 d Chicken [127]
ZEA, 2 mg/kg feed, 1–21 d Resveratrol, 5 mg/kg feed, 1–21 d Rat [128]

ZEA, 40 mg/kg BW, 13–14 d Selenium yeast, 0.25 g/kg BW 1–14 d Mice [129]
ZEA, 40 mg/kg BW, 11 d Proanthocyanidin, 75 mg/kg BW, 1–10 d Mice [130]
ZEA, 40 mg/kg BW, 6–7 d Proanthocyanidin, 100 mg/kg BW, 1–5 d Mice [131]
ZEA, 40 mg/kg BW, 11 d Lycopene, 20 mg/kg BW, 1–10 d Mice [132]

ZEA, 100 µg/kg BW, 1–28 d Gallic acid, 40 mg/kg BW, 1–28 d Rat [133]
ZEA, 0.725 mg/kg feed, 1–14 d Garlic 30 g/kg and chitosan 10 g/kg feed, 1–14 d European seabass [134]

ZEA, 40 mg/kg BW, 1–28 d Selenium, 0.4 mg/kg BW, 1–28 d Mice [135]
ZEA, 40 mg/kg BW, 11 d Chrysin, 20 mg/kg BW, 1–10 d Mice [136]

OTA, 0.5 mg/kg feed, 1–42 d Quercetin, 0.5 g/kg feed, 1–42 d Chicken [137]
OTA, 3 mg/kg BW, 1–21 d Quercetin, 50 mg/kg BW, 1–21 d Rat [138]

OTA, 0.5 mg/kg BW, 1–45 d Curcumin, 100 mg/kg BW, 1–45 d Rat [139]
OTA, 0.5 mg/kg BW, 1–45 d Curcumin, 100 mg/kg BW, 1–45 d Rat [140]
OTA, 2 mg/kg feed, 1–21 d Curcumin, 400 mg/kg feed, 1–21 d Duck [141]
OTA, 0.5 mg/kg BW, 1–14 d Curcumin, 100 mg/kg BW, 1–14 d Rat [142]
OTA, 5 mg/kg BW, 1–21 d Astaxanthin, 100 mg/kg BW, 1–21 d Mice [143]
OTA, 5 mg/kg BW, 1–21 d Astaxanthin, 100 mg/kg BW, 1–21 d Mice [144]
OTA, 50µg/kg BW, 1–21 d Selenium yeast, 0.4 mg/kg BW, 1–21 d Chicken [145]
OTA, 50µg/kg BW, 1–21 d Selenium yeast, 0.4 mg/kg BW, 1–21 d Chicken [146]
OTA, 1 mg/kg BW, 1–21 d Gallic acid, 280 mg/kg BW, 1–21 d Catfish [147]

4.3.1. Non-Flavonoid Phenolic

Polyphenolic compounds (such as curcumin, caffeic acid, resveratrol, etc.) have an
intense alleviation effect on damages caused by mycotoxins.

Curcumin is known as a polyphenolic compound with pharmacological activities,
such as antioxidative, anti-inflammatory, and antibacterial. Previous studies revealed
that curcumin supplementation attenuated liver damage induced by AFB1 exposure in
chickens, mice, and rats and reduced liver inflammation in OTA-exposed ducks [84–88].
Increasing pieces of evidence demonstrated that the hepatotoxicity of AFB1 and OTA
is microbe-dependent. AFB1 and OTA disrupt animal intestinal microbial homeostasis,
increase the relative abundance of lipopolysaccharide-producing Bacteroides, and ultimately
induce liver inflammation in animals [47,148]. As a natural herbal polyphenol, curcumin
has been reported in several studies to modulate the composition of gut microbes. Cur-
cumin could increase the relative abundance of Lactobacillus in the intestine of mice, and
reduce the relative abundance of Shigella Enterobacter and pathogenic Bacteroides, reducing
lipopolysaccharide production to alleviate the process of metabolic endotoxemia [149,150].
In addition, curcumin significantly up-regulates the relative abundance of the butyric
acid-producing bacteria Butyricicoccus in the rat gut, and the species Butyricicoccus repair
intestinal barrier damage and further improve liver lipids by degrading fermented proteins
and carbohydrates to produce short-chain fatty acids [151].

As a powerful antioxidant, resveratrol effectively alleviates liver injury in mice ex-
posed to AFB1 and can improve serum immune indexes in rats exposed to ZEA. No-
tably, multiple studies have demonstrated the protective effect of resveratrol on the gut of
weaned piglets exposed to DON. Significantly, resveratrol up-regulated the relative abun-
dance of SCFA-producing bacteria, such as Butyricicoccus, Ruminococcus_1, Roseburia and
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Adlercreutzia in rat gut, and increased the level of SCFA in feces [152,153]. During the
weaning stage of piglets, the level of secondary bile acids in the intestine was up-regulated
due to dietary changes, resulting in disturbance of the intestinal microbiota and intestinal
barrier [154,155]. Long-term exposure to DON also induces bile duct hyperplasia and tissue
damage in piglets [156]. Interestingly, studies have reported that resveratrol could mediate
the synthesis and recycling of bile acids by affecting gut microbes. Resveratrol increases
the relative abundance of Lactobacillus and Bifidobacterium, thereby increasing the activity of
bile salt hydrolase. And reducing the concentration of bile acids in the ileum. Meanwhile,
it has also been found to up-regulate the intestinal FXR signaling pathway and enhance the
intestinal barrier [157]. Therefore, resveratrol is likely to mediate the repair effect of gut
microbes on the gut of weaned piglets exposed to DON.

Caffeic acid is a hydroxycinnamic acid-related organic compound with both phenolic
hydroxyl and acrylic functional groups. It possesses antioxidant, immunomodulatory,
and anti-inflammatory properties. A recent study showed that caffeic acid alleviates
AFB1-induced kidney damage in rats. Dietary supplementation of caffeic acid significantly
reduced the relative abundance of Bacteroidetes and Turicibacter and increased the abundance
of Alistipes, Dubosiella and Akkermansia [158,159]. Alistipes were shown to produce SCFA,
and Akkermansia is a novel probiotic that could effectively reduce the potential risk of colitis
by regulating the secretion of mucin [160,161]. Therefore, gut microbiota may be potential
targets for caffeic acid to exert its detoxification effect.

4.3.2. Flaudio-Videoonoids

Flaudio-videoonoids substances (e.g., anthocyanin, gallic acid, quercetin and baicalin
and their derivatives) are also shown detoxification effects against mycotoxins.

Anthocyanin is a water-soluble plant pigment. Toxicological studies showed that
anthocyanins alleviate the damage caused by AFB1 in broilers and the damage caused by
ZEA in mice. As polyphenols naturally extracted from plants, anthocyanins not only play
an antioxidant role, but also significantly change the composition of animals’ gut microbes.
Anthocyanin supplementation reduces intestinal inflammation by increasing the relative
abundance of Lactobacillus, Bifidobacterium, Lachnospira and Ruminococcus, which in turn
increases SCFA production, improves intestinal barrier and mucus production, and reduces
the potential risk of intestinal inflammation [162,163].

Gallic acid is not only a polyphenolic compound present in plants, but also one of the
important metabolites of gut microbes [164]. Gallic acid alleviates the reproductive toxicity
of ZEA-exposed mice and the toxic effect of OTA on catfish. Adding gallic acid to the diet
significantly upregulates gut microbial diversity in dogs and bees [165,166]. Recent studies
have shown that ZEA is likely to induce reproductive toxicity by disrupting the blood-testis
barrier [167]. The protective effect of probiotics on the blood-testis barrier has gradually
been discovered and clarified by researchers. Proteobacteria have been reported to increase
the probability of semen hyperviscosity, while Lactobacillus improves mitochondrial activity
and alleviates oxidative stress in sperm cells [168]. Interestingly, the relative abundance of
probiotics such as Lactobacillus and Prevotaceae were significantly up-regulated and the level
of Proteobacteria was significantly decreased after gallic acid was added to the diet of colitis
model rats [169]. Therefore, gallic acid is likely to be able to alleviate the reproductive
toxicity caused by ZEA by regulating the composition of gut microbes, and its antioxidant
properties also resist the oxidative stress caused by ZEA.

In recent studies, researchers have revealed the alleviation effect of quercetin on
metabolic diseases such as hyperlipidemia, hyperglycemia, and obesity [170–172]. Quercetin
also effectively alleviates OTA-induced immune toxicity in chickens and nephrotoxicity
in rats exposed to OTA. As gut microbes may be an important bridge for quercetin to
regulate energy metabolism disorders, the effect of quercetin on intestinal microbes is
also an inevitable consideration in the process of alleviating mycotoxins. Studies have
shown that quercetin is effective against microbial dysbiosis, restores gut microbiota in
antibiotics-treated mice, and significantly increases the relative abundance of butyrate-
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producing bacteria [173]. Similarly, a dietary quercetin supplementation in pigs experiment
revealed that when quercetin was added to piglet feed, quercetin significantly upregulated
Akkermansia muciniphila in the gut, as well as the relative abundance of SCFA-producing
bacteria Clostridium butyricum, Clostridium celatum and Prevotella copri [174].

Baicalin is a naturally occurring glycoside that is derived from baicalein and glucuronic
acid. Baicalin and its copper-zinc compounds effectively alleviate intestinal inflammation
in weaned piglets exposed to DON and protect the liver and kidney toxicity in broilers
exposed to ZEA. Baicalin with dietary intake is converted into baicalenin with gut microbes’
fermentation [175,176]. As baicalenin is absorbed into the host mechanism through the
intestinal tract, baicalenin and baicalinit could be converted into each other under the
catalysis of phase II enzymes, and phase II enzymes also have detoxification effects [177,178].
Therefore, the interaction between baicalin and gut microbes is also an important part of its
detoxification effect. Dietary supplementation with baicalin monomer significantly altered
gut microbial composition and induced changes in fecal bile acid profiles, according to the
findings of the researchers. Moreover, baicalin inhibited the appearance of the bile acid-
specific receptor FXR and increased intestinal barrier toxicity resistance [179]. This study
accurately depicts the regulatory effect of baicalin on the intestinal microbiota and bile acid
system and paves the way for the discovery of a more profound detoxification mechanism.

4.3.3. Dietary Fiber

Many studies have shown that dietary fiber and its metabolites (oligosaccharides)
also have a detoxifying effect on mycotoxins. Dietary fiber affects the peristalsis and
digestion process of the intestine, and most of them are not digested in the foregut. Dietary
fibers are converted into small molecular substances and absorbed by the host after the
hindgut degradation and fermentation by intestinal microorganisms [180]. As the main
active ingredient in moringa oleifera leaves, moringa oleifera polysaccharide significantly
reduced the relative abundance of Bacteroides and Helicobacter pylori in gut microbes [122].
The protective effect of algal polysaccharides, fucoidan, and Alginate oligosaccharides on
animal intestines is mainly due to their promotion of SCFA production by bacteria in the
hindgut [181]. At present, the interaction effect of polysaccharides and oligosaccharides
with intestinal microbes in the hindgut is still unclear. It is necessary to further design
sterile or pseudo-sterile animal experiments to verify the role of intestinal microbes in the
process of dietary fiber alleviating the toxicity of mycotoxins.

4.3.4. Terpenoid Carotenoids

Studies have shown that two terpenoid carotenoids, lycopene, and astaxanthin, also
have a significant detoxification effect on mycotoxins. Lycopene, in particular, has a
relieving effect on damage with AFB1, DON and ZEA exposure. Studies show that ad-
ditional dietary lycopene remodels the gut microbiome of mice with colitis, significantly
reducing the relative abundance of Proteobacteria and increasing the relative abundance of
Bifidobacterium and Lactobacillus [182]. In other studies, additional supplementation of astax-
anthin in feed directly reduces the functional gene abundance that is associated with inflam-
mation in gut microbes [183]. By regulating the abundance of functional gene fragments in
intestinal microorganisms, the antagonistic effect of mycotoxin was indirectly achieved.

4.3.5. Fatty Acids

Cinnamic acid and its derivatives, as well as sodium butyrate, have also shown
detoxification effects on mycotoxins in a large number of animal tests. Studies in rats
and chickens showed that cinnamic acid derivative ferulic acid can alleviate liver damage
caused by AFB1 [98]. Laurate supplementation in the feed also shows the alleviation of
broiler growth performance by the damage of FB1 [121]. A recent study in DON revealed
that sodium butyrate could renovate intestinal barrier damage. SCFA plays a pivotal role
in the construction of the intestinal barrier [112]. After the supply of SCFA precursors,
the production of SCFA by intestinal microorganisms is also greatly promoted, and the
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abundance of SCFA-producing bacteria also increased. It is easier to become the dominant
flora under this condition, and further, exert the biosynthetic function of SCFA.

4.3.6. Microelement

Many studies have shown that mycotoxins can be detoxified well by supplementing
feed with the trace element selenium. For poultry exposed to AFB1, supplementation with
low doses of selenium is effective in reducing AFB1 damage to the liver and thymus of
poultry [101,102]. Either selenium or yeast selenium supplementation helped to alleviate
kidney damage in mice exposed to ZEA [129,135]. Yeast selenium has a strong antagonistic
effect on both hepatotoxicity and nephrotoxicity in chickens exposed to OTA [145,146]. It
has been demonstrated that selenium nanoparticles are effective in suppressing the relative
abundance of Enterococcus cecorum in the intestinal tract of chickens [184]. Of note here
is the selenium conjugate, yeast, which, as we mentioned earlier, is widely used for the
adsorption and degradation of mycotoxins. Thus, in the process of the natural product
yeast selenium acting to mitigate the toxicity of mycotoxins, yeast also plays a part in the
adsorption and degradation of mycotoxins.

4.4. Microbiota-Guided Direct Regulatory Strategy

In addition to intestinal toxicity, mycotoxins have complicated toxicological path-
ways that include hepatotoxicity, nephrotoxicity, neurotoxicity, and immunotoxicity. The
concepts of the gut-liver axis, gut-brain axis, and gut-kidney axis have been proposed in
recent years, prompting researchers to reconsider the role of mycotoxin-mediated intestinal
microbiological disorder in extra-intestinal organ injury and pointing to a new direction
for elucidating mycotoxins’ novel toxicological mechanism. It can be seen that numer-
ous researchers have attempted to modify the gut microbiota directly through microbial
community regulation.

Interestingly, certain lactic acid bacteria have a considerable protective effect against
DON-induced intestinal damage. For example, Lactobacillus rhamnosus treatment boosts
the liver antioxidant capacity, blocks the NRF2 signaling pathway, and increases butyrate
synthesis by up-regulating the Buk and But genes, thereby inhibiting the IRE1/XBP1 sig-
naling pathway and protecting mice from DON damage [185,186]. In vitro studies revealed
that Lactobacillus plantarum supernatant was proven to significantly recover the loss of
intestinal goblet cells induced by DON, and to strengthen the architecture of intestinal
villi [187]. Whereas Lactobacillus plantarum cells have the potential to rearrange the intestinal
community homeostasis disrupted by DON, and down-regulate the expression of apop-
totic genes to ameliorate intestinal cell death and inflammation generated by DON [188].
Interestingly, Lactobacillus rhamnosus was unable to adsorb DON, but it was able to inhibit
the expression of CCL20, IL-1β, TNFα, IL-8, IL-22 and IL-10 via MAP kinase and therefore
withstand the intestinal inflammation generated by DON [189]. Notably, several probiotics
were utilized to mitigate the toxicity of DON, and the effect of mending the intestinal
barrier and restoring phylum-level bacteria abundance was shown in both mouse and
piglet models [190,191].

The mechanism by which OTA induces liver inflammation via intestinal bacteria
was detailed above, demonstrating that the LPS and TLR4 signaling pathways are critical
targets of the OTA toxicological mechanism. Xia et al., revealed that melatonin success-
fully reversed the OTA-induced increase of Bacteroidetes abundance, greatly lowering LPS
accumulation in the gut and liver, and relieving OTA-induced liver inflammation [192].
Additionally, other studies have demonstrated that astaxanthin and selenium-rich yeast
can modulate fecal barrier function and the TLR4/MyD88 signaling pathway, block the
OTA-mediated NF-κB signaling pathway, reduce OTA-induced intestinal toxicity, and
repair the intestinal barrier [193,194]. Transcriptomics results showed that Bacillus subtilis
CW14 would activate the toll-like receptor signaling pathway to protect the ZO-1 protein,
and minimize OTA-induced cell apoptosis by down-regulating the death receptor gene
and up-regulating the DNA repair gene [195].
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There is still a dearth of investigation of precise pathogenic pathways related to gut
microorganisms of AFB1 and ZEA. As a result, the prevention and treatment of these
two mycotoxins are primarily focused on intestinal barrier development and preservation
of gut microbial balance. Chen et al., found that Bacillus amylolitica B10 dramatically in-
creased intestinal tight junction protein expression in mice while decreasing the relative
abundance of Bacteroides and Bacteroidetes [196]. Wang et al. demonstrated that Bacillus
cereus BC7 effectively normalized ZEA-induced disturbances in the intestinal microbiota,
and significantly increased lactobacillus abundance for microbiome homeostasis in mice,
thereby reversing abnormal histological phenotypes in the uterus, ovaries, and liver ex-
posed to ZEA [197].

5. Conclusions

Cross-talk between mycotoxins and bacteria is complicated, and requires systematic
and extensive studies. Researchers have finally been able to decipher this mysterious black
box because of advancements in microbiome culture and sequencing technology. It is
through the digestive system that mycotoxins enter the body, and the intestinal microbe is
the primary vector for the crosstalk effect that occurs with them. In addition to broadening
our horizons in understanding the toxicological mechanisms of mycotoxins, investigating
the cross-talk relationship between mycotoxins and microorganisms can also provide us
with more valuable and potential therapeutic targets that alleviate the toxic effects of
mycotoxins. As the depth and breadth of research increases, more mechanisms to mitigate
mycotoxicosis through microorganisms will be revealed and applied to bioengineering
production and animal husbandry.
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12. Peraica, M.; Radić, B.; Lucić, A.; Pavlović, M. Toxic effects of mycotoxins in humans. Bull. World Health Organ. 1999, 77, 754–766.
[PubMed]

13. Adegbeye, M.J.; Reddy, P.; Chilaka, C.A.; Balogun, O.B.; Elghandour, M.; Rivas-Caceres, R.R.; Salem, A. Mycotoxin toxicity
and residue in animal products: Prevalence, consumer exposure and reduction strategies—A review. Toxicon 2020, 177, 96–108.
[CrossRef] [PubMed]

14. Liew, W.P.; Mohd-Redzwan, S. Mycotoxin: Its Impact on Gut Health and Microbiota. Front. Cell. Infect. Microbiol. 2018, 8, 60.
[CrossRef]

15. Sánchez, B.; Delgado, S.; Blanco-Míguez, A.; Lourenço, A.; Gueimonde, M.; Margolles, A. Probiotics, gut microbiota, and their
influence on host health and disease. Mol. Nutr. Food Res. 2017, 61, 1. [CrossRef]

16. Albillos, A.; de Gottardi, A.; Rescigno, M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 2020,
72, 558–577. [CrossRef]

17. Chen, Y.Y.; Chen, D.Q.; Chen, L.; Liu, J.R.; Vaziri, N.D.; Guo, Y.; Zhao, Y.Y. Microbiome-metabolome reveals the contribution of
gut-kidney axis on kidney disease. J. Transl. Med. 2019, 17, 5. [CrossRef]

18. Quigley, E. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr. Neurol. Neurosci. Rep. 2017, 17, 94. [CrossRef]
19. Yang, T.; Richards, E.M.; Pepine, C.J.; Raizada, M.K. The gut microbiota and the brain-gut-kidney axis in hypertension and

chronic kidney disease. Nat. Rev. Nephrol. 2018, 14, 442–456. [CrossRef]
20. Tomaszewska, E.; Rudyk, H.; Dobrowolski, P.; Donaldson, J.; Świetlicka, I.; Puzio, I.; Kamiński, D.; Wiącek, D.; Kushnir, V.;
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