Microbiome in Chronic Kidney Disease (CKD): An Omics Perspective
Abstract
:1. Introduction
- (i)
- symptoms of a kidney injury for more than 3 months at normal glomerular filtration rate (GFR),
- (ii)
- an increase in the urinary albumin:creatinine ratio (UACR) above 30 mg/g,
- (iii)
- (i)
- In 1978, researchers observed a significant alteration in gut microbiota in CKD patients in comparison to controls, and demonstrated microbiota’s ability to metabolize substrates causing uremic toxicity [26].
- (ii)
- Later on, another study indicated significant altered abundance of 175 bacterial operational taxonomic units (OTUs) in CKD and control rats [27]. An increase in Enterobacteriaceae/Proteobacteria and Bacteroidetes spp. with concomitant decrease in Prevotella, Bifidobacteriaceae and Lactobacilli spp. were suggested to intensify the sympathetic outflow causing hypertension and CKD. We may, therefore, hypothesize an impact of this microbiome on the renin-angiotensin-aldosterone-system (RAAS) that regulates sodium and water absorption in the kidney, thus directly controlling systemic blood pressure [28].
2. Transcriptomics in the Gut-Kidney-Axis
3. Proteomics in the Investigation of Gut-Kidney-Axis
3.1. Dietary Modifications to Improve Gut Health in CKD
3.2. Proteomics in the Heart-Gut-Kidney Axis
3.3. Proteomics in CKD Progression
4. Metabolomics in the Gut-Kidney-Axis
5. Expert Opinion
6. Future Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sumida, K.; Kovesdy, C.P. The gut-kidney-heart axis in chronic kidney disease. Physiol. Int. 2019, 106, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Ursell, L.K.; Metcalf, J.L.; Parfrey, L.W.; Knight, R. Defining the human microbiome. Nutr. Rev. 2012, 70 (Suppl. 1), S38–S44. [Google Scholar] [CrossRef] [Green Version]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The human microbiome project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017, 18, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, L.; Li, X.; Ghosh, S.; Xie, C.; Chen, J.; Huang, H. Role of gut microbiota-derived metabolites on vascular calcification in CKD. J. Cell. Mol. Med. 2021, 25, 1332–1341. [Google Scholar] [CrossRef] [PubMed]
- Evenepoel, P.; Poesen, R.; Meijers, B. The gut-kidney axis. Pediatr. Nephrol. 2017, 32, 2005–2014. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese and lean twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takahashi, S.; Xiao, J.Z.; Abe, F.; Osawa, R. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016, 16, 90. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, G.L.V.; Leite, A.Z.; Higuchi, B.S.; Gonzaga, M.I.; Mariano, V.S. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology 2017, 152, 1–12. [Google Scholar] [CrossRef]
- Mahmoodpoor, F.; Rahbar Saadat, Y.; Barzegari, A.; Ardalan, M.; Zununi Vahed, S. The impact of gut microbiota on kidney function and pathogenesis. Biomed. Pharmacother. Biomed. Pharmacother. 2017, 93, 412–419. [Google Scholar] [CrossRef]
- Meijers, B.; Evenepoel, P.; Anders, H.J. Intestinal microbiome and fitness in kidney disease. Nat. Rev. Nephrol. 2019, 15, 531–545. [Google Scholar] [CrossRef]
- Kim, S.M.; Song, I.H. The clinical impact of gut microbiota in chronic kidney disease. Korean J. Intern. Med. 2020, 35, 1305–1316. [Google Scholar] [CrossRef]
- Kanbay, M.; Onal, E.M.; Afsar, B.; Dagel, T.; Yerlikaya, A.; Covic, A.; Vaziri, N.D. The crosstalk of gut microbiota and chronic kidney disease: Role of inflammation, proteinuria, hypertension, and diabetes mellitus. Int. Urol. Nephrol. 2018, 50, 1453–1466. [Google Scholar] [CrossRef] [Green Version]
- Vanholder, R.; Fouque, D.; Glorieux, G.; Heine, G.H.; Kanbay, M.; Mallamaci, F.; Massy, Z.A.; Ortiz, A.; Rossignol, P.; Wiecek, A.; et al. Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diabetes Endocrinol. 2016, 4, 360–373. [Google Scholar] [CrossRef]
- Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA 2019, 322, 1294–1304. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef]
- Yang, T.; Santisteban, M.M.; Rodriguez, V.; Li, E.; Ahmari, N.; Carvajal, J.M.; Zadeh, M.; Gong, M.; Qi, Y.; Zubcevic, J.; et al. Gut dysbiosis is linked to hypertension. Hypertension 2015, 65, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Frank, D.N.; St Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 2007, 104, 13780–13785. [Google Scholar] [CrossRef] [Green Version]
- Yoshifuji, A.; Wakino, S.; Irie, J.; Tajima, T.; Hasegawa, K.; Kanda, T.; Tokuyama, H.; Hayashi, K.; Itoh, H. Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2016, 31, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Lam, V.; Su, J.; Koprowski, S.; Hsu, A.; Tweddell, J.S.; Rafiee, P.; Gross, G.J.; Salzman, N.H.; Baker, J.E. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2012, 26, 1727–1735. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Nino, M.D.; Sanz, A.B.; Ramos, A.M.; Ruiz-Ortega, M.; Ortiz, A. Translational science in chronic kidney disease. Clin. Sci. 2017, 131, 1617–1629. [Google Scholar] [CrossRef]
- Sampaio-Maia, B.; Simoes-Silva, L.; Pestana, M.; Araujo, R.; Soares-Silva, I.J. The Role of the Gut Microbiome on Chronic Kidney Disease. Adv. Appl. Microbiol. 2016, 96, 65–94. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.; Covic, A.; Fliser, D.; Fouque, D.; Goldsmith, D.; Kanbay, M.; Mallamaci, F.; Massy, Z.A.; Rossignol, P.; Vanholder, R.; et al. Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet 2014, 383, 1831–1843. [Google Scholar] [CrossRef]
- Simenhoff, M.L.; Saukkonen, J.J.; Burke, J.F.; Wesson, L.G., Jr.; Schaedler, R.W.; Gordon, S.J. Bacterial populations of the small intestine in uremia. Nephron 1978, 22, 63–68. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Wong, J.; Pahl, M.; Piceno, Y.M.; Yuan, J.; DeSantis, T.Z.; Ni, Z.; Nguyen, T.H.; Andersen, G.L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013, 83, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Liu, H.; Liu, D.; Liu, Y.; Li, H.; Tan, X.; Liu, F.; Peng, Y.; Zhang, H. Effects of RAAS Inhibitors in Patients with Kidney Disease. Curr. Hypertens. Rep. 2017, 19, 72. [Google Scholar] [CrossRef]
- Plata, C.; Cruz, C.; Cervantes, L.G.; Ramirez, V. The gut microbiota and its relationship with chronic kidney disease. Int. Urol. Nephrol. 2019, 51, 2209–2226. [Google Scholar] [CrossRef]
- Yun, Y.; Yin, H.; Gao, Z.; Li, Y.; Gao, T.; Duan, J.; Yang, R.; Dong, X.; Zhang, L.; Duan, W. Intestinal tract is an important organ for lowering serum uric acid in rats. PLoS ONE 2017, 12, e0190194. [Google Scholar] [CrossRef] [Green Version]
- Farhadi, A.; Banan, A.; Fields, J.; Keshavarzian, A. Intestinal barrier: An interface between health and disease. J. Gastroenterol. Hepatol. 2003, 18, 479–497. [Google Scholar] [CrossRef]
- Wu, I.W.; Gao, S.S.; Chou, H.C.; Yang, H.Y.; Chang, L.C.; Kuo, Y.L.; Dinh, M.C.V.; Chung, W.H.; Yang, C.W.; Lai, H.C.; et al. Integrative metagenomic and metabolomic analyses reveal severity-specific signatures of gut microbiota in chronic kidney disease. Theranostics 2020, 10, 5398–5411. [Google Scholar] [CrossRef]
- Felizardo, R.J.F.; Watanabe, I.K.M.; Dardi, P.; Rossoni, L.V.; Camara, N.O.S. The interplay among gut microbiota, hypertension and kidney diseases: The role of short-chain fatty acids. Pharmacol. Res. 2019, 141, 366–377. [Google Scholar] [CrossRef]
- Bulow, R.D.; Dimitrov, D.; Boor, P.; Saez-Rodriguez, J. How will artificial intelligence and bioinformatics change our understanding of IgA Nephropathy in the next decade. In Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Snelson, M.; Tan, S.M.; Clarke, R.E.; de Pasquale, C.; Thallas-Bonke, V.; Nguyen, T.V.; Penfold, S.A.; Harcourt, B.E.; Sourris, K.C.; Lindblom, R.S.; et al. Processed foods drive intestinal barrier permeability and microvascular diseases. Sci. Adv. 2021, 7, eabe4841. [Google Scholar] [CrossRef]
- Rabbani, N.; Thornalley, P.J. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int. 2018, 93, 803–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanghavi, S.; Whiting, S.; Uribarri, J. Potassium balance in dialysis patients. Semin. Dial. 2013, 26, 597–603. [Google Scholar] [CrossRef]
- Massry, S.G.; Coburn, J.W.; Chertow, G.M.; Hruska, K.; Langman, C.; Malluche, H.; Martin, K.; McCann, L.M.; McCarthy, J.T.; Moe, S.; et al. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2003, 42, S1–S201. [Google Scholar]
- Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589. [Google Scholar] [CrossRef]
- Geurts, L.; Neyrinck, A.M.; Delzenne, N.M.; Knauf, C.; Cani, P.D. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: Novel insights into molecular targets and interventions using prebiotics. Benef. Microbes 2014, 5, 3–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieffer, D.A.; Piccolo, B.D.; Vaziri, N.D.; Liu, S.; Lau, W.L.; Khazaeli, M.; Nazertehrani, S.; Moore, M.E.; Marco, M.L.; Martin, R.J.; et al. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am. J. Physiol. Ren. Physiol. 2016, 310, F857–F871. [Google Scholar] [CrossRef] [Green Version]
- Zybailov, B.L.; Glazko, G.V.; Rahmatallah, Y.; Andreyev, D.S.; McElroy, T.; Karaduta, O.; Byrum, S.D.; Orr, L.; Tackett, A.J.; Mackintosh, S.G.; et al. Metaproteomics reveals potential mechanisms by which dietary resistant starch supplementation attenuates chronic kidney disease progression in rats. PLoS ONE 2019, 14, e0199274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaziri, N.D.; Liu, S.M.; Lau, W.L.; Khazaeli, M.; Nazertehrani, S.; Farzaneh, S.H.; Kieffer, D.A.; Adams, S.H.; Martin, R.J. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS ONE 2014, 9, e114881. [Google Scholar] [CrossRef] [PubMed]
- Karaduta, O.; Glazko, G.; Dvanajscak, Z.; Arthur, J.; Mackintosh, S.; Orr, L.; Rahmatallah, Y.; Yeruva, L.; Tackett, A.; Zybailov, B. Resistant starch slows the progression of CKD in the 5/6 nephrectomy mouse model. Physiol. Rep. 2020, 8, e14610. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.K.; Gadalla, M.M.; Sen, N.; Kim, S.; Mu, W.; Gazi, S.K.; Barrow, R.K.; Yang, G.; Wang, R.; Snyder, S.H. H2S signals through protein S-sulfhydration. Sci. Signal. 2009, 2, 72. [Google Scholar] [CrossRef] [Green Version]
- Paul, B.D.; Snyder, S.H. H2S: A Novel Gasotransmitter that Signals by Sulfhydration. Trends Biochem. Sci. 2015, 40, 687–700. [Google Scholar] [CrossRef] [Green Version]
- Magee, E.A.; Richardson, C.J.; Hughes, R.; Cummings, J.H. Contribution of dietary protein to sulfide production in the large intestine: An in vitro and a controlled feeding study in humans. Am. J. Clin. Nutr. 2000, 72, 1488–1494. [Google Scholar] [CrossRef] [Green Version]
- Poesen, R.; Mutsaers, H.A.; Windey, K.; van den Broek, P.H.; Verweij, V.; Augustijns, P.; Kuypers, D.; Jansen, J.; Evenepoel, P.; Verbeke, K.; et al. The Influence of Dietary Protein Intake on Mammalian Tryptophan and Phenolic Metabolites. PLoS ONE 2015, 10, e0140820. [Google Scholar] [CrossRef] [Green Version]
- Lobel, L.; Cao, Y.G.; Fenn, K.; Glickman, J.N.; Garrett, W.S. Diet posttranslationally modifies the mouse gut microbial proteome to modulate renal function. Science 2020, 369, 1518–1524. [Google Scholar] [CrossRef]
- Opdebeeck, B.; Maudsley, S.; Azmi, A.; De Mare, A.; De Leger, W.; Meijers, B.; Verhulst, A.; Evenepoel, P.; D’Haese, P.C.; Neven, E. Indoxyl Sulfate and p-Cresyl Sulfate Promote Vascular Calcification and Associate with Glucose Intolerance. J. Am. Soc. Nephrol. JASN 2019, 30, 751–766. [Google Scholar] [CrossRef]
- Smith, E.R.; Hewitson, T.D.; Hanssen, E.; Holt, S.G. Biochemical transformation of calciprotein particles in uraemia. Bone 2018, 110, 355–367. [Google Scholar] [CrossRef]
- Lin, Y.H.; Platt, M.P.; Fu, H.; Gui, Y.; Wang, Y.; Gonzalez-Juarbe, N.; Zhou, D.; Yu, Y. Global Proteome and Phosphoproteome Characterization of Sepsis-induced Kidney Injury. Mol. Cell. Proteom. MCP 2020, 19, 2030–2047. [Google Scholar] [CrossRef] [PubMed]
- Havasi, A.; Borkan, S.C. Apoptosis and acute kidney injury. Kidney Int. 2011, 80, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Kanemitsu, Y.; Mishima, E.; Maekawa, M.; Matsumoto, Y.; Saigusa, D.; Yamaguchi, H.; Ogura, J.; Tsukamoto, H.; Tomioka, Y.; Abe, T.; et al. Comprehensive and semi-quantitative analysis of carboxyl-containing metabolites related to gut microbiota on chronic kidney disease using 2-picolylamine isotopic labeling LC-MS/MS. Sci. Rep. 2019, 9, 19075. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.L.; Cao, G.; Chen, D.Q.; Vaziri, N.D.; Chen, L.; Zhang, J.; Wang, M.; Guo, Y.; Zhao, Y.Y. Microbiome-metabolomics reveals gut microbiota associated with glycine-conjugated metabolites and polyamine metabolism in chronic kidney disease. Cell. Mol. Life Sci. CMLS 2019, 76, 4961–4978. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, S.; Li, S.; Zhao, L.; Hao, Y.; Qin, J.; Zhang, L.; Zhang, C.; Bian, W.; Zuo, L.; et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut 2020, 69, 2131–2142. [Google Scholar] [CrossRef]
- Wu, I.W.; Lee, C.C.; Hsu, H.J.; Sun, C.Y.; Chen, Y.C.; Yang, K.J.; Yang, C.W.; Chung, W.H.; Lai, H.C.; Chang, L.C.; et al. Compositional and Functional Adaptations of Intestinal Microbiota and Related Metabolites in CKD Patients Receiving Dietary Protein Restriction. Nutrients 2020, 12, 2799. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Sun, H.; Zhang, L.; Geng, W.; Wang, L.; Zou, C.; Wu, Y.; Ji, C.; Liu, X.; Lu, Z. Microbiome-Metabolomics Analysis Reveals the Protection Mechanism of alpha-Ketoacid on Adenine-Induced Chronic Kidney Disease in Rats. Front. Pharmacol. 2021, 12, 657827. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368, 1575–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165, 111–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanto-Hara, F.; Kanemitsu, Y.; Fukuda, S.; Kikuchi, K.; Asaji, K.; Saigusa, D.; Iwasaki, T.; Ho, H.J.; Mishima, E.; Suzuki, T.; et al. The guanylate cyclase C agonist linaclotide ameliorates the gut-cardio-renal axis in an adenine-induced mouse model of chronic kidney disease. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2020, 35, 250–264. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Yang, L.; Wan, Y.; Liu, C.; Jiang, S.; Shang, E.X.; Duan, J.A. Integrated gut microbiota and fecal metabolomics reveal the renoprotective effect of Rehmanniae Radix Preparata and Corni Fructus on adenine-induced CKD rats. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1174, 122728. [Google Scholar] [CrossRef]
- Saggi, S.J.; Mercier, K.; Gooding, J.R.; Friedman, E.; Vyas, U.; Ranganathan, N.; Ranganathan, P.; McRitchie, S.; Sumner, S. Metabolic profiling of a chronic kidney disease cohort reveals metabolic phenotype more likely to benefit from a probiotic. Int. J. Probiotics Prebiotics 2017, 12, 43–54. [Google Scholar] [PubMed]
- Bush, K.T.; Singh, P.; Nigam, S.K. Gut-derived uremic toxin handling in vivo requires OAT-mediated tubular secretion in chronic kidney disease. JCI Insight 2020, 5, e133817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikuchi, K.; Saigusa, D.; Kanemitsu, Y.; Matsumoto, Y.; Thanai, P.; Suzuki, N.; Mise, K.; Yamaguchi, H.; Nakamura, T.; Asaji, K.; et al. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat. Commun. 2019, 10, 1835. [Google Scholar] [CrossRef]
- Sun, C.Y.; Lin, C.J.; Pan, H.C.; Lee, C.C.; Lu, S.C.; Hsieh, Y.T.; Huang, S.Y.; Huang, H.Y. Clinical association between the metabolite of healthy gut microbiota, 3-indolepropionic acid and chronic kidney disease. Clin. Nutr. 2019, 38, 2945–2948. [Google Scholar] [CrossRef] [PubMed]
- Anders, H.J.; Andersen, K.; Stecher, B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013, 83, 1010–1016. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schloss, P.D. Identifying and Overcoming Threats to Reproducibility, Replicability, Robustness, and Generalizability in Microbiome Research. mBio 2018, 9, e00525-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cullin, N.; Azevedo Antunes, C.; Straussman, R.; Stein-Thoeringer, C.K.; Elinav, E. Microbiome and cancer. Cancer Cell 2021, 39, 1317–1341. [Google Scholar] [CrossRef]
- Roager, H.M.; Licht, T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018, 9, 3294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velasquez, M.T.; Centron, P.; Barrows, I.; Dwivedi, R.; Raj, D.S. Gut Microbiota and Cardiovascular Uremic Toxicities. Toxins 2018, 10, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reference | Organism | Design and Sample | Key Findings |
---|---|---|---|
Snelson [35] | Mice | HT* + RS* (n = 5) Vs C* (n = 5); HT (n = 5) in RNA extracted from Gut sections and Kidney cortex | systemic innate immune complement system: C3* and C5* effector molecules ↓ alagebrium inhibited the AGE pathway gut barrier integrity ↑ risk of kidney injury ↓ |
Reference | Organism | Design and Sample | Key Findings | Validation |
---|---|---|---|---|
Zybailov [42] | Rats | CKD-DS* (n = 9) Vs CKD-RS* (n = 9) in Frozen cecal content | Thioredoxin, S100-A6* ↑ serine-type endopeptidase inhibitor and metalloexopeptidase activities ↑ fibrolytic Ruminoccocus ↑ amylolytic Ruminoccocus ↓ | - |
Karaduta [44] | Mice | CKD (n = 4); CKD-RS (n = 4) Vs H* (n = 4); H-RS (n = 4) in Frozen cecal content | In CKD-RS: Indole mechanism ↓ butyrate-producing bacteria ↑ mucin-degrading bacteria ↓ IS* ↓ bacterial proliferation ↑ | - |
Lobel [49] | Mice | high-Saa* diet Vs low-Saa diet in Cecal content | Spp1*, Tgfb1*, Icam1*, Ccl2*, Timp1* ↓ Indole mechanism ↓ Escherichia coli (E. coli) ↑ tryptophanase (TnaA) ↓ | - |
Opdebeeck [50] | Rats | IS (n = 14) or pCS* (n = 14) Vs Vehicle (n = 14) in Aorta and Kidney tissue | In aorta: TGF-β and collagen I ↓ in IS GLUT1* ↓ in pCS No change in IL-1β*, klotho, TNF-α* and vascular cell adhesion molecule 1 → stress responsiveness pathway ↓ metabolic activity pathway ↓ calcium-associated processes ↓ → Glycoprotein 6 (GP6) reactivated on end of exposure | RT-PCR: GLUT1 -aorta. IL-1β, collagen I, klotho, TGF-β, TNF-α, and vascular cell adhesion molecule 1-left kidney. |
Smith [51] | Human | Endogenous CPP* Vs Synthetic CPP-I & -II in Serum samples |
| - |
Lin [52] | Mice | S-AKI* to CKD progression at day 2 and 7 in Kidney tissue (n = 18) | Hmgcs2*, S100-A8, Chil3* ↑ TNFα, Gsdmd*, caspase-1, ASC and ERK ↑ deregulation of mitochondrial inner membrane proteins Atp5j*, Ndufb1*, Cox2* | Immunoblot: Hmgcs2, S100-A8, Chil3, TNFα, Gsdmd, caspase-1 |
Reference | Organism | Design and Sample | Key Findings | Validation |
---|---|---|---|---|
Kanemitsu [54] | Mice | GF*-RF* (n = 5); SPF*-RF (n = 3) Vs GF (n = 4); SPF (n = 4) in Plasma, Fecal and Cecal contents | In GF-RF: renal inflammation ↑ renal fibrosis ↓ SCFAs*, IAA* ↓ n-3 type of polyunsaturated fatty acid ↓ | - |
Feng [55] | Rats | Study 1: CKD (n = 6) Vs Control (n = 6) in Serum, Colonic luminal contents, Colon tissues and Kidney tissues | In CKD: CCr* associated with polyamine metabolism & SBP* with glycine-conjugated metabolites. | |
Rats | Study 2: PAA-CKD (n = 8); PC-CKD (n = 8) Vs Controls (n = 8) in Serum, Colonic luminal contents, Colon tissues and Kidney tissues | In poricoic acid A (PAA) and Poria cocos (PC): microbial dysbiosis, hypertension and renal fibrosis ↓ ZO1*, occludin and claudin-1 ↑ IκB/NF-κB pathway ↓ Keap1/Nrf2 pathway ↑ Enterobacteriaceae, Sutterellaceae and Clostridiaceae_1 ↑ Clostridiaceae_2 and Leuconostocaceae ↓ | Western blot: ZO1, occludin and claudin-1 | |
Wang [56] | Human | Study 1: ESRD* (n = 223) Vs Healthy controls (n = 69) in Serum and Fecal samples | microbial derived uremic toxins ↑ uremic toxin precursors and secondary bile acids ↑ Eggerthella lenta, Flavonifractor spp. (mainly F. plautii), Alistipes spp. (mainly A. finegoldii and A. shahii), Ruminococcus spp. And Fusobacterium spp. ↑ Prevotella spp. (mainly P. copri), Clostridium spp. And several butyrate producers (Roseburia spp., Faecalibacterium prausnitzii and Eubacterium rectale) ↓ | |
Mice | Study 2: Transplantation of fecal metabolome from ESRD patients to GF-mice (n = 13) Vs Controls (n = 13) | In GF-ESRD mice: serum uremic toxins ↑ renal fibrosis and oxidative stress ↑ | Fecal microbiota transplantation from patient into GF-mice: serum uremic toxins ↑ renal fibrosis and oxidative stress ↑ | |
Rats | Study 3: Transplantation of fecal metabolome from ESRD patients to antibiotics treated rats (n = 9) Vs Controls (n = 9) in Serum and Fecal samples | In rats: Eggerthella lenta and Fusobacterium nucleatum increased production of uremic toxins Bifidobacterium animali reduced uremic toxins production | ||
Wu [32] | Human | CKD mild (stage 1 and 2, n = 26), moderate (stage 3, n = 26) and advanced (stage 4 and 5, n = 20) Vs Healthy controls (n = 20) in Fecal and Serum samples | Prevotella sp. 885, Weissella confuse, Roseburia faecis, and Bacteroides eggerthii ↓ Alloscardovia omnicolens, Merdibacter massiliensis, and Clostridium glycyrrhizinilyticum ↑ IS*, pCS*, hepatonic acid ↑ propionic acid, caproic acid ↓ | - |
Wu [57] | Human | CKD-LPD* (n = 16) Vs Healthy controls (n = 34); CKD-NPD* (n = 27) in Fecal and Serum samples | Anaerostipes and Eubacterium hallii ↑ Calditerricola, Streptococcus anginosus, Lactobacillus mucosa and Clostridium paraputrificum ↓ glyco λ-muricholic acid ↑ nonanoic acid ↓ D-alanine, ketone bodies and glutathione metabolism metabolites ↑ Butyrate producing bacteria (Lachnospiraceae and Bacteroidaceae families) ↓ | - |
Yenan Mo [58] | Rats | α-ketoacid + CKD (n = 8) Vs Control (n = 8); CKD (n = 8) in Fecal and Serum samples | tubular atrophy, glomerulosclerosis and gut fibrosis ↑ Methanobrevibacter, Akkermansia, Blautia and Anaerositipes ↑ Anaerovorax and Coprococcus_3 ↓ metabolites IS, betaine, choline and cholesterol ↓ metabolites PAGly*, PAGln*, and pCS ↑ → α-ketoacid exhibits a reno-protective in CKD rats | - |
Nanto-Hara [61] | Mice | CKD-linaclotide (n = 6) Vs CKD (n = 5) in Kidney tissue, Fecal and Plasma samples | collagen I, TGF-β*, Galectin-3 (Gal-3) and ST2 genes ↓ F4/80-positive macrophages in small intestine ↑ colonic claudin-1 ↓ → low dosage of linaclotide (10 µg/kg) decreased TMAO* → higher dosage of linaclotide (100 µg/kg) decreased BUN*, CCr, urea, trans-aconitate, TMAO, IS and Hippurate | qPCR: collagen I, TGF-β, Galectin-3 (Gal-3) and ST2 genes |
Zhang [62] | Rats | CKD-RC* (n = 6) Vs Normal (n = 6); CKD (n = 6); CKD-RR* (n = 6); CKD-CF* (n = 6) in Fecal samples | Ruminococcaceae UCG-014, Ruminococcus 1, Prevotellaceae_NK3B31_group, Lachnospiraceae NK4A136 group and Lachnospiraceae UCG-001 ↑ Desulfovibrio ↓ indole-3-propionic acid and phenylpyruvate ↓ tryptophan ↑ | - |
Saggi [63] | Human | CKD patients administered probiotic Renadyl™ (n = 24) in Plasma samples |
energy metabolism and regulation | - |
Bush [64] | Rats | Probenecid STN* (n = 5) Vs Probenecid control (n = 5) Vs STN (n = 5) in Plasma samples | In probenecid treated STN rats: 58 uremic toxins ↑ In probenecid treated control and STN rats: OAT(s)* mediated tubular secretion of organic anions ↓ → central role of OAT(s) transporters in the tubular secretion of various uremic toxins (IS, kynurenate and anthranilate) | - |
Kikuchi [65] | Rats | Study 1: Wild type DKD* (n = 4) Vs Transgenic overexpressing SLCO4C1* DKD (n = 4) in Plasma and Fecal samples | In wild type DKD (non-transgenic) rats: phenyl sulfate (PS) ↑ | |
Mice | Study 2: PS + db/db* mice (n = 6) Vs Control db/db mice (n = 5) in Plasma and Fecal samples | In PS administered db/db mice: TNF*-α, MCP-1* (Ccl2*), TGF-α1, Fn1* and collagen I (Col1a1) ↑ → elicit podocyte damage and increase glutathione levels | qPCR: TNF-α, MCP-1 (Ccl2), TGF-α1, Fn1 and collagen I (Col1a1) | |
Human | Study 3: DKD patients at t = 0 (n = 362) Vs DKD patients at t = 2 years (n = 362) in Plasma and Fecal samples | → PS predictive of the ACR levels, especially for microalbuminuria in DKD patients. | ||
Mice | Study 4: Pre-treatment** db/db mice (n = 10) Vs After-treatment ** db/db mice (n = 10) in Plasma and Fecal samples | On treatment with **2-aza-tyrosine: Coriobacteria and Erysipelotrichales ↓ | ||
Sun [66] | Human | Study 1: eGFRRD* patient (n = 10) Vs Healthy control (n = 10) at t = 0 and t = 1 year in Serum samples | In eGFRRD patients: IPA* ↓ at t = 0 and t = 1 year | - |
Human | Study 2: CKD patients (n = 140) Vs Healthy controls (n = 144) in Serum samples | In CKD patients: IS and pCS ↑ IPA ↓ → high levels of serum IPA may indicate a lower risk of rapid decline in their renal function and developing CKD. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lohia, S.; Vlahou, A.; Zoidakis, J. Microbiome in Chronic Kidney Disease (CKD): An Omics Perspective. Toxins 2022, 14, 176. https://doi.org/10.3390/toxins14030176
Lohia S, Vlahou A, Zoidakis J. Microbiome in Chronic Kidney Disease (CKD): An Omics Perspective. Toxins. 2022; 14(3):176. https://doi.org/10.3390/toxins14030176
Chicago/Turabian StyleLohia, Sonnal, Antonia Vlahou, and Jerome Zoidakis. 2022. "Microbiome in Chronic Kidney Disease (CKD): An Omics Perspective" Toxins 14, no. 3: 176. https://doi.org/10.3390/toxins14030176
APA StyleLohia, S., Vlahou, A., & Zoidakis, J. (2022). Microbiome in Chronic Kidney Disease (CKD): An Omics Perspective. Toxins, 14(3), 176. https://doi.org/10.3390/toxins14030176