Reductive Amination for LC–MS Signal Enhancement and Confirmation of the Presence of Caribbean Ciguatoxin-1 in Fish
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Reductive Amination of 1
2.2. Signal Enhancement of 1 Using GRT
2.3. Application of Reductive Amination of 1 for LC–MS/MS Based Analysis
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Sample Collection, Preparation, and Extraction
4.3. Derivatization of C-CTX-1 (1) in Fish Extracts
4.4. LC–HRMS and LC–MS/MS
4.5. Estimation of LC–HRMS and LC–MS/MS Signal Enhancement for 1 via Reductive Amination with GRT
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewis, R.J. The changing face of ciguatera. Toxicon 2001, 39, 97–106. [Google Scholar] [CrossRef]
- Bagnis, R.; Chanteau, S.; Chungue, E.; Hurtel, J.M.; Yasumoto, T.; Inoue, A. Origins of ciguatera fish poisoning: A new dinoflagellate, Gambierdiscus toxicus Adachi and Fukuyo, definitively involved as a causal agent. Toxicon 1980, 18, 199–208. [Google Scholar] [CrossRef]
- Laza-Martinez, A.; David, H.; Riobo, P.; Miguel, I.; Orive, E. Characterization of a strain of Fukuyoa paulensis (Dinophyceae) from the Western Mediterranean Sea. J. Eukaryot. Microbiol. 2016, 63, 481–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, L.; Harwood, T.; Smith, K.; Argyle, P.; Munday, R. Production of ciguatoxin and maitotoxin by strains of Gambierdiscus australes, G. pacificus and G. polynesiensis (Dinophyceae) isolated from Rarotonga, Cook Islands. Harmful Algae 2014, 39, 185–190. [Google Scholar] [CrossRef]
- Yasumoto, T.; Nakajima, I.; Oshima, Y.; Bagnis, R. New toxic dinoflagellate found in association with ciguatera. Dev. Mar. Biol. 1979, 1, 65–70. [Google Scholar]
- Adachi, R.; Fukuyo, Y. The thecal structure of a marine toxic dinoflagellate Gambierdiscus toxicus gen. et sp. nov. collected in a ciguatera endemic area. Bull. Jpn. Soc. Sci. Fish. 1979, 45, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations and World Health Organization. Report of the expert meeting on ciguatera poisoning: Rome, 19–23 November 2018. Food Saf. Qual. Ser. 2020, 9, 133. [Google Scholar] [CrossRef]
- Murata, M.; Legrand, A.M.; Ishibashi, Y.; Yasumoto, T. Structures of ciguatoxin and its congener. J. Am. Chem. Soc. 1989, 111, 8929–8931. [Google Scholar] [CrossRef]
- Satake, M.; Murata, M.; Yasumoto, T. The structure of CTX3C, a ciguatoxin congener isolated from cultured Gambierdiscus toxicus. Tetrahedron Lett. 1993, 34, 1975–1978. [Google Scholar] [CrossRef]
- Pasinszki, T.; Lako, J.; Dennis, T.E. Advances in detecting ciguatoxins in fish. Toxins 2020, 12, 494. [Google Scholar] [CrossRef]
- Hamilton, B.; Hurbungs, M.; Vernoux, J.P.; Jones, A.; Lewis, R.J. Isolation and characterisation of Indian Ocean ciguatoxin. Toxicon 2002, 40, 685–693. [Google Scholar] [CrossRef]
- Hamilton, B.; Hurbungs, M.; Jones, A.; Lewis, R.J. Multiple ciguatoxins present in Indian Ocean reef fish. Toxicon 2002, 40, 1347–1353. [Google Scholar] [CrossRef]
- Diogène, J.; Reverté, L.; Rambla-Alegre, M.; del Río, V.; de la Iglesia, P.; Campàs, M.; Palacios, O.; Flores, C.; Caixach, J.; Ralijaona, C.; et al. Identification of ciguatoxins in a shark involved in a fatal food poisoning in the Indian Ocean. Sci. Rep. 2017, 7, 8240–8247. [Google Scholar] [CrossRef] [PubMed]
- Vernoux, J.P.; Lewis, R.J. Isolation and characterisation of Caribbean ciguatoxins from the horse-eye jack (Caranx latus). Toxicon 1997, 35, 889–900. [Google Scholar] [CrossRef]
- Pottier, I.; Vernoux, J.P.; Jones, A.; Lewis, R.J. Characterisation of multiple Caribbean ciguatoxins and congeners in individual specimens of horse-eye jack (Caranx latus) by high-performance liquid chromatography/mass spectrometry. Toxicon 2002, 40, 929–939. [Google Scholar] [CrossRef]
- Lewis, R.J.; Sellin, M.; Poli, M.A.; Norton, R.S.; Macleod, J.K.; Sheil, M.M. Purification and characterization of ciguatoxins from moray eel (Lycodontis-Javanicus, Muraenidae). Toxicon 1991, 29, 1115–1127. [Google Scholar] [CrossRef]
- Kryuchkov, F.; Robertson, A.; Miles, C.O.; Mudge, E.M.; Uhlig, S. LC-HRMS and chemical derivatization strategies for the structure elucidation of caribbean ciguatoxins: Identification of C-CTX-3 and -4. Mar. Drugs 2020, 18, 182. [Google Scholar] [CrossRef] [Green Version]
- Lewis, R.J.; Vernoux, J.P.; Brereton, I.M. Structure of Caribbean ciguatoxin isolated from Caranx latus. J. Am. Chem. Soc. 1998, 120, 5914–5920. [Google Scholar] [CrossRef]
- Yasumoto, T.; Igarashi, T.; Legrand, A.M.; Cruchet, P.; Chinain, M.; Fujita, T.; Naoki, H. Structural elucidation of ciguatoxin congeners by fast-atom bombardment tandem mass spectroscopy. J. Am. Chem. Soc. 2000, 122, 4988–4989. [Google Scholar] [CrossRef]
- Pérez-Arellano, J.L.; Luzardo, O.P.; Brito, A.P.; Cabrera, M.H.; Zumbado, M.; Carranza, C.; Angel-Moreno, A.; Dickey, R.W.; Boada, L.D. Ciguatera fish poisoning, Canary Islands. Emerg. Infect. Dis. 2005, 11, 1981–1982. [Google Scholar] [CrossRef] [Green Version]
- Loeffler, C.R.; Robertson, A.; Quintana, H.A.F.; Silander, M.C.; Smith, T.B.; Olsen, D. Ciguatoxin prevalence in 4 commercial fish species along an oceanic exposure gradient in the US Virgin Islands. Environ. Toxicol. Chem. 2018, 37, 1852–1863. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Henao, A.; García-Álvarez, N.; Sergent, F.S.; Estévez, P.; Gago-Martínez, A.; Martín, F.; Ramos-Sosa, M.; Fernández, A.; Diogène, J.; Real, F. Presence of CTXs in moray eels and dusky groupers in the marine environment of the Canary Islands. Aquat. Toxicol. 2020, 221, 105427. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Meth. 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Manger, R.L.; Leja, L.S.; Lee, S.Y.; Hungerford, J.M.; Wekell, M.M. Tetrazolium-based cell bioassay for neurotoxins active on voltage-sensitive sodium channels: Semiautomated assay for saxitoxins, brevetoxins, and ciguatoxins. Anal. Biochem. 1993, 214, 190–194. [Google Scholar] [CrossRef]
- Manger, R.L.; Leja, L.S.; Lee, S.Y.; Hungerford, J.M.; Hokama, Y.; Dickey, R.W.; Granade, H.R.; Lewis, R.; Yasumoto, T.; Wekell, M.M. Detection of sodium-channel toxins: Directed cytotoxicity assays of purified ciguatoxins, brevetoxins, saxitoxins, and seafood extracts. J. AOAC Int. 1995, 78, 521–527. [Google Scholar] [CrossRef]
- Viallon, J.; Chinain, M.; Darius, H.T. Revisiting the neuroblastoma cell-based assay (CBA-N2a) for the improved detection of marine toxins active on voltage gated sodium channels (VGSCs). Toxins 2020, 12, 281. [Google Scholar] [CrossRef]
- Humpage, A.R.; Ledreux, A.; Fanok, S.; Bernard, C.; Briand, J.F.; Eaglesham, G.; Papageorgiou, J.; Nicholson, B.; Steffensen, D. Application of the neuroblastoma assay for paralytic shellfish poisons to neurotoxic freshwater cyanobacteria: Interlaboratory calibration and comparison with other methods of analysis. Environ. Toxicol. Chem. 2007, 26, 1512–1519. [Google Scholar] [CrossRef]
- Caillaud, A.; Yasumoto, T.; Diogène, J. Detection and quantification of maitotoxin-like compounds using a neuroblastoma (Neuro-2a) cell based assay. Application to the screening of maitotoxin-like compounds in Gambierdiscus spp. Toxicon 2010, 56, 36–44. [Google Scholar] [CrossRef]
- Darius, H.T.; Ponton, D.; Revel, T.; Cruchet, P.; Ung, A.; Fouc, M.T.; Chinain, M. Ciguatera risk assessment in two toxic sites of French Polynesia using the receptor-binding assay. Toxicon 2007, 50, 612–626. [Google Scholar] [CrossRef]
- Reverté, L.; Toldrà, A.; Andree, K.B.; Fraga, S.; de Falco, G.; Campàs, M.; Diogène, J. Assessment of cytotoxicity in ten strainsof Gambierdiscus australes from Macaronesian Islands by neuro-2a cell-based assays. J. Appl. Phycol. 2018, 30, 2447–2461. [Google Scholar] [CrossRef]
- Chinain, M.; Darius, H.T.; Ung, A.; Cruchet, P.; Wang, Z.H.; Ponton, D.; Laurent, D.; Pauillac, S. Growth and toxin production in the ciguatera-causing dinoflagellate Gambierdiscus polynesiensis (Dinophyceae) in culture. Toxicon 2010, 56, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Liefer, J.D.; Richlen, M.L.; Smith, T.B.; DeBose, J.L.; Xu, Y.; Anderson, D.M.; Robertson, A. Asynchrony of Gambierdiscus spp. abundance and toxicity in the U.S. Virgin Islands: Implications for monitoring and management of ciguatera. Toxins 2021, 13, 413. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.; Garcia, A.C.; Quintana, H.A.F.; Smith, T.B.; Castillo, B.F.; Reale-Munroe, K.; Gulli, J.A.; Olsen, D.A.; Hooe-Rollman, J.I.; Jester, E.L.E.; et al. Invasive lionfish (Pterois volitans): A potential human health threat for ciguatera fish poisoning in tropical waters. Mar. Drugs 2014, 12, 88–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, P.R.; Estévez, P.; Soliño, L.; Castro, D.; Rodrigues, S.M.; Timoteo, V.; Leao-Martins, J.M.; Santos, C.; Gouveia, N.; Diogène, J.; et al. An update on ciguatoxins and CTX-like toxicity in fish from different trophic levels of the Selvagens Islands (NE Atlantic, Madeira, Portugal). Toxins 2021, 13, 580. [Google Scholar] [CrossRef]
- Chan, W.H.; Mak, Y.L.; Wu, J.J.; Jin, L.; Sit, W.H.; Lam, J.C.W.; de Mitcheson, Y.S.; Chan, L.L.; Lam, P.K.S.; Murphy, M.B. Spatial distribution of ciguateric fish in the Republic of Kiribati. Chemosphere 2011, 84, 117–123. [Google Scholar] [CrossRef]
- O’Toole, A.C.; Dechraoui Bottein, M.-Y.; Danylchuk, A.J.; Ramsdell, J.S.; Cooke, S.J. Linking ciguatera poisoning to spatial ecology of fish: A novel approach to examining the distribution of biotoxin levels in the great barracuda by combining non-lethal blood sampling and biotelemetry. Sci. Total Environ. 2012, 427, 98–105. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Health and Human Services. Food and Drug Administration Center for Food Safety and Applied Nutrition: Fish and Fishery Products Hazards and Controls Guidance, 4th ed.; U.S. Department of Health and Human Services: Washington, DC, USA, 2021.
- EFSA Panel on Contaminants in the Food Chain. Scientific opinion on marine biotoxins in shellfish-emerging toxins: Ciguatoxin group. EFSA J. 2010, 8, 1627–1664. [Google Scholar] [CrossRef]
- Dechraoui Bottein, M.-Y.; Tiedeken, J.A.; Persad, R.; Wang, Z.H.; Granade, H.R.; Dickey, R.W.; Ramsdell, J.S. Use of two detection methods to discriminate ciguatoxins from brevetoxins: Application to great barracuda from Florida Keys. Toxicon 2005, 46, 261–270. [Google Scholar] [CrossRef]
- Louzao, M.C.; Vieytes, M.R.; Yasumoto, T.; Botana, L.M. Detection of sodium channel activators by a rapid fluorimetric microplate assay. Chem. Res. Toxicol. 2004, 17, 572–578. [Google Scholar] [CrossRef]
- McCall, J.R.; Jacocks, H.M.; Niven, S.C.; Poli, M.A.; Baden, D.G.; Bourdelais, A.J. Development and utilization of a fluorescence-based receptor-binding assay for the site 5 voltage-sensitive sodium channel ligands brevetoxin and ciguatoxin. J. AOAC Int. 2014, 97, 307–315. [Google Scholar] [CrossRef]
- Hardison, D.R.; Holland, W.C.; McCall, J.R.; Bourdelais, A.J.; Baden, D.G.; Darius, H.T.; Chinain, M.; Tester, P.A.; Shea, D.; Quintana, H.A.F.; et al. Fluorescent receptor binding assay for detecting ciguatoxins in fish. PLoS ONE 2016, 11, e012248. [Google Scholar] [CrossRef] [PubMed]
- Tsumuraya, T.; Hirama, M. Rationally designed synthetic haptens to generate anti-ciguatoxin monoclonal antibodies, and development of a practical sandwich ELISA to detect ciguatoxins. Toxins 2019, 11, 533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reverté, L.; Soliño, L.; Carnicer, O.; Diogène, J.; Campàs, M. Alternative methods for the detection of emerging marine toxins: Biosensors, biochemical assays and cell-based assays. Mar. Drugs 2014, 12, 5719–5763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caillaud, A.; de la Iglesia, P.; Taiana Darius, H.; Pauillac, S.; Aligizaki, K.; Fraga, S.; Chinain, M.; Diogène, J. Update on methodologies available for ciguatoxin determination: Perspectives to confront the onset of ciguatera fish poisoning in Europe. Mar. Drugs 2010, 8, 1838–1907. [Google Scholar] [CrossRef] [PubMed]
- Yogi, K.; Oshiro, N.; Inafuku, Y.; Hirama, M.; Yasumoto, T. Detailed LC–MS/MS analysis of ciguatoxins revealing distinct regional and species characteristics in fish and causative alga from the Pacific. Anal. Chem. 2011, 83, 8886–8891. [Google Scholar] [CrossRef]
- Estevez, P.; Castro, D.; Leao, J.M.; Yasumoto, T.; Dickey, R.; Gago-Martinez, A. Implementation of liquid chromatography tandem mass spectrometry for the analysis of ciguatera fish poisoning in contaminated fish samples from Atlantic coasts. Food Chem. 2019, 280, 8–14. [Google Scholar] [CrossRef]
- Reis Costa, P.; Estevez, P.; Castro, D.; Soliño, L.; Gouveia, N.; Santos, C.; Margarida Rodrigues, S.; Manuel Leao, J.; Gago-Martínez, A. New insights into the occurrence and toxin profile of ciguatoxins in Selvagens Islands (Madeira, Portugal). Toxins 2018, 10, 524. [Google Scholar] [CrossRef] [Green Version]
- Jun Wu, J.; Ling Mak, Y.; Murphy, M.B.; Lam, J.C.W.; Hei Chan, W.; Wang, M.; Chan, L.L.; Lam, P.K.S. Validation of an accelerated solvent extraction liquid chromatography–tandem mass spectrometry method for Pacific ciguatoxin-1 in fish flesh and comparison with the mouse neuroblastoma assay. Anal. Bioanal. Chem. 2011, 400, 3165–3175. [Google Scholar] [CrossRef]
- Sibat, M.; Herrenknecht, C.; Darius, H.T.; Roué, M.; Chinain, M.; Hess, P. Detection of Pacific ciguatoxins using liquid chromatography coupled to either low or high resolution mass spectrometry (LC–MS/MS). J. Chromatogr. A 2018, 1571, 16–28. [Google Scholar] [CrossRef]
- Leonardo, S.; Gaiani, G.; Tsumuraya, T.; Hirama, M.; Turquet, J.; Sagristà, N.; Rambla-Alegre, M.; Flores, C.; Caixach, J.; Diogène, J.; et al. Addressing the analytical challenges for the detection of ciguatoxins using an electrochemical biosensor. Anal. Chem. 2020, 92, 4858–4865. [Google Scholar] [CrossRef]
- Meyer, L.; Carter, S.; Capper, A. An updated ciguatoxin extraction method and silica cleanup for use with HPLC–MS/MS for the analysis of P-CTX-1, PCTX-2 and P-CTX-3. Toxicon 2015, 108, 249–256. [Google Scholar] [CrossRef]
- Unterieser, I.; Mischnick, P. Labeling of oligosaccharides for quantitative mass spectrometry. Carbohydr. Res. 2011, 346, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Setner, B.; Stefanowicz, P.; Szewczuk, Z. Quaternary ammonium isobaric tag for a relative and absolute quantification of peptides. J. Mass Spectrom. 2018, 53, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Wu, D.; Duan, C.; Guan, Y. Ultrasensitive quantification of endogenous brassinosteroids in milligram fresh plant with a quaternary ammonium derivatization reagent by pipette-tip solid-phase extraction coupled with ultra-high-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2016, 1456, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Su, X.; Stahl, P.D.; Gross, M.L. Quantification of diacylglycerol molecular species in biological samples by electrospray ionization mass spectrometry after one-step derivatization. Anal. Chem. 2007, 79, 1569–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renee Ruhaak, L.; Steenvoorden, E.; Koeleman, C.A.M.; Deelder, A.M.; Wuhrer, M. 2-Picoline-borane: A non-toxic reducing agent for oligosaccharide labeling by reductive amination. Proteomics 2010, 10, 2330–2336. [Google Scholar] [CrossRef]
- Cosenza, V.A.; Navarro, D.A.; Stortz, C.A. Usage of α-picoline borane for the reductive amination of carbohydrates. Arkivoc 2011, 2011, 182–194. [Google Scholar] [CrossRef] [Green Version]
- Estevez, P.; Leao, J.M.; Yasumoto, T.; Dickey, R.W.; Gago-Martinez, A. Caribbean ciguatoxin-1 stability under strongly acidic conditions: Characterisation of a new C-CTX1 methoxy congener. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 37, 519–529. [Google Scholar] [CrossRef]
- Bennett, C.T.; Robertson, A.; Patterson, W.F., III. First record of the non-indigenous Indo-Pacific damselfish, Neopomacentrus cyanomos (Bleeker, 1856) in the northern Gulf of Mexico. BioInvasions Rec. 2019, 8, 154–166. [Google Scholar] [CrossRef]
Compound | Neutral Formula a | RDBE | RT (min) | Ion | Accurate m/z | ∆m (ppm) |
---|---|---|---|---|---|---|
C-CTX-1 (1) | C62H92O19 | 17 | 11.23 | [M+H–H2O]+ | 1123.6232 | +2.8 |
C-CTX-3/-4 (2) | C62H94O19 | 16 | 9.75 | [M+H]+ | 1143.6493 | +2.7 |
C-CTX-1–GRT (3) | C67H104N3O19+ | 18 | 8.84 | M+ | 1254.7303 | +3.6 |
Reduced C-CTX-1–GRT (4) | C67H106N3O19+ | 17 | 7.71 | M+ | 1256.7449 | +2.7 |
C-CTX-1 56-methyl ketal (5) | C63H94O19 | 17 | 13.07 | [M+H–MeOH b]+ | 1123.6231 | +2.8 |
C-CTX-1 56-(2-methoxyethyl) ketal | C65H98O20 | 17 | 13.93 | [M+H–C3H8O2]+ | 1123.6206 | +0.5 |
C-CTX-1 56-(1-butyl) ketal | C66H100O19 | 17 | 15.34 | [M+H–BuOH c]+ | 1123.6208 | +0.7 |
Tissue Equiv. (g/mL) | Peak Areas before Derivatization | Peak Areas after Derivatization | Signal Enhancement | |||
---|---|---|---|---|---|---|
C-CTX-1 (1) | C-CTX-3/4 (2) | C-CTX-1-GRT (4) | C-CTX-3/4 (2) | |||
Sample A | 40 | 2.58 × 105 | 2.00 × 104 | 3.48 × 106 | 4.53 × 104 | 13.5 |
Sample B | 40 | 4.18 × 105 | 7.48 × 104 | 5.43 × 106 | 1.01 × 105 | 13.0 |
Sample C | 40 | 5.06 × 105 | 8.06 × 104 | 7.37 × 106 | 1.13 × 105 | 14.6 |
Sample D | 40 | 2.71 × 106 | 4.60 × 105 | 4.95 × 107 | 6.81 × 105 | 18.2 |
Sample E | 24 | 6.12 × 103 | (1.32 × 103) a | 1.38 × 105 | (1.62 × 103) a | 22.6 |
Sample F | 24 | 1.59 × 104 | (2.64 × 103) a | 2.88 × 105 | (4.84 × 103) a | 18.1 |
Sample G | 24 | 2.35 × 104 | (2.89 × 103) a | 2.82 × 105 | (4.18 × 103) a | 12.0 |
Sample H | 168 | (2.25 × 103) a | (1.61 × 103) a | 2.43 × 104 | (1.45 × 103) a | 10.8 |
Sample I | 184 | (4.73 × 102) a | - | 7.97 × 103 | - | 16.8 |
Sample J | 25.2 | (4.82 × 103) a | - | 4.51 × 104 | - | 9.4 |
Sample K | 24.2 | 9.32 × 103 | - | 7.08 × 104 | - | 7.6 |
Sample L | 10 | 2.43 × 105 | 2.87 × 104 | 3.82 × 106 | 4.69 × 104 | 15.7 |
Sample N | 10 | 0 | 0 | 0 | 0 | - |
Sample ID | Genus. Species a | Common Name | Region of Collection | Extraction Method | MTT-N2a Screening c | |
---|---|---|---|---|---|---|
20 mg TE | 2 mg TE | |||||
A | S. cavalla | King Mackerel | St. Thomas, USVI | 1 | (+) | (−) |
B | S. regalis | Cero Mackerel | St. Thomas, USVI | 1 | (+) | (+) |
C | S. barracuda | Great barracuda | St. Thomas, USVI | 1 | (+) | (+) |
D | S. barracuda | Great barracuda | St. Thomas, USVI | 1 | (+) | (+) |
E | S. cavalla | King Mackerel | Puerto Rico | 2 | (+) | (−) |
F | S. cavalla | King Mackerel | Puerto Rico | 2 | (+) | (−) |
G | S. cavalla | King Mackerel | Puerto Rico | 2 | (+) | (−) |
H | S. barracuda | Great barracuda | St. Thomas, USVI | 2 | (+) | (+) |
I | S. barracuda | Great barracuda | St. Thomas, USVI | 2 | (+) | (+) |
J | S. barracuda | Great barracuda | St. Thomas, USVI VI | 2 | (+) | (+) |
K | S. cavalla | King Mackerel | St. Thomas, USVI VI | 2 | (+) | (−) |
L | S. barracuda | Great barracuda | St. Thomas, USVI Virgin Islands | 1 | (+) | (+) |
N b | S. barracuda | Great barracuda | Dauphin Island, US | 3 | (−) | (−) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kryuchkov, F.; Robertson, A.; Mudge, E.M.; Miles, C.O.; Van Gothem, S.; Uhlig, S. Reductive Amination for LC–MS Signal Enhancement and Confirmation of the Presence of Caribbean Ciguatoxin-1 in Fish. Toxins 2022, 14, 399. https://doi.org/10.3390/toxins14060399
Kryuchkov F, Robertson A, Mudge EM, Miles CO, Van Gothem S, Uhlig S. Reductive Amination for LC–MS Signal Enhancement and Confirmation of the Presence of Caribbean Ciguatoxin-1 in Fish. Toxins. 2022; 14(6):399. https://doi.org/10.3390/toxins14060399
Chicago/Turabian StyleKryuchkov, Fedor, Alison Robertson, Elizabeth M. Mudge, Christopher O. Miles, Soetkien Van Gothem, and Silvio Uhlig. 2022. "Reductive Amination for LC–MS Signal Enhancement and Confirmation of the Presence of Caribbean Ciguatoxin-1 in Fish" Toxins 14, no. 6: 399. https://doi.org/10.3390/toxins14060399
APA StyleKryuchkov, F., Robertson, A., Mudge, E. M., Miles, C. O., Van Gothem, S., & Uhlig, S. (2022). Reductive Amination for LC–MS Signal Enhancement and Confirmation of the Presence of Caribbean Ciguatoxin-1 in Fish. Toxins, 14(6), 399. https://doi.org/10.3390/toxins14060399