Evidence-Based Framework to Manage Cyanobacteria and Cyanotoxins in Water and Sludge from Drinking Water Treatment Plants
Abstract
:1. Introduction
2. Impact of Conventional Treatment on Cyanobacteria and Cyanotoxin Accumulation in Sludge
3. Pre-Oxidation Impact on Cyanobacteria Cells, Viability, and Cyanotoxins
3.1. Impact of Pre-Oxidation on Cyanobacteria Cell Counts
Dominant Cyanobacteria (Cell Density) | Lab/Field | Cl2 Dose (mg/L) | Contact Time (min) | CT (mg min/L) | Cell Count Reduction % | Cell Viability % | Toxins | Reference | Comment |
---|---|---|---|---|---|---|---|---|---|
Microcystis (2 × 106 cells/mL) | Lab | 1–2 | - | min. 15 max. 90 | - | min. 83 max. 18.4 | 99% degradation | [66] | Saline solution; exact dose and contact time were not provided; no residual; CT evaluation weak; no cell-bound |
D. circinalis (46,000 cells/mL) | Lab | 2 3 | 0–60 | min. 1.8 max. 50 | - | min. 15% 0 for CT 5.8 | >100% release (CT 5.8) >90 degradation (CT 50) | [67] | River water; using fluorescein diacetate (FDA) for viability |
Microcystis (6 × 104 cells/mL (2.5 × 105 cells/mL) (5 × 105 cells/mL) | Lab | 2 4.5 10 | 0–60 | min. 3 max. 296.1 | max. 76% | - | >100% release (CT 5) >90 degradation (CT 35) | [35] | River water, ultrapure water; no viability was reported |
Microcystis (7 × 105 cells/mL) | Lab | 3, 4, 5 | 1, 2, 5, 10, 20, 30, 60 | min. 2.8 max. 104 | Limited impact | <5% (CT 4) | 25% degradation (CT 2.8) Complete degradation (CT 104) | [37,68] | Ultrapure water |
Microcystis (2 × 106 cells/mL) | Lab | 0.5 0.7 1.5 | 5, 11, 50, 60, 120 | min. 2.5 max 180 | - | <5% (CT 180) | 10% degradation 40% increase in released | [69] | Lake water; no CT reported |
Microcystis (106 cells/mL) | Lab | 0.2, 0.4, 0.8 | Range 0–480 | min. 12 max. 396 | - | 18% (at CT 12) 0.1% (at CT 396) | - | [70] | Lake water; no CT reported; no cell count; no toxin |
Microcystis (106 cells/mL) | Lab | 1, 2, 4, 8 | 1, 2, 4, 8, 16, 32, 60 | HV min. 0.98 max. 361 LV min. 0.98 max 200 | - | HV 95–0% (CT > 15) LV 44–0% (CT > 15) | HV CT↑—degradation↑ Complete (CT 108) CT↑—degradation↑ > 50% release CT > 7 > 62% degradation at highest CT | [71] | Ultrapure water; two viability range |
Microcystis (1 × 106 cells/mL) (2 × 106 cells/mL) | Lab | 1, 2, 4, 8 | 1, 2, 4, 8, 16, 32, 60 | DV min. 3.8 max 356 MA min 3.7 max 293 | >95% reduction (CT > 13.3) >95% reduction (CT > 11.9) | No cell viability after oxidation | Same as cell death | [72] | Ultrapure water; two stage of life |
Microcystis-Colony (105 cells/mL) | Lab | 0.3, 0.5, 1, 2 | Range 0–20 min | min. 0.97 max. 52 | - | Depends on colony size (0–95%) | Release and degradation Colony-size-dependent | [73] | Lake water; different colony size; no cell count |
Natural bloom | Field | Cl2/DOC: 0.05–3.6 | 0–20 min | min. 0.15 max 6.8 | >80% increase (CT 6.8) | 88% reduction | Complete release CT:4 (Cl2/DOC: 0.3) | [74] | No CT provided; CT estimated; Chl-a measured as cell damage surrogate |
Natural bloom US: (3 × 106 cells/mL) - Planktothrix agardhii Canada: (3 × 105 cells/mL) - D. spiroides | Field | Cl2/DOC: 0.05, 025, 0.15, 0.1, 1 | 0–20 min | US min 0.13 max 15 CA min 0.3 max 21 | - | Complete degradation | Complete degradation CT 11 (US), CT 7.5 (CA) | [75] | No cell viability; no cell count; Chl-a measured as cell damage surrogate |
Natural bloom (3.3 × 105 cells/mL) D. spiroides (5.4 × 104 cells/mL) M. aeruginosa | Field | 0.2, 0.6 | 0–120 min | min 0.15 max 3.84 | min. CT 5% decrease max. CT 34% decrease | min CT: 82% max CT:55% | CT 3.84: 23% decrease | [76] | Soft chlorination (low dose) |
Natural bloom | Field | 2, 5 | 0–60 min | min 1.14 max 14.8 | min. < 5% reduction max. > 50% reduction | - | 2 mg, CT 10, >200% release 5 mg, CT 20, >200% release | [77] | No cell viability |
Dominant Cyanobacteria (Cell Density) | Lab/Field | O3 Dose (mg/L) | Contact Time (min) | CT (mg min/L) | Cell Count Reduction % | Cell Viability % (for CT) | Toxins | Reference | Comment |
---|---|---|---|---|---|---|---|---|---|
Microcystis (2 × 106 cells/mL) | Lab | 1 2 | - | min. 12 max 16 | - | CT > 54, complete loss | CT = 12 complete degradation | [66] | Saline solution; exact dose and contact time were not provided; no residual; CT evaluation weak |
Microcystis (7 × 105 cells/mL) | Lab | 2, 4, 6 | 5 | min. < 0.22 max. 2.29 | - | Min CT: 50% Max CT: 8.5% | >100% release (high CT) 50% degradation | [37,68] | Ultrapure water |
Microcystis D. flos-Aquae (2.5 × 104 cells/mL (1.5 × 105 cells/mL) | Lab | 0.5, 2, 4 | 0.5–10 | min. < 0.2 max. 22 | 32% for 2 mg/L 41% for 4 mg/L | Complete loss, CT < 0.2 | - | [64] | Ultrapure; no flow cytometry |
Microcystis (2 × 105 cells/mL) Oscillatoria (2800 cells/mL) Lyngbya sp. (1600 cells/mL) | Lab | 0.63–5 | 24 h | min. 0.5 max 17 | 100% reduction (CT 0.5) | Complete loss, (CT > 2) | - | [78] | River water; Chl-a measured as cell damage surrogate; no toxin measurement |
Microcystis, Dolichospermum (4 × 105 cells/mL) | Lab | 0.5, 1, 2 | 5, 10 | max. 2.5 | >95% reduction | Complete loss | - | [79] | Natural water; no toxin measurement |
Microcystis, Dolichospermum (1.2 × 105–2 × 106 cells/mL) | Field | 2, 3, 4, 5 | 0–10 | min. 1.4 max 16.8 | 75% reduction (CT 16.8) | CT 3.2: 45% CT 16.8: 15% | CT < 2, more than 100% release | [65] | Natural bloom |
Natural bloom US (3 × 106 cells/mL)—Planktothrix agardhii CA (3 × 105 cells/mL)— D. spiroides | Field | O3/DOC: 0.05—0.75 | 0–20 | US-min. 1.5 max. 3 CA-min 0.2 max. 4.1 | - | - | >80% degradation CT 4.1(CA) | [75] | No cell viability; no cell count; Chl-a measured as cell damage surrogate |
Natural bloom (3.3 × 105 cells/mL) D. spiroides (5.4 × 104 cells/mL) M. aeruginosa | Field | 0.1, 0.3 | 0–10 | max: 0.86 | max CT 14% decrease | max CT: 79% | 14% degradation No release | [76] | Soft ozonation (low dose) |
Dominant Cyanobacteria (Cell Density) | Lab/Field | KMnO4 Dose (mg/L) | Contact Time (h) | CT (mg min/L) | Cell Count Reduction % | Cell Viability % (for CT) | Toxins | Reference | Comment |
---|---|---|---|---|---|---|---|---|---|
Microcystis (2 × 106 cells/mL) | Lab | 1–2 | - | min. 15 max. 600 | - | min. CT: 60%, CT > 60: complete loss | CT: 30 Complete dissolved degradation | [66] | Saline solution; exact dose and contact time were not provided; no residual; CT evaluation weak |
Microcystis (7 × 105 cells/mL) | Lab | 1, 5, 10 | 0.25–7 | min. 28.7 max. 2642 | 14% cell number reduction (CT max) | CT 2600: complete loss | Release at CT > 70 Complete degradation CT 2600 | [37,68] | Ultrapure water |
Microcystis, Dolichospermum (4 × 105 cells/mL) | Lab | 2, 5 | 20 | max. 456 | 10% reduction at highest CT | CT 456: 18% viability | - | [80] | Natural water; no toxin measurement |
Microcystis Bloom from Lake Erie | Lab Field | 0.5–8 | 1–5 | min. 120 max. 1920 | - | Cell, CT 1920: 2% Bloom, CT 1920: 40% | - | [81] | No cell count and toxin; no CT; CT with lower doses was unable to decrease viability |
Dominant Cyanobacteria (Cell Density) | Lab/Field | H2O2 Dose (mg/L) | Contact Time | CT (mg h/L) | Cell Count Reduction % | Cell Viability % (for CT) | Toxins | Reference | Comment |
---|---|---|---|---|---|---|---|---|---|
Microcystis (3.7 × 106 cells/mL) | Lab | 3.4, 17 | 4 h, 2 d, 4 d | min. 13.6 max. 1632 | min. CT: 8% reduction max. CT: 89% reduction | K+ release min. CT: 81% max. CT: 5% | CT > 816 26% MC release | [82] | K release as a surrogate for cell damage; no CT provided |
Microcystis (7 × 105 cells/mL) | Lab | 10.2, 51, 102 | 0.1 d–7 h | min. 189.3 max. 17,678 | Limited change | min. CT: 86% CT 4770: 7% | No release, CT 364: >95% degradation | [37,68] | Ultrapure water |
Pseudanabaena (107 cells/mL) | Lab | 3, 5, 10, 20 | 2 h, 4 h, 8 h, 2 d, 4 d | min. 6 max. 960 | min. CT: No change max. CT: >90% reduction | CT 120: 2% | - | [83] | Reservoir water; no toxins |
Microcystis (6 × 106 cells/mL) | Lab | 1–15 | 0.1 d–7 d | min. 2.4 max. 2520 | CT 1680: 95% reduction | max. CT 3% viability | CT > 1512, 82% degradation | [84] | Culture; no CT provided |
Microcystis, Dolichospermum (4 × 105 cells/mL) | Lab | 5, 10 | 6 h | min. 13.9 max. 96.1 | <5% reduction | min. CT: 39% max. CT: 30% | - | [79] | Natural water |
Natural bloom: (3.3 × 105 Cells/mL) D. spiroides: (5.43 × 104 cells/mL) M. aeruginosa | Field | 10 | 6 h–1 d | min. 47 max. 140.7 | max. CT 52% reduction | min. CT: 60% max. CT: 40% | No release max.; 15% MC degradation | [76] | - |
3.2. Chlorination
3.3. Ozonation
3.4. Potassium Permengeanate
3.5. Hydrogen Peroxide
3.6. Considerations on the Impact of Pre-Oxidation on Downflow Processes
4. Sludge Storage, Oxidation, and Handling
4.1. Fate of Cyanobacteria and Cyanotoxins during Sludge Storage
Initial Characteristics of Cyanobacteria/ Coagulation/Sedimentation Process | Initial Condition of Cyanobacteria and Cyanotoxins in the Stored Sludge | Observation | Reference |
---|---|---|---|
Cultured M. aeruginosa (1 × 106 cells/mL) (Jar test, 70 mg/L alum) | 8 × 106 cells/mL, 2500 µg MC-LR/L | Cell survival (2 days); cell lysis and cyanotoxin release (2 days); degradation of dissolved cyanotoxins (8–10 days) | [13] |
Cultured D. circinale and C. raciborskii (1.0 × 105 cells/mL) (Jar test, 40 mg/L alum) | Sludge supernatant: D. circinale: 1300 cells/mL STX: 0.4 µg/L | Cells remained viable up to 7 days; cell lysis and toxin release within 3 days | [45] |
Cultured M. aeruginosa (2 × 106 cells/mL) (Jar test, 15 mg/L AlCl3) | 18 µg/L dissolved MCs | Cell lysis and cyanotoxin release after 6 days | [40] |
Cultured M. aeruginosa (1 × 106 cells/mL) (Jar test, 4 mg/L PACl-optimum dose) | 20 µg/L dissolved MCs | Cell lysis and cyanotoxin release within 6–12 days | [46] |
Microcystisflos aquae (5.2 × 105 cells/mL) (Jar test, 100 mg/L alum) | Sludge supernatant: MC-RR, MC-YR: < 2 µg/L | Cell survival (5 days); cell lysis and cyanotoxin release (5–10 days); degradation of dissolved cyanotoxins (up to 15 days) | [62] |
Cultured M. aeruginosa (1 × 106 cells/mL) (Jar test, 15 mg/L ALCl3, 4 mg/L PACl) | −0.9 bar vacuum pressure for dewatering the sludge 23 µg/L total MCs | Cell lysis and cyanotoxin release within 4–6 days; optimum sludge storage time for AlCl3 and PACl was suggested to be 4 and 2 days, respectively. | [47] |
Cultured M. aeruginosa (1 × 106 cells/mL) (Jar test, 0–70 mg/L FeCl3) | ~1 µg/L dissolved MCs | Cell lysis and cyanotoxin release (2–8 days); degradation of dissolved cyanotoxins (> 10 days) | [48] |
Myponga reservoir Cultured M. aeruginosa (2.3 × 105 cells/mL) Cell-bound MC-LR: 4.7 µg/L Dissolved MC-LR: 2.0 µg/L (Jar test-80 mg/L alum) | Sludge supernatant after 1 day storage: Cells: 4300 cells/mL Cell-bound MC-LR: 0.5 µg/L Dissolved MC-LR: 2.5 µg/L | Cell survival (4 days); cell lysis and cyanotoxin release (4–7 days); degradation of dissolved cyanotoxins (> 4 days) | [53] |
Myponga reservoir Cultured M. aeruginosa (3.1 × 105 cells/mL) DOC: 10.1 mg/L Cell-Bound MC-LR: 5.0 µg/L Dissolved MC-LR: 2.9 µg/L (Jar test-80 mg/L alum) | Sludge supernatant after 1 day storage: DOC: 5.2 mg/L Cell: 2760 cells/mL Cell-bound MC-LR: <DL Dissolved MC-LR: 4.0 µg/L | Cell growth (within 7–16 days) confirmed by DOC and MC-LR cell quota | |
Myponga reservoir Cultured C. raciborskii (3.1 × 105 cells/mL) DOC: 10 mg/L Cell-bound CYN: 2.5 µg/L Dissolved CYN: 0.7 µg/L (Jar test-80 mg/L alum) | Sludge supernatant after 1 day storage: DOC: 6.0 mg/L Cell: 7080 cells/mL Cell-bound CYN: 1.0 µg/L Dissolved CYN: 0.8 µg/L | Cell growth (within 7–23 days) confirmed by DOC and CYN cell quota | |
River Murary Cultured C. raciborskii (3.1 × 105 cells/mL) DOC: 8.63 mg/L Cell-bound CYN: 2.7 µg/L Dissolved CYN: 0.3 µg/L (Jar test-80 mg/L alum) | Sludge supernatant after 1 day storage: DOC: 4.9 mg/L Cell: 4140 cells/mL Cell-bound CYN: 0.3 µg/L Dissolved CYN: 0.9 µg/L | Cell growth (within 15–23 days) confirmed by DOC and CYN cell quota | |
Cultured M. aeruginosa (1 × 106 cells/mL) (Jar test- 15 mg/L AlCl3, 50 mg/L FeCl3, 15 mg/L PAFC) | 20 µg/L dissolved MCs 1–4.2 mg/L dissolved polysaccharides 4 mg/L chla | Cell lysis and toxin release (2–10 days) | [49] |
Cultured M. aeruginosa (2 × 106 cells/mL) (Jar test, 2.6 mg/L chitosan- 7.5 mg/L AlCl3 (CTSAC) | 9 µg/L dissolved MCs (after coagulation) 18 µg/L dissolved MCs (without coagulation); the difference is due to adsorption in CTSAC | Toxin release (0–4 days); degradation of dissolved cyanotoxins (6–10 days) | [50] |
M. aeruginosa, D. circinale, C. raciborskii (3.0 × 105 cells/mL) (Jar test, 80 mg/L Alum) | Sludge supernatant after 1 day storage: DOC: 5.2–6.5 mg/L Cell: 2162–7080 cells/mL Cell-bound MC-LR: <0.5 µg/L Dissolved MC-LR: 2.5–4.0 µg/L Cell-bound CYN: 1.0 µg/L Dissolved CYN: 0.8 µg/L | Increased DOC, MC-LR, MC-LA, and CYN to higher the expected values (hypothesis: increase of the metabolite production, cell growth or both) | [55] |
M. aeruginosa and D. circinale (8.6 × 104 cells/mL) (Jar test, 80 mg/L Alum) | Non-coagulated sludge: 5.0 × 106 cells/mL Coagulated sludge: 5.4 × 105 cells/mL | Cell survival (up to 35 days); 4.2× increase in cell counts in the sludge lagoon within 7 days; increased metabolites to higher the expected values (up to 5×); increased cell counts in the sludge (hypothesis: cell growth, additional settling, or both) | [54] |
Cultured M. aeruginosa × 105 cells/mL) (Jar test, 15 mg/L AlCl3, 50 mg/L FeCl3, 15 mg/L PAFC) | 1 µg/L dissolved MCs | Cell lysis and toxin release (4–6 days); degradation of dissolved cyanotoxins (6–10 days) | [51] |
Cultured Oscillatoria sp. (1.0 × 104 cells/mL) (Jar test, 5 and 10 mg/L PAFC) | 1.0 mg/L chla 2.3 µg/L cell-bound protein 8.6–11.4 µg/L dissolved CYN | Increase in chla level after 4 days, suggesting cell growth; loss of cell integrity after 2 days, while cells remained viable up to 8 days; increase in dissolved CYN, showing toxin release within 4 days | [94] |
Cultured C. raciborskii (1 × 106 cells/mL at late exponential phase) (Jar test, 10 mg/L PAFC) | 1.1 µg/L dissolved CYN 2 mg/L cell-bound protein | Cell lysis and toxin release after 6 days; degradation of dissolved cyanotoxins after 10 days | [52] |
n/a | Sludge of a DWTP containing natural cyanobacterial blooms stored for 7–35 days in the darkness (8 samples). 0.7 × 105–5.6 × 106 cells/mL 25–7130 ng/L cell-bound MCs 38–349 ng/L dissolved MCs | Cell growth in 4/8 samples after 9–35 stagnation days; cell death in the rest 4/8 samples; degradation of dissolved cyanotoxins after 8 days | [58] |
4.2. Cyanobacteria-Laden Sludge Treatment
4.3. Sludge Handling Challenges
5. Decision Framework to Manage Cyanobacteria and Cyanotoxins in Drinking Water Treatment Plants
5.1. Framework Basis
5.2. Decision Framework
6. Conclusions
- ○
- Using the exposure unit (CT) is recommended for cyanobacteria and cyanotoxins oxidation studies, rather than using dose or contact time individually.
- ○
- Regardless of the oxidant type, lab-cultured studies cannot depict the complete picture of natural cyanobacterial bloom behavior during oxidation and may overestimate the oxidation efficiency. In addition, cyanobacterial bloom oxidation is site- and bloom-specific, which could be related to the level of agglomeration, cyanobacteria (bloom) stage of life, and metabolic functions.
- ○
- Soft pre-chlorination and pre-ozonation can compromise cell viability with no or limited cyanotoxin release. Overall, soft pre-oxidation may cause lower disinfection by-products compared to normal pre-oxidation.
- ○
- The cyanobacteria in stored sludge can not only survive, but also grow and release cyanotoxins, even in the dark. Although dissolved cyanotoxins can be degraded during sludge storage, the potential risk of growth and cyanotoxin release should be considered. In fact, the cell growth/depletion in stored sludge is complex and not easy to predict. Therefore, the worst-case scenario should be considered during sludge handling.
- ○
- Due to the low efficacy of sludge oxidation as compared to only stored sludge, as well as the occurrence of cell growth, and gene expression regulation during oxidation/storage, oxidation cannot be a reliable approach in sludge treatment and management.
- ○
- Management of cyanobacteria and cyanotoxins in sludge should be initiated with the minimization of cyanobacteria and cyanotoxin accumulation throughout DWTPs.
- ○
- To control the negative impacts of cyanobacterial accumulation in DWTPs, recycling sludge supernatant to the head of the DWTPs should be regulated during cyanobacterial seasons. Suitable treatment and disposal approaches should be set into guidance and regulations for sludge-containing cyanotoxins.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Churro, C.; Dias, E.; Valério, E. Risk assessment of cyanobacteria and cyanotoxins, the particularities and challenges of Planktothrix spp. monitoring. In Novel Approaches and Their Applications in Risk Assessment; IntechOpen: London, UK, 2012; pp. 59–85. [Google Scholar]
- Kosten, S.; Huszar, V.L.M.; Bécares, E.; Costa, L.S.; Donk, E.; Hansson, L.-A.; Jeppesen, E.; Kruk, C.; Lacerot, G.; Mazzeo, N.; et al. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob. Chang. Biol. 2012, 18, 118–126. [Google Scholar] [CrossRef]
- Paerl, H.W.; Paul, V.J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 2012, 46, 1349–1363. [Google Scholar] [CrossRef] [PubMed]
- Chorus, I.; Fastner, J.; Welker, M. Cyanobacteria and Cyanotoxins in a Changing Environment: Concepts, Controversies, Challenges. Water 2021, 13, 2463. [Google Scholar] [CrossRef]
- Mokoena, M.M.; Mukhola, M.S. Current Effects of Cyanobacteria Toxin in Water Sources and Containers in the Hartbeespoort Dam Area, South Africa. Int. J. Environ. Res. Public Health 2019, 16, 4468. [Google Scholar] [CrossRef] [Green Version]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef]
- O’Keeffe, J. Cyanobacteria and Drinking Water: Occurrence, Risks, Management and Knowledge Gaps for Public Health; National Collaborating Centre for Environmental Health: Vancouver, BC, Canada, 2019. [Google Scholar]
- Mishra, S.; Stumpf, R.P.; Schaeffer, B.A.; Werdell, P.J.; Loftin, K.A.; Meredith, A. Measurement of Cyanobacterial Bloom Magnitude using Satellite Remote Sensing. Sci. Rep. 2019, 9, 18310. [Google Scholar] [CrossRef]
- Akyol, C.; Ozbayram, E.G.; Accoroni, S.; Radini, S.; Eusebi, A.L.; Gorbi, S.; Vignaroli, C.; Bacchiocchi, S.; Campacci, D.; Gigli, F.; et al. Monitoring of cyanobacterial blooms and assessing polymer-enhanced microfiltration and ultrafiltration for microcystin removal in an Italian drinking water treatment plant. Environ. Pollut. 2021, 286, 117535. [Google Scholar] [CrossRef]
- Zamyadi, A.; Glover, C.M.; Yasir, A.; Stuetz, R.; Newcombe, G.; Crosbie, N.D.; Lin, T.-F.; Henderson, R. Toxic cyanobacteria in water supply systems: Data analysis to map global challenges and demonstrate the benefits of multi-barrier treatment approaches. H2Open J. 2021, 4, 47–62. [Google Scholar] [CrossRef]
- Westrick, J.A.; Szlag, D.C.; Southwell, B.J.; Sinclair, J. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Anal. Bioanal. Chem. 2010, 397, 1705–1714. [Google Scholar] [CrossRef]
- Zamyadi, A.; Dorner, S.; Ellis, D.; Bolduc, A.; Bastien, C.; Prévost, M. Species-dependence of cyanobacteria removal efficiency by different drinking water treatment processes. Water Res. 2013, 47, 2689–2700. [Google Scholar] [CrossRef]
- Drikas, M.; Chow, C.W.K.; House, J.; Burch, M.D. Using coagulation, flocculation, and settling to remove toxic cyanobacteria. J. Am. Water Work. Assoc. 2001, 93, 100–111. [Google Scholar] [CrossRef]
- Szlag, D.C.; Sinclair, J.L.; Southwell, B.; Westrick, J.A. Cyanobacteria and Cyanotoxins Occurrence and Removal from Five High-Risk Conventional Treatment Drinking Water Plants. Toxins 2015, 7, 2198–2220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newcombe, G.; Nicholson, B. Water treatment options for dissolved cyanotoxins. Water Supply Res. Technol.-Aqua 2004, 53, 227–239. [Google Scholar] [CrossRef]
- Wert, E.C.; Rosario-Ortiz, F.L. Intracellular organic matter from cyanobacteria as a precursor for carbonaceous and nitrogenous disinfection byproducts. Environ. Sci. Technol. 2013, 47, 6332–6340. [Google Scholar] [CrossRef] [PubMed]
- Zamyadi, A.; Greenstein, K.E.; Glover, C.M.; Adams, C.; Rosenfeldt, E.; Wert, E.C. Impact of hydrogen peroxide and copper sulfate on the delayed release of microcystin. Water 2020, 12, 1105. [Google Scholar] [CrossRef]
- Zamyadi, A.; MacLeod, S.; Fan, Y.; McQuaid, N.; Dorner, S.; Sauvé, S.; Prévost, M. Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: A monitoring and treatment challenge. Water Res. 2012, 46, 1511–1523. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.K.; Parsons, S.A.; Jefferson, B. The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae. Water Res. 2010, 44, 3617–3624. [Google Scholar] [CrossRef] [Green Version]
- Newcombe, G. International Guidance Manual for the Management of Toxic Cyanobacteria; Global Water Research Coalition and Water Quality Research Australia: London, UK, 2009; p. 44. [Google Scholar]
- Gonzalez-Torres, A.; Putnam, J.; Jefferson, B.; Stuetz, R.M.; Henderson, R.K. Examination of the physical properties of Microcystis aeruginosa flocs produced on coagulation with metal salts. Water Res. 2014, 60, 197–209. [Google Scholar] [CrossRef]
- Pivokonsky, M.; Naceradska, J.; Brabenec, T.; Novotna, K.; Baresova, M.; Janda, V. The impact of interactions between algal organic matter and humic substances on coagulation. Water Res. 2015, 84, 278–285. [Google Scholar] [CrossRef]
- Merel, S.; Walker, D.; Chicana, R.; Snyder, S.; Baures, E.; Thomas, O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 2013, 59, 303–327. [Google Scholar] [CrossRef]
- He, X.; Liu, Y.-L.; Conklin, A.; Westrick, J.; Weavers, L.K.; Dionysiou, D.D.; Lenhart, J.J.; Mouser, P.J.; Szlag, D.; Walker, H.W. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae 2016, 54, 174–193. [Google Scholar] [CrossRef] [PubMed]
- Abbas, T.; Kajjumba, G.W.; Ejjada, M.; Masrura, S.U.; Marti, E.J.; Khan, E.; Jones-Lepp, T.L. Recent Advancements in The Removal of Cyanotoxins from Water Using Conventional and Modified Adsorbents—A Contemporary review. Water 2020, 12, 2756. [Google Scholar] [CrossRef]
- Villars, K.; Huang, Y.; Lenhart, J.J. Removal of the Cyanotoxin Microcystin-LR from Drinking Water Using Granular Activated Carbon. Environ. Eng. Sci. 2020, 37, 585–595. [Google Scholar] [CrossRef]
- Xie, P.; Ma, J.; Fang, J.; Guan, Y.; Yue, S.; Li, X.; Chen, L. Comparison of permanganate preoxidation and preozonation on algae containing water: Cell integrity, characteristics, and chlorinated disinfection byproduct formation. Environ. Sci. Technol. 2013, 47, 14051–14061. [Google Scholar] [CrossRef]
- Lapsongpon, T.; Leungprasert, S.; Yoshimura, C. Pre-chlorination contact time and the removal and control of Microcystis aeroginosa in coagulation. IOP Conf. Ser. Earth Environ. Sci. 2017, 67, 012011. [Google Scholar] [CrossRef]
- Petrusevski, B.; van Breeman, A.N.; Alaerts, G.J. Effect of permanganate pre-treatment and coagulation with dual coagulants on algae removal in direct filtration. Water Supply Res. Technol.-Aqua 1996, 45, 316–326. [Google Scholar]
- Chu, W.; Yao, D.; Deng, Y.; Sui, M.; Gao, N. Production of trihalomethanes, haloacetaldehydes and haloacetonitriles during chlorination of microcystin-LR and impacts of pre-oxidation on their formation. J. Hazard. Mater. 2017, 327, 153–160. [Google Scholar] [CrossRef]
- Lin, J.L.; Hua, L.C.; Hung, S.K.; Huang, C. Algal removal from cyanobacteria-rich waters by preoxidation-assisted coagulation-flotation: Effect of algogenic organic matter release on algal removal and trihalomethane formation. J. Environ. Sci. 2018, 63, 147–155. [Google Scholar] [CrossRef]
- Naceradska, J.; Pivokonsky, M.; Pivokonska, L.; Baresova, M.; Henderson, R.K.; Zamyadi, A.; Janda, V. The impact of pre-oxidation with potassium permanganate on cyanobacterial organic matter removal by coagulation. Water Res. 2017, 114, 42–49. [Google Scholar] [CrossRef]
- Wang, H.; Masters, S.; Falkinham, J.O., 3rd; Edwards, M.A.; Pruden, A. Distribution system water quality affects responses of opportunistic pathogen gene markers in household water heaters. Environ. Sci. Technol. 2015, 49, 8416–8424. [Google Scholar] [CrossRef]
- Xie, P.; Chen, Y.; Ma, J.; Zhang, X.; Zou, J.; Wang, Z. A mini review of preoxidation to improve coagulation. Chemosphere 2016, 155, 550–563. [Google Scholar] [CrossRef] [PubMed]
- Zamyadi, A.; Fan, Y.; Daly, R.I.; Prévost, M. Chlorination of Microcystis aeruginosa: Toxin release and oxidation, cellular chlorine demand and disinfection by-products formation. Water Res. 2013, 47, 1080–1090. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Daly, R.; Hobson, P.; Ho, L.; Brookes, J. Impact of potassium permanganate on cyanobacterial cell integrity and toxin release and degradation. Chemosphere 2013, 92, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Ho, L.; Hobson, P.; Brookes, J. Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity. Water Res. 2013, 47, 5153–5164. [Google Scholar] [CrossRef] [PubMed]
- Moradinejad, S.; Trigui, H.; Maldonado, J.F.G.; Shapiro, B.J.; Terrat, Y.; Sauvé, S.; Fortin, N.; Zamyadi, A.; Dorner, S.; Prévost, M. Metagenomic study to evaluate functional capacity of a cyanobacterial bloom during oxidation. Chem. Eng. J. Adv. 2021, 8, 100151. [Google Scholar] [CrossRef]
- Moradinejad, S.; Trigui, H.; Guerra Maldonado, J.F.; Shapiro, J.; Terrat, Y.; Zamyadi, A.; Dorner, S.; Prévost, M. Diversity assessment of toxic cyanobacterial blooms during oxidation. Toxins 2020, 12, 728. [Google Scholar] [CrossRef]
- Sun, F.; Pei, H.-Y.; Hu, W.-R.; Ma, C.-X. The lysis of Microcystis aeruginosa in AlCl3 coagulation and sedimentation processes. Chem. Eng. J. 2012, 193–194, 196–202. [Google Scholar] [CrossRef]
- Teixeira, M.R.; Rosa, M.J. Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa. Part II. The effect of water background organics. Sep. Purif. Technol. 2007, 53, 126–134. [Google Scholar] [CrossRef]
- Chorus, I.; Bartram, J. Chapter 6. Situation assessment, planning and management. In Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; WHO: Geneva, Switzerland, 1999; p. 28. [Google Scholar]
- Zamyadi, A.; Dorner, S.; Ndong, M.; Ellis, D.; Bolduc, A.; Bastien, C.; Prévost, M. Low-risk cyanobacterial bloom sources: Cell accumulation within full-scale treatment plants. J. Am. Water Work. Assoc. 2013, 102, E651–E663. [Google Scholar] [CrossRef] [Green Version]
- Almuhtaram, H.; Cui, Y.; Zamyadi, A.; Hofmann, R. Cyanotoxins and cyanobacteria cell accumulations in drinking water treatment plants with a low risk of bloom formation at the source. Toxins 2018, 10, 430. [Google Scholar] [CrossRef] [Green Version]
- Ho, L.; Dreyfus, J.; Boyer, J.e.; Lowe, T.; Bustamante, H.; Duker, P.; Meli, T.; Newcombe, G. Fate of cyanobacteria and their metabolites during water treatment sludge management processes. Sci. Total Environ. 2012, 424, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Pei, H.-Y.; Hu, W.-R.; Li, X.-Q.; Ma, C.-X.; Pei, R.-T. The cell damage of Microcystis aeruginosa in PACl coagulation and floc storage processes. Sep. Purif. Technol. 2013, 115, 123–128. [Google Scholar] [CrossRef]
- Sun, F.; Hu, W.; Pei, H.; Li, X.; Xu, X.; Ma, C. Evaluation on the dewatering process of cyanobacteria-containing AlCl3 and PACl drinking water sludge. Sep. Purif. Technol. 2015, 150, 52–62. [Google Scholar] [CrossRef]
- Li, X.; Pei, H.; Hu, W.; Meng, P.; Sun, F.; Ma, G.; Xu, X.; Li, Y. The fate of Microcystis aeruginosa cells during the ferric chloride coagulation and flocs storage processes. Environ. Technol. 2015, 36, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Pei, H.; Xiao, H.; Jin, Y.; Li, X.; Hu, W.; Ma, C.; Sun, J.; Li, H. Behaviors of Microcystis aeruginosa cells during floc storage in drinking water treatment process. Sci. Rep. 2016, 6, 34943. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Pei, H.; Hu, W.; Xu, H.; Jin, Y. The lysis and regrowth of toxic cyanobacteria during storage of achitosan–aluminium chloride composite coagulated sludge: Implications for drinking water sludge treatment. RSC Adv. 2016, 6, 112756–112764. [Google Scholar] [CrossRef]
- Xu, H.; Pei, H.; Jin, Y.; Xiao, H.; Ma, C.; Sun, J.; Li, H. Characteristics of water obtained by dewatering cyanobacteria-containing sludge formed during drinking water treatment, including C-, N-disinfection byproduct formation. Water Res. 2017, 111, 382–392. [Google Scholar] [CrossRef]
- Li, H.; Pei, H.; Xu, H.; Jin, Y.; Sun, J. Behavior of Cylindrospermopsis raciborskii during coagulation and sludge storage-higher potential risk of toxin release than Microcystis aeruginosa? J. Hazard. Mater. 2018, 347, 307–316. [Google Scholar] [CrossRef]
- Water Research Foundation (WRF); Water Research Australia. Optimizing Conventional Treatment for the Removal of Cyanobacteria and Toxins; Water Research Foundation (WRF): Denver, CO, USA, 2015; p. 185. ISBN 978-1-60573-216-9. [Google Scholar]
- Pestana, C.J.; Reeve, P.J.; Sawade, E.; Voldoire, C.F.; Newton, K.; Praptiwi, R.; Collingnon, L.; Dreyfus, J.; Hobson, P.; Gaget, V.; et al. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge. Sci. Total Environ. 2016, 565, 1192–1200. [Google Scholar] [CrossRef]
- Dreyfus, J.; Monrolin, Y.; Pestana, C.J.; Reeve, P.J.; Sawade, E.; Newton, K.; Ho, L.; Chow, C.W.K.; Newcombe, G. Identification and assessment of water quality risks associated with sludge supernatant recycling in the presence of cyanobacteria. J. Water Supply Res. Technol.-Aqua 2016, 65, 441–452. [Google Scholar] [CrossRef]
- Jalili, F.; Trigui, H.; Guerra Maldonado, J.F.; Dorner, S.; Zamyadi, A.; Shapiro, B.J.; Terrat, Y.; Fortin, N.; Sauvé, S.; Prévost, M. Can cyanobacterial diversity in the source predict the diversity in sludge and the risk of toxin release in a drinking water treatment plant? Toxins 2021, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Zamyadi, A.; Henderson, R.K.; Stuetz, R.; Newcombe, G.; Newtown, K.; Gladman, B. Cyanobacterial management in full-scale water treatment and recycling processes: Reactive dosing following intensive monitoring. Environ. Sci. Water Res. Technol. 2016, 2, 362–375. [Google Scholar] [CrossRef]
- Jalili, F. Optimal Treatment Strategies to Prevent and Manage Cyanobacteria and Cyanotoxins in Drinking Water Sludge. Ph.D. Thesis, Polytechnique Montréal, Montréal, QC, Canada, 2022. [Google Scholar]
- Jalili, F.; Trigui, H.; Maldonado, J.F.G.; Dorner, S.; Zamyadi, A.; Shapiro, B.J.; Terrat, Y.; Fortin, N.; Sauvé, S.; Prévost, M. Oxidation to Control Cyanobacteria and Cyanotoxins in Drinking Water Treatment Plants: Challenges at the Laboratory and Full-Scale Plants. Water 2022, 14, 537. [Google Scholar] [CrossRef]
- Zamyadi, A.; Romanis, C.; Mills, T.; Neilan, B.; Choo, F.; Coral, L.A.; Gale, D.; Newcombe, G.; Crosbie, N.; Stuetz, R.; et al. Diagnosing water treatment critical control points for cyanobacterial removal: Exploring benefits of combined microscopy, next-generation sequencing, and cell integrity methods. Water Res. 2019, 152, 96–105. [Google Scholar] [CrossRef]
- Water Research Foundation (WRF); United States Environmental Protection Agency (US EPA); Veolia Water Indianapolis. Strategies for Controlling and Mitigating Algal Growth within Water Treatment Plants; Water Research Foundation (WRF): Denver, CO, USA, 2009; p. 312. [Google Scholar]
- Ho, L.; Barbero, A.; Dreyfus, J.; Dixon, D.R.; Qian, F.; Scales, P.J.; Newcombe, G. Behaviour of cyanobacterial bloom material following coagulation and/or sedimentation. J. Water Supply Res. Technol.-Aqua 2013, 62, 350–358. [Google Scholar] [CrossRef]
- Pinkanjananavee, K.; Teh, S.J.; Kurobe, T.; Lam, C.H.; Tran, F.; Young, T.M. Potential Impacts on Treated Water Quality of Recycling Dewatered Sludge Supernatant during Harmful Cyanobacterial Blooms. Toxins 2021, 13, 99. [Google Scholar] [CrossRef]
- Coral, L.A.; Zamyadi, A.; Barbeau, B.; Bassetti, F.J.; Lapolli, F.R.; Prévost, M. Oxidation of Microcystis aeruginosa and Anabaena flos-aquae by ozone: Impacts on cell integrity and chlorination by-product formation. Water Res. 2013, 47, 2983–2994. [Google Scholar] [CrossRef]
- Zamyadi, A.; Coral, L.A.; Barbeau, B.; Dorner, S.; Lapolli, F.R.; Prévost, M. Fate of toxic cyanobacterial genera from natural bloom events during ozonation. Water Res. 2015, 73, 204–215. [Google Scholar] [CrossRef]
- Ding, J.; Shi, H.; Timmons, T.; Adams, C. Release and removal of microcystins from microcystis during oxidative-, physical-, and UV-based disinfection. J. Environ. Eng. 2010, 136, 2–11. [Google Scholar] [CrossRef]
- Zamyadi, A.; Ho, L.; Newcombe, G.; Daly, R.I.; Burch, M.; Baker, P.; Prévost, M. Release and oxidation of cell-bound saxitoxins during chlorination of Anabaena circinalis cells. Environ. Sci. Technol. 2010, 44, 9055–9061. [Google Scholar] [CrossRef]
- Fan, J.J.; Hobson, P.; Ho, L.; Daly, R.; Brookes, J. The effects of various control and water treatment processes on the membrane integrity and toxin fate of cyanobacteria. J. Hazard. Mater. 2014, 264, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Dan, Y.; Adams, C.D.; Shi, H.; Ma, Y.; Eichholz, T. Effect of oxidant demand on the release and degradation of microcystin-LR from Microcystis aeruginosa during oxidation. Chemosphere 2017, 181, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Lan, H.; Liu, R.; Miao, S.; Liu, H.; Qu, J. Prechlorination of algae-laden water: The effects of transportation time on cell integrity, algal organic matter release, and chlorinated disinfection byproduct formation. Water Res. 2016, 102, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, S.; Zeng, J.; Song, W.; Yu, X. Comparing the effects of chlorination on membrane integrity and toxin fate of high-and low-viability cyanobacteria. Water Res. 2020, 177, 115769. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Zeng, J.; Chabi, K.; Song, W.; Xian, X.; Yu, X. Impact of chlorination on cell inactivation, toxin release and degradation of cyanobacteria of development and maintenance stage. Chem. Eng. J. 2020, 397, 125378. [Google Scholar] [CrossRef]
- Fan, J.; Rao, L.; Chiu, Y.T.; Lin, T.F. Impact of chlorine on the cell integrity and toxin release and degradation of colonial Microcystis. Water Res. 2016, 102, 394–404. [Google Scholar] [CrossRef]
- He, X.; Wert, E.C. Colonial cell disaggregation and intracellular microcystin release following chlorination of naturally occurring Microcystis. Water Res. 2016, 101, 10–16. [Google Scholar] [CrossRef]
- Greenstein, K.E.; Zamyadi, A.; Glover, C.M.; Adams, C.; Rosenfeldt, E.; Wert, E.C. Delayed Release of Intracellular Microcystin Following Partial Oxidation of Cultured and Naturally Occurring Cyanobacteria. Toxins 2020, 12, 335. [Google Scholar] [CrossRef]
- Moradinejad, S. Characterization of Phenomena Governing Oxidation of Cyanobacteria through Metagenomics. Ph.D Thesis, Polytechnique Montréal, Montreal, QC, Canada, 2021. [Google Scholar]
- Zamyadi, A.; Dorner, S.; Ndong, M.; Ellis, D.; Bolduc, A.; Bastien, C.; Prévost, M. Breakthrough and accumulation of toxic cyanobacteria in full scale clarification and filtration processes. In Proceedings of the American Water Works Association-Water Quality Technology Conference and Exposition (WQTC), Toronto, ON, Canada, 4–8 November 2012; p. 27. [Google Scholar]
- Wert, E.C.; Dong, M.M.; Rosario-Ortiz, F.L. Using digital flow cytometry to assess the degradation of three cyanobacteria species after oxidation processes. Water Res. 2013, 47, 3752–3761. [Google Scholar] [CrossRef]
- Moradinejad, S.; Glover, C.; Mailly, J.; Zadfatollah-Seighalani, T.; Peldszus, S.; Barbeau, B.; Dorner, S.; Prévost, M.; Zamyadi, A. Using advanced spectroscopy and organic matter characterization to evaluate the impact of oxidation on cyanobacteria. Toxins 2019, 11, 278. [Google Scholar] [CrossRef] [Green Version]
- Moradinejad, S.; Glover, C.; Dorner, S.; Barbeau, B.; Prévost, M.; Zamyadi, A. Using advanced spectroscopy and visualization techniques to assess the impact of oxidation on cyanobacteria cell morphology. In Proceedings of the WQTC, Dallas, TX, USA, 3–7 November 2019. [Google Scholar]
- Piezer, K.; Li, L.; Jeon, Y.; Kadudula, A.; Seo, Y. The Application of Potassium Permanganate to Treat Cyanobacteria-Laden Water. Process Saf. Environ. Prot. 2020, 148, 400–414. [Google Scholar] [CrossRef]
- Zhou, S.; Shao, Y.; Gao, N.; Deng, Y.; Qiao, J.; Ou, H.; Deng, J. Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis aeruginosa. Sci. Total Environ. 2013, 463, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Brookes, J.; Hobson, P.; Pei, H. Impact of copper sulphate, potassium permanganate, and hydrogen peroxide on Pseudanabaena galeata cell integrity, release and degradation of 2-methylisoborneol. Water Res. 2019, 157, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Cao, H.; Zheng, J.; Teng, F.; Wang, X.; Lou, K.; Zhang, X.; Tao, Y. Suppression of water-bloom cyanobacterium Microcystis aeruginosa by algaecide hydrogen peroxide maximized through programmed cell death. J. Hazard. Mater. 2020, 393, 122394. [Google Scholar] [CrossRef] [PubMed]
- Daly, R.I.; Ho, L.; Brookes, J.D. Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. Environ. Sci. Technol. 2007, 41, 4447–4453. [Google Scholar] [CrossRef]
- Matthijs, H.C.P.; Visser, P.M.; Reeze, B.; Meeuse, J.; Slot, P.C.; Wijn, G.; Talens, R.; Huisman, J. Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Res. 2012, 46, 1460–1472. [Google Scholar] [CrossRef]
- Foo, S.C.; Chapman, I.J.; Hartnell, D.M.; Turner, A.D.; Franklin, D.J. Effects of H2O2 on growth, metabolic activity and membrane integrity in three strains of Microcystis aeruginosa. Environ. Sci. Pollut. Res. 2020, 27, 38916–38927. [Google Scholar] [CrossRef]
- Luukkonen, T.; Teeriniemi, J.; Prokkola, H.; Rämö, J.; Lassi, U. Chemical aspects of peracetic acid based wastewater disinfection. Water Sa 2014, 40, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Almuhtaram, H.; Hofmann, R. Evaluation of ultraviolet/peracetic acid to degrade M. aeruginosa and microcystins-LR and-RR. J. Hazard. Mater. 2022, 424, 127357. [Google Scholar] [CrossRef]
- Wang, H.-Q.; Mao, T.-G.; Xi, B.-D.; Zhang, L.-Y.; Zhou, Q.-H. KMnO4 pre-oxidation for Microcystis aeruginosa removal by a low dosage of flocculant. Ecol. Eng. 2015, 81, 298–300. [Google Scholar] [CrossRef]
- Barešová, M.; Načeradská, J.; Novotná, K.; Čermáková, L.; Pivokonský, M. The impact of preozonation on the coagulation of cellular organic matter produced by Microcystis aeruginosa and its toxin degradation. J. Environ. Sci. 2020, 98, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Kormas, K.A.; Lymperopoulou, D.S. Cyanobacterial toxin degrading bacteria: Who are they? Biomed. Res. Int. 2013, 2013, 463894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, H.; Golden, S.S. A new circadian class 2 gene, opcA, whose product is important for reductant production at night in Synechococcus elongatus PCC 7942. J. Bacteriol. 2000, 182, 6214–6221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Xu, H.; Pei, H.; Jin, Y.; Li, H.; Ma, C. Worse than cell lysis: The resilience of Oscillatoria sp. during sludge storage in drinking water treatment. Water Res. 2018, 142, 405–414. [Google Scholar] [CrossRef]
- Pimentel, J.S.; Giani, A. Microcystin production and regulation under nutrient stress conditions in toxic microcystis strains. Appl. Environ. Microbiol. 2014, 80, 5836–5843. [Google Scholar] [CrossRef] [Green Version]
- Schatz, D.; Keren, Y.; Vardi, A.; Sukenik, A.; Carmeli, S.; Börner, T.; Dittmann, E.; Kaplan, A. Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ. Microbiol. 2007, 9, 965–970. [Google Scholar] [CrossRef]
- Chow, C.W.K.; Drikas, M.; House, J.; Burch, M.D.; Velzeboer, R.M.A. The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Res. 1999, 33, 3253–3262. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Drinking Water Treatment Plant Residuals Management Technical Report, Summary of Residuals Generation, Treatment, and Disposal at Large Community Water Systems; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2011; p. 378.
- Turner, T.; Wheeler, R.; Stone, A.; Oliver, I. Potential Alternative Reuse Pathways for Water Treatment Residuals: Remaining Barriers and Questions—A Review. Water Air Soil Pollut. 2019, 230, 227. [Google Scholar] [CrossRef] [Green Version]
- Qrenawi, L.I.; Rabah, F.K.J. Sludge management in water treatment plants: Literature review. Int. J. Environ. Waste Manag. 2021, 27, 93. [Google Scholar] [CrossRef]
- Ahmad, T.; Ahmad, K.; Alam, M. Characterization of Water Treatment Plant’s Sludge and its Safe Disposal Options. Procedia Environ. Sci. 2016, 35, 950–955. [Google Scholar] [CrossRef]
- Jung, K.W.; Hwang, M.J.; Park, D.S.; Ahn, K.H. Comprehensive reuse of drinking water treatment residuals in coagulation and adsorption processes. J. Environ. Manag. 2016, 181, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chen, T.; Xu, R.; He, L.; Cui, F. Impact of recycling alum sludge on coagulation of low-turbidity source waters. Desalination Water Treat. 2015, 57, 6732–6739. [Google Scholar] [CrossRef]
- Suman, A.; Ahmad, T.; Ahmad, K. Dairy wastewater treatment using water treatment sludge as coagulant: A novel treatment approach. Environ. Dev. Sustain. 2017, 20, 1615–1625. [Google Scholar] [CrossRef]
- Chen, W.; Song, L.; Gan, N.; Li, L. Sorption, degradation and mobility of microcystins in Chinese agriculture soils: Risk assessment for groundwater protection. Environ. Pollut. 2006, 144, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Clemente, A.; Wilson, A.; Oliveira, S.; Menezes, I.; Gois, A.; Capelo-Neto, J. The role of hydraulic conditions of coagulation and flocculation on the damage of cyanobacteria. Sci. Total Environ. 2020, 740, 139737. [Google Scholar] [CrossRef] [PubMed]
- Pestana, C.J.; Capelo-Neto, J.; Lawton, L.; Oliveira, S.; Carloto, I.; Linhares, H.P. The effect of water treatment unit processes on cyanobacterial trichome integrity. Sci. Total Environ. 2019, 659, 1403–1414. [Google Scholar] [CrossRef] [PubMed]
- Pei, H.; Xu, H.; Wang, J.; Jin, Y.; Xiao, H.; Ma, C.; Sun, J.; Li, H. 16S rRNA Gene amplicon sequencing reveals significant changes in microbial compositions during cyanobacteria-laden drinking water sludge storage. Environ. Sci. Technol. 2017, 51, 12774–12783. [Google Scholar] [CrossRef]
- Chorus, I.; Welker, M. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021; p. 859. [Google Scholar]
- Chorus, I.; Bartram, J. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management; WHO: London, UK; New York, NY, USA, 1999. [Google Scholar]
- Ellis, D. Guide D’intervention Pour les Propriétaires, les Exploitants ou les Concepteurs de Stations de Production D’eau Potablemunicipales aux Prises avec une Problématique de Fleurs D’eau de Cyanobactéries; Ministère du Développement durable, Environnement et Parcs: Québec, QC, Canada, 2009; p. 51.
- America Water Works Association (AWWA). Algae Source to Treatment. Manual of Water Supply Practices—M57, 1st ed.; America Water Works Association (AWWA): Denver, CO, USA, 2010; p. 481. [Google Scholar]
- Hawkins, P.R.; Holliday, J.; Kathuria, A.; Bowling, L. Change in cyanobacterial biovolume due to preservation by Lugol’s Iodine. Harmful Algae 2005, 4, 1033–1043. [Google Scholar] [CrossRef]
- Park, J.; Kim, Y.; Kim, M.; Lee, W.H.; Park, J.; Kim, Y.; Kim, M.; Lee, W.H. A novel method for cell counting of Microcystis colonies in water resources using a digital imaging flow cytometer and microscope. Environ. Eng. Res. 2018, 24, 397–403. [Google Scholar] [CrossRef]
- Zamyadi, A.; McQuaid, N.; Prévost, M.; Dorner, S. Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources. J. Environ. Monit. 2012, 14, 579–588. [Google Scholar] [CrossRef]
- McQuaid, N.; Zamyadi, A.; Prévost, M.; Bird, D.F.; Dorner, S. Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source. J. Environ. Monit. 2011, 13, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Gregor, J.; Marsalek, B.; Sipkova, H. Detection and estimation of potentially toxic cyanobacteria in raw water at the drinking water treatment plant by in vivo fluorescence method. Water Res. 2007, 41, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Zamyadi, A.; Choo, F.; Newcombe, G.; Stuetz, R.; Henderson, R.K. A review of monitoring technologies for real-time management of cyanobacteria: Recent advances and future direction. TrAC Trends Anal. Chem. 2016, 85, 83–96. [Google Scholar] [CrossRef]
- Bowling, L.C.; Zamyadi, A.; Henderson, R.K. Assessment of in situ fluorometry to measure cyanobacterial presence in water bodies with diverse cyanobacterial populations. Water Res. 2016, 105, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Thomson-Laing, G.; Puddick, J.; Wood, S.A. Predicting cyanobacterial biovolumes from phycocyanin fluorescence using a handheld fluorometer in the field. Harmful Algae 2020, 97, 101869. [Google Scholar] [CrossRef] [PubMed]
- Cotterill, V.; Hamilton, D.P.; Puddick, J.; Suren, A.; Wood, S.A. Phycocyanin sensors as an early warning system for cyanobacteria blooms concentrations: A case study in the Rotorua lakes. N. Z. J. Mar. Freshw. Res. 2019, 53, 555–570. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Cyanobacterial Toxins: Microcystin-LR in Drinking-Water (Background Document for Development of WHO Guidelines for Drinking Water Quality); WHO/SDE/WSH/03.04/57; 2nd Edition Addendum to Volume 2; Health Critiria and Other Supporting Information; WHO: Geneva, Switzerland, 1998; p. 18. [Google Scholar]
- WHO. Cyanobacterial Toxins: Microcystins. Background Document for Development of WHO Guidelines for Drinking-Water Quality and Guidelines for Safe Recreational Water Environments; WHO/HEP/ECH/WSH/2020.6; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Health Canada; Federal-Provincial-Territorial Commitee on Drinking Water. Cyanobacterial toxins in drinking water. Document for public consultation. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document. 2016; 177. [Google Scholar]
- Ridal, J.; Brownlee, B.; McKenna, G.; Levac, N. Removal of taste and odour compounds by conventional granular activated carbon filtration. Water Qual. Res. J. Can. 2001, 36, 43–54. [Google Scholar] [CrossRef]
- Smith, K.M. Characterization of Activated Carbon for Taste and Odour Control. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2011. [Google Scholar]
- Hobson, P.; Fazekas, C.; House, J.; Daly, R.I.; Kildea, T.; Giglio, S.; Burch, M.; Lin, T.-F.; Chen, Y.-M. Tastes and Odours in Reservoirs; Water Quality Research Australia: Adelaide, Australia, 2010; p. 98. [Google Scholar]
- Kim, K.T.; Park, Y.-G. Geosmin and 2-MIB Removal by Full-Scale Drinking Water Treatment Processes in the Republic of Korea. Water 2021, 13, 628. [Google Scholar] [CrossRef]
- Zamyadi, A.; Henderson, R.; Stuetz, R.; Hofmann, R.; Ho, L.; Newcombe, G. Fate of geosmin and 2-methylisoborneol in full-scale water treatment plants. Water Res. 2015, 83, 171–183. [Google Scholar] [CrossRef]
- Sanseverino, I.; Conduto António, D.; Loos, R.; Lettieri, T. Cyanotoxins: Methods and Approaches for Their Analysis and Detection; EUR 28624; European Commission: Brussels, Belgium, 2017; p. 70. [Google Scholar]
- Picardo, M.; Filatova, D.; Nuñez, O.; Farré, M. Recent advances in the detection of natural toxins in freshwater environments. TrAC Trends Anal. Chem. 2019, 112, 75–86. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Method 546: Determination of Total Microcystins and Nodularins in Drinking Water and Ambient Water by Adda Enzyme-Linked Immunosorbent Assay; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2016. [Google Scholar]
- Young, W.F.; Horth, H.; Crane, R.; Ogden, T.; Arnott, M. Taste and odour threshold concentrations of potential potable water contaminants. Water Res. 1996, 30, 331–340. [Google Scholar] [CrossRef]
- Watson, S.B. Aquatic taste and odor: A primary signal of drinking-water integrity. J. Toxicol. Environ. Health Part A 2004, 67, 1779–1795. [Google Scholar] [CrossRef] [PubMed]
- Wert, E.C.; Korak, J.A.; Trenholm, R.A.; Rosario-Ortiz, F.L. Effect of oxidant exposure on the release of intracellular microcystin, MIB, and geosmin from three cyanobacteria species. Water Res. 2014, 52, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Chong, S.; Lee, H.; An, K.-G. Predicting Taste and Odor Compounds in a Shallow Reservoir Using a Three–Dimensional Hydrodynamic Ecological Model. Water 2018, 10, 1396. [Google Scholar] [CrossRef] [Green Version]
- Bernhardt, H.; Clasen, J. Eutrophication control as an essential condition for an optimum disinfection. Water Supply 1993, 11, 89–108. [Google Scholar]
- Agence Française de Sécurité Sanitaire des Aliments (AFSSA); Agence Française de Sécurité Sanitaire de l’Environnement et du Travail (AFSSET). Avis relatif à l’évaluation des risques sanitaires liés à la présence de cyanobactéries dans les plans et cours d’eau destinés à la baignade et/ou à d’autres usages, Saisine AFSSET no 2004/008; France, Juillet. 2006; 2.
- Pietsch, J.; Bornmann, K.; Schmidt, W. Relevance of intra- and extracellular cyanotoxins for drinking water treatment. Acta Hydrochim. Hydrobiol. 2002, 30, 7–15. [Google Scholar] [CrossRef]
- Newcombe, G.; Brooke, S.; Cullum, P.; Nicholson, B.; Slyman, N. Oxidation, adsorption and biological treatment for algal toxin removal. In Proceedings of the American Water Works Association-Water Quality Technology Conference Seattle, Washington, DC, USA, 10–14 November 2002; p. 5. [Google Scholar]
- Newcombe, G. Removal of Algal Toxins from Drinking Water Using Ozone and GAC; 90904; American Water Works Association Research Foundation and American Water Works Association: Denver, CO, USA, 2002; p. 133. [Google Scholar]
- Newcombe, G.; Drikas, M. MIB removal: Adsorption capacity and kinetics of eight activated carbons. In Proceedings of the Australian Water and Wastewater Association WaterTECH Conference, Sydney, Australia, 27–28 May 1996; pp. 615–620. [Google Scholar]
- United States Environmental Protection Agency (USEPA). Cyanobacteria and Cyanotoxins: Information for Drinking Water Systems; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2019; p. 11.
- Lusty, M.W.; Gobler, C.J. The efficacy of hydrogen peroxide in mitigating cyanobacterial blooms and altering microbial communities across four lakes in NY, USA. Toxins 2020, 12, 428. [Google Scholar] [CrossRef]
Source of Sludge | Scale | Treatment Agent/Dosage | Contact Time | Initial Conditions | Cell Count Reduction | Metabolite Reduction | Reference |
---|---|---|---|---|---|---|---|
Sludge thickener | Laboratory | 3 mg/L KMnO4 | 2 h | 5.0 × 104 cells/mL Pseudanabaena | >95% | - | [57] |
Laboratory | 10–100 mg/L PAC | 1 h | 100/L MIB | - | 42–100% MIB | ||
Full-scale | 10 mg/L KMnO4 | 15 h (max.) | 4.3 × 105 cells/mL (natural blooms) | 13–98% total and Pseudanabaena cell counts | - | ||
Full-scale | 10 mg/L KMnO4 20 mg/L PAC | KMnO4: 24–72 h PAC: 1 h | 3.7 × 105 cells/mL 120 ng/L MIB (natural blooms) | 40–52% in total and Pseudanabaena cell counts | 20–22% MIB | ||
Sludge holding tank | Laboratory | 5 mg/L KMnO4 | 60 min | 2.3–2.7 × 106 cells/mL 63–161 ng/L MCs (natural blooms) | 46–55% total cell counts | 0.3–24% MCs | [59] |
10 mg/L KMnO4 | 59–62% total cell counts | 2–32% MCs | |||||
10 mg/L H2O2 | 24 h | 58% total cell counts | 27% MCs | ||||
20 mg/L H2O2 | 77% total cell counts | 41% MCs | |||||
Full-scale (shock oxidation) | 10 mg/L KMnO4 | 24–72 h | 2.4 × 106 cells/mL 88–1083 ng/L MCs (natural blooms) | 24–43% total cell counts (31% cell count increase after 48 h in one sample) | MCs: 3–25% decrease in one sample 37–589% increase in one sample |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalili, F.; Moradinejad, S.; Zamyadi, A.; Dorner, S.; Sauvé, S.; Prévost, M. Evidence-Based Framework to Manage Cyanobacteria and Cyanotoxins in Water and Sludge from Drinking Water Treatment Plants. Toxins 2022, 14, 410. https://doi.org/10.3390/toxins14060410
Jalili F, Moradinejad S, Zamyadi A, Dorner S, Sauvé S, Prévost M. Evidence-Based Framework to Manage Cyanobacteria and Cyanotoxins in Water and Sludge from Drinking Water Treatment Plants. Toxins. 2022; 14(6):410. https://doi.org/10.3390/toxins14060410
Chicago/Turabian StyleJalili, Farhad, Saber Moradinejad, Arash Zamyadi, Sarah Dorner, Sébastien Sauvé, and Michèle Prévost. 2022. "Evidence-Based Framework to Manage Cyanobacteria and Cyanotoxins in Water and Sludge from Drinking Water Treatment Plants" Toxins 14, no. 6: 410. https://doi.org/10.3390/toxins14060410
APA StyleJalili, F., Moradinejad, S., Zamyadi, A., Dorner, S., Sauvé, S., & Prévost, M. (2022). Evidence-Based Framework to Manage Cyanobacteria and Cyanotoxins in Water and Sludge from Drinking Water Treatment Plants. Toxins, 14(6), 410. https://doi.org/10.3390/toxins14060410