Toxic Responses of Different Shellfish Species after Exposure to Prorocentrum lima, a DSP Toxins Producing Dinoflagellate
Abstract
:1. Introduction
2. Results
2.1. OA Content in the Digestive Gland Tissues of Different Bivalves Exposed to Prorocentrum lima
2.2. Morphological Changes in the Digestive Glands of the Three Bivalves after Prorocentrum lima Exposure
2.3. Expression Changes of Nrf2 Signal Pathway and Related Genes in Digestive Gland Tissues of Different Shellfish Exposed to Prorocentrum lima
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Acclimatization and Algal Production Phases
5.2. Experimental Design
5.3. Determination of the Total OA-eq Content and Free OA-eq Content
5.4. qPCR
5.5. Histological Examination
5.6. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farabegoli, F.; Blanco, L.; Rodríguez, L.P.; Vieites, J.M.; Cabado, A.G. Phycotoxins in marine shellfish: Origin, occurrence and effects on humans. Mar. Drugs 2018, 16, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prego-Faraldo, M.V.; Martínez, L.; Méndez, J. RNA-Seq analysis for assessing the early response to DSP toxins in Mytilus galloprovincialis digestive gland and gill. Toxins 2018, 10, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanessa, V.; María, P.F.; Eduardo, P.; Josefina, M.; Blanca, L. Okadaic acid: More than a diarrheic Toxin. Mar. Drugs 2013, 11, 4328–4349. [Google Scholar]
- Kacem, I.; Bouaïcha, N.; Hajjem, B. Comparison of okadaic acid profiles in mussels and oysters collected in Mediterranean lagoon, Tunisia. Int. J. Biol. 2010, 2, 238. [Google Scholar] [CrossRef] [Green Version]
- Blanco, J. Accumulation of Dinophysis toxins in bivalve molluscs. Toxins 2018, 10, 453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcaillou, C.; Haure, J.; Mondeguer, F.; Courcoux, A.; Dupuy, B.; Pénisson, C. Effect of food supply on the detoxification in the blue mussel, Mytilus edulis, contaminated by diarrhetic shellfish toxins. Aquat. Living Resour. 2010, 23, 255–266. [Google Scholar] [CrossRef]
- Lopes, V.; Costa, P.; Rosa, R. Effects of harmful algal bloom toxins on marine organisms. In Ecotoxicology of Marine Organisms; CRC Press: Boca Raton, FL, USA, 2019; pp. 42–88. [Google Scholar]
- Vale, P.; Botelho, M.J.; Rodrigues, S.M.; Gomes, S.S.; Sampayo, M.A.D.M. Two decades of marine biotoxin monitoring in bivalves from Portugal (1986–2006): A review of exposure assessment. Harmful Algae 2008, 7, 11–25. [Google Scholar] [CrossRef]
- Lindegarth, S.; Torgersen, T.; Lundve, B.; Sandvik, M. Differential retention of okadaic acid (OA) group toxins and pectenotoxins (PTX) in the blue mussel, Mytilus edulis (L.), and European flat oyster, Ostrea edulis (L.). J. Shellfish Res. 2009, 28, 313–323. [Google Scholar] [CrossRef]
- Chi, C.; Giri, S.S.; Jun, J.W.; Kim, S.W.; Kim, H.J.; Kang, J.W.; Park, S.C. Detoxification-and immune-related transcriptomic analysis of gills from bay scallops (Argopecten irradians) in response to algal toxin okadaic acid. Toxins 2018, 10, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Wang, J.; Chen, W.C.; Li, H.Y.; Liu, J.S.; Jiang, T.; Yang, W.D. P-glycoprotein expression in Perna viridis after exposure to Prorocentrum lima, a dinoflagellate producing DSP toxins. Fish Shellfish Immunol. 2014, 39, 254–262. [Google Scholar] [CrossRef]
- Lozano, V.; Martínez-Escauriaza, R.; Pérez-Parallé, M.; Pazos, A.; Sánchez, J. Two novel multidrug resistance associated protein (MRP/ABCC) from the Mediterranean mussel (Mytilus galloprovincialis): Characterization and expression patterns in detoxifying tissues. Can. J. Zool. 2015, 93, 567–578. [Google Scholar] [CrossRef]
- Wei, X.M.; Lu, M.Y.; Duan, G.F.; Li, H.Y.; Liu, J.S.; Yang, W.D. Responses of CYP450 in the mussel Perna viridis after short-term exposure to the DSP toxins-producing dinoflagellate Prorocentrum lima. Ecotoxicol. Environ. Saf. 2019, 176, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Wei, X.M.; Weng, H.W.; Li, H.Y.; Liu, J.S.; Yang, W.D. Expression profile of eight glutathione S-transferase genes in Crassostrea ariakensis after exposure to DSP toxins producing dinoflagellate Prorocentrum lima. Toxicon 2015, 105, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.; Giri, S.S.; Jun, J.W.; Kim, H.J.; Kim, S.W.; Yun, S.; Park, S.C. Effects of algal toxin okadaic acid on the non-specific immune and antioxidant response of bay scallop (Argopecten irradians). Fish Shellfish Immunol. 2017, 65, 111–117. [Google Scholar] [CrossRef]
- Dou, M.; Jiao, Y.h.; Zheng, J.w.; Zhang, G.; Li, H.y.; Liu, J.s.; Yang, W.d. De novo transcriptome analysis of the mussel Perna viridis after exposure to the toxic dinoflagellate Prorocentrum lima. Ecotoxicol. Environ. Saf. 2020, 192, 110265. [Google Scholar] [CrossRef]
- Martínez-Escauriaza, R.; Lozano, V.; Pérez-Parallé, M.L.; Blanco, J.; Sánchez, J.L.; Pazos, A.J. Expression analyses of genes related to multixenobiotic resistance in Mytilus galloprovincialis after exposure to okadaic acid-producing Dinophysis acuminata. Toxins 2021, 13, 614. [Google Scholar] [CrossRef]
- Danielli, N.M.; Trevisan, R.; Mello, D.F.; Fischer, K.; Deconto, V.S.; da Silva Acosta, D.; Bianchini, A.; Bainy, A.C.; Dafre, A.L. Upregulating Nrf2-dependent antioxidant defenses in Pacific oysters Crassostrea gigas: Investigating the Nrf2/Keap1 pathway in bivalves. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2017, 195, 16–26. [Google Scholar] [CrossRef]
- He, Z.B.; Duan, G.F.; Liang, C.Y.; Li, H.Y.; Liu, J.S.; Yang, W.D. Up-regulation of Nrf2-dependent antioxidant defenses in Perna viridis after exposed to Prorocentrum lima. Fish Shellfish Immunol. 2019, 90, 173–179. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, R.C.; Kong, F.Z.; Li, C.; Dai, L.; Chen, Z.F.; Geng, H.X.; Zhou, M.J. Contamination status of lipophilic marine toxins in shellfish samples from the Bohai Sea, China. Environ. Pollut. 2019, 249, 171–180. [Google Scholar] [CrossRef]
- Costa, P.M.; Carreira, S.; Costa, M.H.; Caeiro, S. Development of histopathological indices in a commercial marine bivalve (Ruditapes decussatus) to determine environmental quality. Aquat Toxicol. 2013, 126, 442–454. [Google Scholar] [CrossRef]
- Torgersen, T.; Sandvik, M.; Lundve, B.; Lindegarth, S. Profiles and levels of fatty acid esters of okadaic acid group toxins and pectenotoxins during toxin depuration. Part II: Blue mussels (Mytilus edulis) and flat oyster (Ostrea edulis). Toxicon 2008, 52, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Vale, P: Differential dynamics of dinophysistoxins and pectenotoxins between blue mussel and common cockle: A phenomenon originating from the complex toxin profile of Dinophysis acuta. Toxicon 2004, 44, 123–134. [CrossRef] [PubMed]
- Sheehan, D.; Meade, G.; Foley, V.M.; Dowd, C.A. Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 2001, 360, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Prego-Faraldo, M.; Vieira, L.; Eirin-Lopez, J.; Méndez, J.; Guilhermino, L. Transcriptional and biochemical analysis of antioxidant enzymes in the mussel Mytilus galloprovincialis during experimental exposures to the toxic dinoflagellate Prorocentrum lima. Mar. Environ. Res. 2017, 129, 304–315. [Google Scholar] [CrossRef]
- Buratti, S.; Franzellitti, S.; Poletti, R.; Ceredi, A.; Montanari, G.; Capuzzo, A.; Fabbri, E. Bioaccumulation of algal toxins and changes in physiological parameters in Mediterranean mussels from the North Adriatic Sea (Italy). Environ. Toxicol. 2013, 28, 451–470. [Google Scholar] [CrossRef]
- Keppler, C.; Ringwood, A. Expression of P-glycoprotein in southeastern oysters, Crassostrea virginica. Mar. Environ. Res. 2001, 52, 81–96. [Google Scholar] [CrossRef]
- Rossignoli, A.E.; Fernández, D.; Regueiro, J.; Mariño, C.; Blanco, J. Esterification of okadaic acid in the mussel Mytilus galloprovincialis. Toxicon 2011, 57, 712–720. [Google Scholar] [CrossRef]
- Neves, R.A.; Santiago, T.C.; Carvalho, W.F.; dos Santos Silva, E.; da Silva, P.M.; Nascimento, S.M. Impacts of the toxic benthic dinoflagellate Prorocentrum lima on the brown mussel Perna perna: Shell-valve closure response, immunology, and histopathology. Mar. Environ. Res. 2019, 146, 35–45. [Google Scholar] [CrossRef]
- García-Lagunas, N.; de Jesus Romero-Geraldo, R.; Hernández-Saavedra, N.Y. Changes in gene expression and histological injuries as a result of exposure of Crassostrea gigas to the toxic dinoflagellate Gymnodinium catenatum. J. Mollus. Stud. 2016, 82, 193–200. [Google Scholar]
- Li, Y.Y.; Tian, X.Q.; Lu, Y.N.; Han, Q.H.; Ma, L.Y.; Fan, C.Q. Toxins and other chemical constituents from Prorocentrum lima. Biochem. Syst. Ecol. 2020, 89, 104015. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Pan, L.; Shen, H.; Fu, D.; Fu, B.; Sun, C.; Zheng, L. Separation and purification of two minor typical diarrhetic shellfish poisoning toxins from harmful marine microalgae via combined liquid chromatography with mass spectrometric detection. J. Sep. Sci. 2017, 40, 2906–2913. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, J.; Li, Z.; Wang, Y.; Fu, B.; Han, X.; Zheng, L. Cultivation of the benthic microalga Prorocentrum lima for the production of diarrhetic shellfish poisoning toxins in a vertical flat photobioreactor. Bioresour. Technol. 2015, 179, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Kreuzer, M.P.; O’Sulliva, C.K.; Guilbault, G.G. Development of an ultrasensitive immunoassay for rapid measurement of okadaic acid and its isomers. Anal. Chem. 1999, 71, 4198–4202. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.T.; Hansen, P.J.; Krock, B.; Vismann, B. Accumulation, transformation and breakdown of DSP toxins from the toxic dinoflagellate Dinophysis acuta in blue mussels, Mytilus edulis. Toxicon 2016, 117, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Huang, J.H.; Li, M.; Li, H.Y.; Liu, J.S.; Lu, S.; Yang, W.D. Responses of cytochrome P450, GST and MXR in the mussel Perna viridis to the exposure of Aureococcus anophagefferens. Mar. Pollut. Bull. 2020, 161, 111806. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef] [Green Version]
- Reyna, R.G.; Garcia-Lagunas, N.; Yolanda Hernandez-Saavedra, N. Crassostrea gigas exposure to the dinoflagellate Prorocentrum lima : Histological and gene expression effects on the digestive gland. Mar. Environ. Res. 2016, 120, 93–102. [Google Scholar]
- Bignell, J.; Stentiford, G.; Taylor, N.; Lyons, B. Histopathology of mussels (Mytilus sp.) from the Tamar estuary, UK. Mar. Environ. Res. 2011, 72, 25–32. [Google Scholar] [CrossRef]
Species | Exposure Time (h) | Light | Moderate | Severe |
---|---|---|---|---|
Crassostrea gigas | 6 | +(1/5) | −(0/5) | −(0/5) |
96 | +(1/5) | −(0/5) | −(0/5) | |
Mytilus coruscus | 6 | +(1/5) | +(2/5) | −(0/5) |
96 | +(2/5) | +(4/5) | −(0/5) | |
Tegillarca granosa | 6 | +(1/5) | +(1/5) | +(1/5) |
96 | +(2/5) | +(1/5) | +(3/5) |
Gene Name | Primer Sequence | Fragment Size |
---|---|---|
Nrf2 | F: AGAGCAACAGCGACAACAGGAAC | 145 |
R: AGCTTGTGGTGGCATTTGAGGAG | ||
Keap1 | F: ACGGAATCGAGTGGGAGTTGGAG | 80 |
R: AGTTATGGTGAGTCTGCCCCTGAG | ||
SOD | F: GGCCAGCATGGGTTCCATATCC | 109 |
R: CGTCTTCTGGTCCACCATGTTCC | ||
GR | F: GGTCGGGAGGTTTGGCAAGTG | 89 |
R: ACATGTGCCACCCCATTTCCC | ||
ABCG2 | F: CTGGGACCAACAGGAAGTGGAAAG | 149 |
R: TCATCCTGAACCACATAGCCAACC | ||
ABCB1 | F: GATGGCTTCTTTTGGGCAATCTGG | 142 |
R: TGTTGCCAAACGGGTAGTCATAGC | ||
GPx | F: CTACGAGAACGACTGCCGACAC | 150 |
R: TCTTTTGTATGGCTTCCCGTCTGG | ||
GST-ω | F: AAATCGTTAGGTGAGAGGGGAG | 101 |
R: TCTCCACGCATTCAGTTTCG | ||
Tubulin | F: ACCACTGCCATTGCTGAAGCC | 108 |
R: TCCCTCCTCCATACCCTCTCCTAC | ||
18S | F: CTTTCAAATGTCTGCCCTATCAACT | 91 |
R: TCCCGTATTGTTATTTTTCGTCACT | ||
GAPDH | F: GTTGGCAAGGTCATTCCAGCTTTG | 135 |
R: AGCTGCCTTGATTGCGTCATAGC | ||
EF1α | F: TGATGCCCCAGGACACAGAGAC | 88 |
R: ACCAGCAGCAACAATCAGGACAG |
Gene Name | Primer Sequence | Fragment Size |
---|---|---|
Nrf2 | F: CATCTGAGTGTGCTGGAGAACGAC | 89 |
R: ATGGGCTGATGGGAAGGTGAGG | ||
Keap1 | F: CGGCTATGATGGCAGCAACAGG | 124 |
R: GCCTTCCATTCCGATCACACCA | ||
SOD | F: CTGGACGGCACTTTAACCCCTTC | 92 |
R: GCCAGCGGTGACATTACCAAGG | ||
GR | F: TCAGCCAAGCGGTTACAGACAATC | 106 |
R: TCCAGTGTTAGGGTGCCGTCTC | ||
ABCG2 | F: CCCTCCGCCTTCCATCAAAACTG | 143 |
R: TTTACGCTCTCCTCCAGACACTCC | ||
ABCB1 | F: GCGTCATCATCGGCTTCGTCTAC | 110 |
R: AACTCCCTCCAACAACTGCATCTG | ||
GST-ω | F: TGAGTTCACCACCGCAAGAGAAAC | 140 |
R: CCACAGCAGGAAGTCTAGCATCTG | ||
GPx | F: TGTCATCAACCAGCAGGGTAAACC | 102 |
R: CCACGGCAGAGTGAGGCAATAATG | ||
EF1α | F: TGCCACACTGCTCACATTGCC | 150 |
R: AACACACATAGGCTTGCTGGGAAC | ||
RPL7 | F: GCTTCCGAGAGTGCCTGAAACC | 91 |
R: TTTGTTTTCGAGCTTTGCCTTGGC | ||
18S | F: ACACTGGACAACAAACTCCGTGAG | 120 |
R: TCTTCCTGTGGTCTTTGTGTGCTG | ||
GAPDH | F: AGGATTGGCGTGGTGGTAGAGG | 82 |
R: ATGACCTTTCCGACAGCTTTGGC | ||
α-tubulin | F: CCGCCAACTCTTCCATCCAGAAC | 105 |
R: ACCAAGTCCACGATCTCCTTCCC |
Gene Name | Primer Sequence | Fragment Size |
---|---|---|
Nrf2 | F: AGAGCAACAGCGACAACAGGAAC | 105 |
R: AGCTTGTGGTGGCATTTGAGGAG | ||
SOD | F: GGCCAGCATGGGTTCCATATCC | 93 |
R: CGTCTTCTGGTCCACCATGTTCC | ||
ABCB1 | F: GATGGCTTCTTTTGGGCAATCTGG | 102 |
R: TGTTGCCAAACGGGTAGTCATAGC | ||
GPx | F: CGTTCCTAAGTTCCAGATGTTTTG | 116 |
R: AACATCTTCGTTCTTCAGTGGTG | ||
GST-ω | F: TTGGGAGATGGAAAGTTGCG | 89 |
R: TGCCCGTCTGTAAGGGTCTG | ||
Keap1 | F: TGAATGTTATGAGCCCGACAAGGATG | 80 |
R: CTCCTACACCAACTCCACCTTCATG | ||
ABCG2 | F: GCTGTTGCTAACTTGTGTATTGCTCTC | 113 |
R: CTTGCCCATTTCAGCCATTGTAACC | ||
18S | F: GACCTCGGTTCTATTTTG | 88 |
R: GGTATCTGATCGTCTTCG | ||
rps23 | F: TCACAGCCTTCGTCCCTAA | 102 |
R: CCTTTGAACAGAGCCCAGA | ||
EF1α | F: CACCACGAGTCTCTCCCTGA | 110 |
R: GCTGTCACCACAGACCATTCC | ||
α-tubulin | F: TTGCAACCATCAAGACCAAG | 105 |
R: TGCAGACGGCTCTCTGT | ||
GAPDH | F: CCGCCATTAAAGCAGCCTCTGAG | 98 |
R: ACTCCTGTTGTCTCCACGGA AATC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, M.-H.; Li, D.-W.; Cai, Q.-D.; Jiao, Y.-H.; Liu, Y.; Li, H.-Y.; Yang, W.-D. Toxic Responses of Different Shellfish Species after Exposure to Prorocentrum lima, a DSP Toxins Producing Dinoflagellate. Toxins 2022, 14, 461. https://doi.org/10.3390/toxins14070461
Ye M-H, Li D-W, Cai Q-D, Jiao Y-H, Liu Y, Li H-Y, Yang W-D. Toxic Responses of Different Shellfish Species after Exposure to Prorocentrum lima, a DSP Toxins Producing Dinoflagellate. Toxins. 2022; 14(7):461. https://doi.org/10.3390/toxins14070461
Chicago/Turabian StyleYe, Mei-Hua, Da-Wei Li, Qiu-Die Cai, Yu-Hu Jiao, Yang Liu, Hong-Ye Li, and Wei-Dong Yang. 2022. "Toxic Responses of Different Shellfish Species after Exposure to Prorocentrum lima, a DSP Toxins Producing Dinoflagellate" Toxins 14, no. 7: 461. https://doi.org/10.3390/toxins14070461
APA StyleYe, M. -H., Li, D. -W., Cai, Q. -D., Jiao, Y. -H., Liu, Y., Li, H. -Y., & Yang, W. -D. (2022). Toxic Responses of Different Shellfish Species after Exposure to Prorocentrum lima, a DSP Toxins Producing Dinoflagellate. Toxins, 14(7), 461. https://doi.org/10.3390/toxins14070461