Deep Brain Stimulation for Focal or Segmental Craniocervical Dystonia in Patients Who Have Failed Botulinum Neurotoxin Therapy—A Narrative Review of the Literature
Abstract
:1. Introduction
2. Results
2.1. Current Evidence from Meta-Analyses
2.2. Overview of Selected Trials of DBS for Focal or Segmental Craniocervical Dystonia in Patients with BoNT Failure
Study | Patients | BoNT | Protocol | DBS Site | Motor Endpoint | Results |
---|---|---|---|---|---|---|
Kupsch 2006 [18] | 24 GD 16 SD | 14 NR | SC RD DB | GPi | BFMDRS | −15.8 ± 14.1 |
movement | vs. −1.4 ± 3.8 | |||||
3 mo. | p < 0.001 | |||||
Kiss 2007 [26] | 10 CD | 10 SNR | PS SB | GPi | TWSTRS | 14.7 ± 4.2 |
severity | to 8.4 ± 4.4 | |||||
12 mo. | p = 0.003 | |||||
Ostrem 2007 [27] | 6 MS | 4 NR | PS | GPi | BFMDRS | 22 ± 8.3 |
movement | to 6.1 ± 4.2 | |||||
6 mo. | p < 0.028 | |||||
Pretto 2008 [28] | 4 CD | 4 NR | PS SB | GPi | TWSTRS | 12.8 |
severity | to 7.5 | |||||
6 mo. | (SD and p: n/a) | |||||
Jeong 2009 [29] | 6 CD | 6 NR | RS | GPi | TWSTRS | 60.5 ± 3.6 |
total | to 21.1 ± 13.2 | |||||
3 mo. | p = 0.016 | |||||
Sensi 2009 [30] | 11 SD (9 CD + MS) | 11 NR | SB | GPi | BFMDRS | 36.6 ± 12.7 |
movement | to 23.3 ± 10.7 | |||||
6 mo. | p < 0.0001 | |||||
Ghang 2010 [31] | 11 MS | 11 NR | RS | GPi | BRMDRS | 24.5 ± 5.9 |
movement | to 8.9 ± 7.7 | |||||
3 mo. | p < 0.001 | |||||
Ostrem 2011 [32] | 9 CD | 8 SNR | PS SB | STN | TWSTRS | 53.1 ± 2.6 |
total | to 29.6 ± 5.5 | |||||
12 mo. | p < 0.001 | |||||
Reese 2011 [33] | 12 MS | 9 NR | RS SB | GPi | BFMDRS | 21.4 ± 3.2 |
movement | to 12.4 ± 4.3 | |||||
3-6 mo. | p < 0.001 | |||||
Skogseid 2011 [34] | 8 CD | 8 SNR | PS SB | GPi | TWSTRS | 62 (60–70) |
total | to 27 (5–24) | |||||
6 mo. | p < 0.05 | |||||
Schjerling 2013 [35] | 4 GD 7 CD 1MF | 2 NR | CO RD DB | GPi + STN | BFMDRS | GPi: −9.1 ± 6.7 |
movement | STN: −13.8 ± 4.2 | |||||
6 mo. | p = 0.08 (GPi vs. STN) | |||||
p < 0.05 (GPi + STN) | ||||||
Sobstyl 2014 [36] | 6 MS | 6 NR | PS | GPi | BFMDRS | 23.7 ± 6.7 |
movement | to 8.7 ± 2.5 | |||||
3 mo. | p = 0.028 | |||||
Volkmann 2014 [17] | 62 CD | 55 SNR 6 PNR | SC RM DB | GPi | TWSTRS severity | −5.1 ± 5.1 |
vs. −1.3 ± 2.4 | ||||||
3 mo. | p = 0.0024 | |||||
Horisawa 2018 [37] | 16 MS | 10 NR | SB | GPi | BFMDRS | 15.5 (11.8–22.0) |
movement | to 2.5 (1.4–7.5) | |||||
3 mo. | p < 0.001 | |||||
Yin 2022 [38] | 9 CD | 4 NR | RS | STN | TWSTRS | 47.9 ± 9.5 |
total | to 7.3 ± 16.0 | |||||
12 mo. | p = 0.008 |
2.3. Safety and Tolerability Aspects
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Albanese, A.; Bhatia, K.; Bressman, S.B.; DeLong, M.R.; Fahn, S.; Fung, V.S.; Hallett, M.; Jankovic, J.; Jinnah, H.A.; Klein, C.; et al. Phenomenology and classification of dystonia: A consensus update. Mov. Disord. 2013, 28, 863–873. [Google Scholar] [CrossRef]
- Schirinzi, T.; Sciamanna, G.; Mercuri, N.B.; Pisani, A. Dystonia as a network disorder: A concept in evolution. Curr. Opin. Neurol. 2018, 31, 498–503. [Google Scholar] [CrossRef]
- Stamelou, M.; Edwards M, J.; Hallett, M.; Bhatia, K.P. The non-motor syndrome of primary dystonia: Clinical and pathophysiological implications. Brain 2012, 135 Pt. 6, 1668–1681. [Google Scholar] [CrossRef]
- Junker, J.; Berman, B.D.; Hall, J.; Wahba, D.W.; Brandt, V.; Perlmutter, J.S.; Jankovic, J.; A Malaty, I.; Shukla, A.W.; Reich, S.G.; et al. Quality of life in isolated dystonia: Non-motor manifestations matter. J. Neurol. Neurosurg. Psychiatry 2021, 92, 573. [Google Scholar] [CrossRef] [PubMed]
- Centen, L.M.; van Egmond, M.E.; Tijssen, M.A.J. New developments in diagnostics and treatment of adult-onset focal dystonia. Curr. Opin. Neurol. 2023, 36, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Tsui, J.; Stoessl, A.J.; Eisen, A.; Calne, S.; Calne, D. Double-blind study of botulinum toxin in spasmodic torticollis. Lancet 1986, 2, 245–247. [Google Scholar] [CrossRef]
- Elston, J.S.; Russell, R.W. Effect of treatment with botulinum toxin on neurogenic blepharospasm. Br. Med. J. Clin. Res. Ed. 1985, 290, 1857–1859. [Google Scholar] [CrossRef] [PubMed]
- Dressler, D.; Altavista, M.C.; Altenmueller, E.; Bhidayasiri, R.; Bohlega, S.; Chana, P.; Chung, T.M.; Colosimo, C.; Fheodoroff, K.; Garcia-Ruiz, P.J.; et al. Consensus guidelines for botulinum toxin therapy: General algorithms and dosing tables for dystonia and spasticity. J. Neural. Transm. 2021, 128, 321–335. [Google Scholar] [CrossRef]
- Erro, R.; Picillo, M.; Pellecchia, M.T.; Barone, P. Improving the Efficacy of Botulinum Toxin for Cervical Dystonia: A Scoping Review. Toxins 2023, 15, 391. [Google Scholar] [CrossRef]
- Jinnah, H.A.; Comella, C.L.; Perlmutter, J.; Lungu, C.; Hallett, M.; The Dystonia Coalition Investigators. Longitudinal studies of botulinum toxin in cervical dystonia: Why do patients discontinue therapy? Toxicon 2018, 147, 89–95. [Google Scholar] [CrossRef]
- Kessler, K.R.; Skutta, M.; Benecke, R.; The German Dystonia Study Group. Long-term treatment of cervical dystonia with botulinum toxin A: Efficacy, safety, and antibody frequency. German Dystonia Study Group. J. Neurol. 1999, 246, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Rahman, E.M.; Banerjee, P.S.M.; Asghar, A.D.; Gupta, N.K.M.; Mosahebi, A.M. Botulinum Toxin Type A Immunogenicity across Multiple Indications: An Overview Systematic Review. Plast. Reconstr. Surg. 2022, 149, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Bellows, S.; Jankovic, J. Immunogenicity Associated with Botulinum Toxin Treatment. Toxins 2019, 11, 491. [Google Scholar] [CrossRef] [PubMed]
- Abu-Hadid, O.; Jimenez-Shahed, J. An overview of the pharmacotherapeutics for dystonia: Advances over the past decade. Expert. Opin. Pharmacother. 2022, 23, 1927–1940. [Google Scholar] [CrossRef]
- Albanese, A.; Asmus, F.; Bhatia, K.P.; Elia, A.E.; Elibol, B.; Filippini, G.; Gasser, T.; Krauss, J.K.; Nardocci, N.; Newton, A.; et al. EFNS guidelines on diagnosis and treatment of primary dystonias. Eur. J. Neurol. 2011, 18, 5–18. [Google Scholar] [CrossRef]
- Filip, P.; Jech, R.; Fečíková, A.; Havránková, P.; Růžička, F.; Mueller, K.; Urgošík, D. Restoration of functional network state towards more physiological condition as the correlate of clinical effects of pallidal deep brain stimulation in dystonia. Brain Stimul. 2022, 15, 1269–1278. [Google Scholar] [CrossRef]
- Volkmann, J.; Mueller, J.; Deuschl, G.; Kühn, A.A.; Krauss, J.K.; Poewe, W.; Timmermann, L.; Falk, D.; Kupsch, A.; Kivi, A.; et al. Pallidal neurostimulation in patients with medication-refractory cervical dystonia: A randomised, sham-controlled trial. Lancet Neurol. 2014, 13, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Kupsch, A.; Benecke, R.; Müller, J.; Trottenberg, T.; Schneider, G.-H.; Poewe, W.; Eisner, W.; Wolters, A.; Müller, J.-U.; Deuschl, G.; et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N. Engl. J. Med. 2006, 355, 1978–1990. [Google Scholar] [CrossRef]
- Vidailhet, M.; Vercueil, L.; Houeto, J.L.; Krystkowiak, P.; Benabid, A.L.; Cornu, P.; Lagrange, C.; Tézenas du Montcel, S.; Dormont, D.; Grand, S.; et al. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N. Engl. J. Med. 2005, 352, 459–467. [Google Scholar] [CrossRef]
- Rodrigues, F.B.; Duarte, G.S.; Prescott, D.; Ferreira, J.; Costa, J. Deep brain stimulation for dystonia. Cochrane Database Syst. Rev. 2019, 1, CD012405. [Google Scholar]
- Consky, E.S. The Toronto Western Spasmodic Torticollis Rating Scale (TWSRTS): Assessment of validity and inter-rater reliability. Neurology 1990, 40, 445. [Google Scholar]
- Burke, R.E.; Fahn, S.; Marsden, C.D.; Bressman, S.B.; Moskowitz, C.; Friedman, J. Validity and reliability of a rating scale for the primary torsion dystonias. Neurology 1985, 35, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zheng, Z.; Yin, Z.; Zhang, J.; Lu, G. Deep Brain Stimulation Treating Dystonia: A Systematic Review of Targets, Body Distributions and Etiology Classifications. Front. Hum. Neurosci. 2021, 15, 757579. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Z.; Mao, Z.; Yu, X. Deep brain stimulation for Meige syndrome: A meta-analysis with individual patient data. J. Neurol. 2019, 266, 2646–2656. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Wang, Y.; Liu, C.; Zhao, B.; Zhang, J.-G.; Hu, W.; Shao, X.; Zhang, K. Deep Brain Stimulation for Craniocervical Dystonia (Meige Syndrome): A Report of Four Patients and a Literature-Based Analysis of Its Treatment Effects. Neuromodulation 2016, 19, 818–823. [Google Scholar] [CrossRef]
- Kiss, Z.H.T.; Doig-Beyaert, K.; Eliasziw, M.; Tsui, J.; Haffenden, A.; Suchowersky, O. The Canadian multicentre study of deep brain stimulation for cervical dystonia. Brain 2007, 130 Pt 11, 2879–2886. [Google Scholar] [CrossRef]
- Ostrem, J.L.; Marks, W.J.; Volz, M.M.; Heath, S.L.; Starr, P.A. Pallidal deep brain stimulation in patients with cranial-cervical dystonia (Meige syndrome). Mov. Disord. 2007, 22, 1885–1891. [Google Scholar] [CrossRef]
- Pretto, T.E.; Dalvi, A.; Kang, U.J.; Penn, R.D. A prospective blinded evaluation of deep brain stimulation for the treatment of secondary dystonia and primary torticollis syndromes. J. Neurosurg. 2008, 109, 405–409. [Google Scholar] [CrossRef]
- Jeong, S.G.; Lee, M.K.; Kang, J.Y.; Jun, S.M.; Lee, W.H.; Ghang, C.G. Pallidal deep brain stimulation in primary cervical dystonia with phasic type: Clinical outcome and postoperative course. J. Korean Neurosurg. Soc. 2009, 46, 346–350. [Google Scholar] [CrossRef]
- Sensi, M.; Cavallo, M.A.; Quatrale, R.; Sarubbo, S.; Biguzzi, S.; Lettieri, C.; Capone, J.G.; Tugnoli, V.; Tola, M.R.; Eleopra, R. Pallidal stimulation for segmental dystonia: Long term follow up of 11 consecutive patients. Mov. Disord. 2009, 24, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- Ghang, J.-Y.; Lee, M.-K.; Jun, S.-M.; Ghang, C.-G. Outcome of pallidal deep brain stimulation in meige syndrome. J. Korean Neurosurg. Soc. 2010, 48, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Ostrem, J.L.; Racine, C.A.; Glass, G.A.; Grace, J.K.; Volz, M.M.; Heath, S.L.; Starr, P.A. Subthalamic nucleus deep brain stimulation in primary cervical dystonia. Neurology 2011, 76, 870–878. [Google Scholar] [CrossRef]
- Reese, R.; Gruber, D.; Schoenecker, T.; Bäzner, H.; Blahak, C.; Capelle, H.H.; Falk, D.; Herzog, J.; Pinsker, M.O.; Schneider, G.H.; et al. Long-term clinical outcome in meige syndrome treated with internal pallidum deep brain stimulation. Mov. Disord. 2011, 26, 691–698. [Google Scholar] [CrossRef]
- Skogseid, I.M.; Ramm-Pettersen, J.; Volkmann, J.; Kerty, E.; Dietrichs, E.; Røste, G.K. Good long-term efficacy of pallidal stimulation in cervical dystonia: A prospective, observer-blinded study. Eur. J. Neurol. 2012, 19, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Schjerling, L.; Hjermind, L.E.; Jespersen, B.; Madsen, F.F.; Brennum, J.; Jensen, S.R.; Løkkegaard, A.; Karlsborg, M. A randomized double-blind crossover trial comparing subthalamic and pallidal deep brain stimulation for dystonia. J. Neurosurg. 2013, 119, 1537–1545. [Google Scholar] [CrossRef]
- Sobstyl, M.; Ząbek, M.; Mossakowski, Z.; Zaczyński, A. Pallidal deep brain stimulation in the treatment of Meige syndrome. Neurol. Neurochir. Pol. 2014, 48, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Horisawa, S.; Ochiai, T.; Goto, S.; Nakajima, T.; Takeda, N.; Kawamata, T.; Taira, T. Long-term outcome of pallidal stimulation for Meige syndrome. J. Neurosurg. 2018, 130, 84–89. [Google Scholar] [CrossRef]
- Yin, F.; Zhao, M.; Yan, X.; Li, T.; Chen, H.; Li, J.; Cao, S.; Guo, H.; Liu, S. Bilateral subthalamic nucleus deep brain stimulation for refractory isolated cervical dystonia. Sci. Rep. 2022, 12, 7678. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef]
- Testa, M.A.; Simonson, D.C. Assessment of quality-of-life outcomes. N. Engl. J. Med. 1996, 334, 835–840. [Google Scholar] [CrossRef]
- Muller, J.; Wissel, J.; Kemmler, G.; Voller, B.; Bodner, T.; Schneider, A.; Wenning, G.K.; Poewe, W. Craniocervical dystonia questionnaire (CDQ-24): Development and validation of a disease-specific quality of life instrument. J. Neurol. Neurosurg. Psychiatry 2004, 75, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Voges, J.; Hilker, R.; Bötzel, K.; Kiening, K.L.; Kloss, M.; Kupsch, A.; Schnitzler, A.; Schneider, G.; Steude, U.; Deuschl, G.; et al. Thirty days complication rate following surgery performed for deep-brain-stimulation. Mov. Disord. 2007, 22, 1486–1489. [Google Scholar] [CrossRef] [PubMed]
- Misra, V.P.; Ehler, E.; Zakine, B.; Maisonobe, P.; Simonetta-Moreau, M.; on behalf of the Interest in CD Group. Factors influencing response to Botulinum toxin type A in patients with idiopathic cervical dystonia: Results from an international observational study. BMJ Open 2012, 2, e000881. [Google Scholar] [CrossRef] [PubMed]
- Martikainen, K.K.; Luukkaala, T.H.; Marttila, R.J. Working capacity and cervical dystonia. Park. Relat. Disord. 2010, 16, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Odorfer, T.M.; Malzahn, U.; Matthies, C.; Heuschmann, P.U.; Volkmann, J. Pallidal neurostimulation versus botulinum toxin injections in the treatment of cervical dystonia: Protocol of a randomized, sham-controlled trial (StimTox-CD). Neurol. Res. Pract. 2019, 1, 2. [Google Scholar] [CrossRef] [PubMed]
Study | Depression | Pain | Quality of Life |
---|---|---|---|
Kupsch, 2006 [18] | BDI | VAS | SF-36 |
p = 0.008 | p < 0.001 | p < 0.001 (P), p = 0.01 (M) | |
Kiss, 2007 [26] | BDI | TWSTRS pain | SF-36 |
p < 0.001 | p < 0.001 | p = 0.003 | |
Ostrem, 2007 [27] | n/a | TWSTRS pain | n/a |
p = 0.08 | |||
Pretto, 2008 [28] | n/a | n/a | GRS |
n/a | |||
Jeong, 2009 [29] | n/a | TWSTRS pain | n/a |
p = 0.006 | |||
Sensi, 2009 [30] | n/a | n/a | n/a |
Ghang, 2010 [31] | n/a | n/a | n/a |
Ostrem, 2011 [32] | BDI | TWSTRS pain | SF-36 |
n.s. | p = 0.005 | p = 0.011 (P), p = 0.028 (M) | |
Reese, 2011 [33] | n/a | n/a | n/a |
Skogseid, 2011 [34] | BDI | TWSTRS pain | SF-36 |
NS | p < 0.05 | p = 0.018–0.028 (M, P, etc.) | |
Schjerling, 2013 [35] | n/a | n/a | SF-36 |
p = 0.01 (P), n.s. (M) | |||
Sobstyl, 2014 [36] | n/a | n/a | n/a |
Volkmann, 2014 [17] | BDI | TWSTRS pain | SF-36 |
p = 0.02 | p = 0.47 | p = 0.27 | |
Horisawa, 2018 [37] | n/a | n/a | n/a |
Yin, 2022 [38] | n/a | TWSTRS pain | SF-36 |
p = 0.008 | p = 0.001–0.008 (M, P, etc.) |
Study | AE Total | SAE Total | Lead Infection | Lead Dislocation | Dysarthria | Dyskinesia | Dystonia Worsening | Depression |
---|---|---|---|---|---|---|---|---|
Kupsch 2006 [18] | 22 | 5 | 4 | 1 | 5 | 5 | 0 | 0 |
Kiss 2007 [26] | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ostrem 2007 [27] | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pretto 2008 [28] | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Jeong 2009 [29] | n/a | n/a | 0 | 0 | 3 | 0 | 1 | 0 |
Sensi 2009 [30] | 6 | 1 | 0 | 1 | 2 | 2 | 0 | 0 |
Ghang 2010 [31] | n/a | 0 | 0 | 0 | + | 0 | 0 | + |
Ostrem 2011 [32] | 39 | 0 | 0 | 0 | 2 | 9 | 0 | 5 |
Reese 2011 [33] | n/a | 0 | 0 | 0 | + | 0 | 0 | 0 |
Skogseid 2011 [34] | n/a | 1 * | 0 | 0 | + | + | 0 | 0 |
Schjerling 2013 [35] | n/a | n/a | 2 | 0 | 0 | 2 | 0 | 3 |
Sobstyl 2014 [36] | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Volkmann 2014 [17] | 41 | 16 | 2 | 2 | 7 | 3 | 3 | 4 |
Horisawa 2018 [37] | n/a | n/a | 0 | 0 | 3 | 5 | 2 | 3 |
Yin 2022 [38] | 17 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odorfer, T.M.; Volkmann, J. Deep Brain Stimulation for Focal or Segmental Craniocervical Dystonia in Patients Who Have Failed Botulinum Neurotoxin Therapy—A Narrative Review of the Literature. Toxins 2023, 15, 606. https://doi.org/10.3390/toxins15100606
Odorfer TM, Volkmann J. Deep Brain Stimulation for Focal or Segmental Craniocervical Dystonia in Patients Who Have Failed Botulinum Neurotoxin Therapy—A Narrative Review of the Literature. Toxins. 2023; 15(10):606. https://doi.org/10.3390/toxins15100606
Chicago/Turabian StyleOdorfer, Thorsten M., and Jens Volkmann. 2023. "Deep Brain Stimulation for Focal or Segmental Craniocervical Dystonia in Patients Who Have Failed Botulinum Neurotoxin Therapy—A Narrative Review of the Literature" Toxins 15, no. 10: 606. https://doi.org/10.3390/toxins15100606
APA StyleOdorfer, T. M., & Volkmann, J. (2023). Deep Brain Stimulation for Focal or Segmental Craniocervical Dystonia in Patients Who Have Failed Botulinum Neurotoxin Therapy—A Narrative Review of the Literature. Toxins, 15(10), 606. https://doi.org/10.3390/toxins15100606