Mycotoxin Occurrence in Milk and Durum Wheat Samples from Tunisia Using Dispersive Liquid–Liquid Microextraction and Liquid Chromatography with Fluorescence Detection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Validation of the DLLME-LC-FLD Method for the Studied Samples
2.1.1. Calibration Curves, Limits of Detection, and Quantification of the DLLME-LC-FLD Method
2.1.2. Precision Study
2.1.3. Recovery Study
2.1.4. Selectivity
2.2. Occurrence of Mycotoxins in Durum Wheat
2.2.1. Occurrence of AFG2
2.2.2. Occurrence of OTA
2.2.3. Distribution of Mycotoxins in Durum Wheat over the Harvest and Storage Seasons
2.2.4. Distribution of Mycotoxins in Durum Wheat in Two Tunisian Regions
2.2.5. Co-Occurrence of Mycotoxins in Durum Wheat
2.3. Occurrence of Mycotoxins in Raw Cow Milk
2.3.1. Distribution of Mycotoxins in Raw Cow Milk in Two Tunisian Regions
2.3.2. Co-Occurrence of Mycotoxins in Raw Cow Milk
2.4. Risk Assessment
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Instruments and Equipment
4.3. Samples
4.4. Sample Preparation
4.5. Chromatographic Separation and Detection
4.6. Risk Assesment
4.6.1. Estimation of the Daily Intake
- C is the concentration of mycotoxins in wheat or milk (ng/kg);
- ADC is the average daily consumption of wheat or milk (kg/person/day);
- BW is the body weight (kg).
4.6.2. Hazard Index (HI)
4.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ben Hassouna, K.; Ben Salah-Abbès, J.; Chaieb, K.; Abbès, S. Mycotoxins occurrence in milk and cereals in North African countries—A review. Crit. Rev. Toxicol. 2022, 52, 619–635. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, R.A.; Jebur, A.B.; Kang, W.; El-Demerdash, F.M. An overview on the major mycotoxins in food products: Characteristics, toxicity, and analysis. J. Future Foods 2022, 2, 91–102. [Google Scholar] [CrossRef]
- IARC. Mycotoxins and human health. In Improving Public Health through Mycotoxin Control; International Agency for Research on Cancer: Lyon, France, 2012; pp. 87–104. [Google Scholar]
- Lee, H.J.; Ryu, D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef] [PubMed]
- Bouatrous, A.; Harbaoui, K.; Karmous, C.; Gargouri, S.; Souissi, A.; Belguesmi, K.; Cheikh Mhamed, H.; Gharbi, M.S.; Annabi, M. Effect of wheat monoculture on durum wheat yield under rainfed sub-humid Mediterranean climate of Tunisia. Agronomy 2022, 12, 1453. [Google Scholar] [CrossRef]
- Bensassi, F.; Zaied, C.; Abid, S.; Hajlaoui, M.R.; Bacha, H. Occurrence of deoxynivalenol in durum wheat in Tunisia. Food Control 2010, 21, 281–285. [Google Scholar] [CrossRef]
- Sharma, S.K. Turkey: Product Specific Support to Wheat Under WTO Regime. In The WTO and Food Security: Implications for Developing Countries; Sharma, S.K., Ed.; Springer: Singapore, 2016; pp. 165–177. [Google Scholar] [CrossRef]
- FAO. Gateway to dairy production and products. In Milk and Milk Products; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/dairy-production-products/production/dairy-animals/en/ (accessed on 1 July 2023).
- GIVLAIT. Suivi Journalier de la Filière Laitière. 2018. Available online: http://www.givlait.com.tn/presentation-de-la-filiere-lait.html (accessed on 1 July 2023).
- Chilaka, C.A.; Obidiegwu, J.E.; Chilaka, A.C.; Atanda, O.O.; Mally, A. Mycotoxin regulatory status in Africa: A decade of weak institutional efforts. Toxins 2022, 14, 442. [Google Scholar] [CrossRef] [PubMed]
- Abbès, S.; Salah-Abbès, J.B.; Bouraoui, Y.; Oueslati, S.; Oueslati, R. Natural occurrence of aflatoxins (B1 and M1) in feed, plasma and raw milk of lactating dairy cows in Beja, Tunisia, using ELISA. Food Addit. Contam. Part B 2012, 5, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Jedidi, I.; Cruz, A.; González-Jaén, M.T.; Said, S. Aflatoxins and ochratoxin A and their Aspergillus causal species in Tunisian cereals. Food Addit. Contam. Part B 2017, 10, 51–58. [Google Scholar] [CrossRef]
- Oueslati, S.; Berrada, H.; Juan-García, A.; Mañes, J.; Juan, C. Multiple mycotoxin determination on Tunisian cereals-based food and evaluation of the population exposure. Food Anal. Methods 2020, 13, 1271–1281. [Google Scholar] [CrossRef]
- Juan, C.; Berrada, H.; Mañes, J.; Oueslati, S. Multi-mycotoxin determination in barley and derived products from Tunisia and estimation of their dietary intake. Food Chem. Toxicol. 2017, 103, 148–156. [Google Scholar] [CrossRef]
- Oueslati, S.; Berrada, H.; Mañes, J.; Juan, C. Presence of mycotoxins in Tunisian infant foods samples and subsequent risk assessment. Food Control 2018, 84, 362–369. [Google Scholar] [CrossRef]
- Santos Pereira, C.; Cunha, S.C.; Fernandes, J.O. Prevalent mycotoxins in animal feed: Occurrence and analytical methods. Toxins 2019, 11, 290. [Google Scholar] [CrossRef] [PubMed]
- Janik, E.; Niemcewicz, M.; Podogrocki, M.; Ceremuga, M.; Gorniak, L.; Stela, M.; Bijak, M. The existing methods and novel approaches in mycotoxins’ detection. Molecules 2021, 26, 3981. [Google Scholar] [CrossRef] [PubMed]
- Tittlemier, S.; Brunkhorst, J.; Cramer, B.; DeRosa, M.; Lattanzio, V.; Malone, R.; Maragos, C.; Stranska, M.; Sumarah, M. Developments in mycotoxin analysis: An update for 2019–2020. World Mycotoxin J. 2021, 14, 3–26. [Google Scholar] [CrossRef]
- Panda, D.; Dash, B.P.; Manickam, S.; Boczkaj, G. Recent advancements in LC-MS based analysis of biotoxins: Present and future challenges. Mass. Spectrom. Rev. 2022, 41, 766–803. [Google Scholar] [CrossRef] [PubMed]
- Vargas Medina, D.A.; Bassolli Borsatto, J.V.; Maciel, E.V.S.; Lanças, F.M. Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. TrAC Trends Anal. Chem. 2021, 135, 116156. [Google Scholar] [CrossRef]
- Ibáñez-Vea, M.; Corcuera, L.A.; Remiro, R.; Murillo-Arbizu, M.T.; González-Peñas, E.; Lizarraga, E. Validation of a UHPLC-FLD method for the simultaneous quantification of aflatoxins, ochratoxin A and zearalenone in barley. Food Chem. 2011, 127, 351–358. [Google Scholar] [CrossRef]
- Hamed, A.M.; Moreno-González, D.; García-Campaña, A.M.; Gámiz-Gracia, L. Determination of aflatoxins in yogurt by dispersive liquid–liquid microextraction and HPLC with photo-induced fluorescence detection. Food Anal. Methods 2017, 10, 516–521. [Google Scholar] [CrossRef]
- Salim, S.A.; Sukor, R.; Ismail, M.N.; Selamat, J. Dispersive liquid–liquid microextraction (DLLME) and LC-MS/MS analysis for multi-mycotoxin in rice bran: Method development, optimization and validation. Toxins 2021, 13, 280. [Google Scholar] [CrossRef]
- Pallarés, N.; Font, G.; Mañes, J.; Ferrer, E. Multimycotoxin LC–MS/MS analysis in tea beverages after dispersive liquid–liquid microextraction (DLLME). J. Agric. Food Chem. 2017, 65, 10282–10289. [Google Scholar] [CrossRef]
- European Commission (EC). Commission Regulation No 401/2006 of 23 February 2006, Laying Down the Methods of Sampling and Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs. Off. J. Eur. Union 2006, L70, 12–34. [Google Scholar]
- European Commission (EC). Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing REGULATION (EC) No 1881/2006. Off. J. Eur. Union 2023, L119, 103–157. [Google Scholar]
- Korley Kortei, N.; Akomeah Agyekum, A.; Akuamoa, F.; Baffour, V.K.; Wiisibie Alidu, H. Risk assessment and exposure to levels of naturally occurring aflatoxins in some packaged cereals and cereal based foods consumed in Accra, Ghana. Toxicol. Rep. 2019, 6, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Hathout, A.S.; Abel-Fattah, S.M.; Abou-Sree, Y.H.; Fouzy, A.S.M. Incidence and exposure assessment of aflatoxins and ochratoxin A in Egyptian wheat. Toxicol. Rep. 2020, 7, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Oueslati, S.; Romero-González, R.; Lasram, S.; Frenich, A.G.; Vidal, J.L.M. Multi-mycotoxin determination in cereals and derived products marketed in Tunisia using ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry. Food Chem. Toxicol. 2012, 50, 2376–2381. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Mohan, K.; Karthick Rajan, D.; Pillay, A.A.; Palanisami, T.; Sathishkumar, P.; Conterno, L. Distribution, toxicity, interactive effects, and detection of ochratoxin and deoxynivalenol in food: A review. Food Chem. 2022, 378, 131978. [Google Scholar] [CrossRef] [PubMed]
- Kara, G.N.; Ozbey, F.; Kabak, B. Co-occurrence of aflatoxins and ochratoxin A in cereal flours commercialised in Turkey. Food Control 2015, 54, 275–281. [Google Scholar] [CrossRef]
- Daou, R.; Joubrane, K.; Khabbaz, L.R.; Maroun, R.G.; Ismail, A.; El Khoury, A. Aflatoxin B1 and ochratoxin A in imported and Lebanese wheat and -products. Food Addit. Contam. Part B 2021, 14, 227–235. [Google Scholar] [CrossRef]
- Torović, L.; Trajković Pavlović, L.; Popović, M. Ochratoxin A and aflatoxin B1 in breakfast cereals marketed in Serbia—Occurrence and health risk characterisation. Food Addit. Contam. Part B 2017, 10, 176–184. [Google Scholar] [CrossRef]
- Belasli, A.; Herrera, M.; Ariño, A.; Djenane, D. Occurrence and exposure assessment of major mycotoxins in foodstuffs from Algeria. Toxins 2023, 15, 449. [Google Scholar] [CrossRef]
- Riba, A.; Zebiri, S.; Mokrane, S.; Sabaou, N. Occurrence of toxigenic fungi, aflatoxins and ochratoxin A in wheat and dried fruits commercialized in Algeria. In Proceedings of the International Congress of Mycotoxins and Cancer, Marrakech, Morocco, 24–25 March 2016. [Google Scholar]
- Serrano, A.B.; Font, G.; Ruiz, M.J.; Ferrer, E. Co-occurrence and risk assessment of mycotoxins in food and diet from Mediterranean area. Food Chem. 2012, 135, 423–429. [Google Scholar] [CrossRef] [PubMed]
- EOSQC 1990; Maximum Limits for Mycotoxin in Foods. Part L Aflatoxins E.S. 1875–1990. EOSQC (Egyptian Organization for Standardization and Quality Control): Cairo, Egypt, 1990.
- Raad, F.; Nasreddine, L.; Hilan, C.; Bartosik, M.; Parent-Massin, D. Dietary exposure to aflatoxins, ochratoxin A and deoxynivalenol from a total diet study in an adult urban Lebanese population. Food Chem. Toxicol. 2014, 73, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Yacine Ware, L.; Durand, N.; Nikiema, P.A.; Alter, P.; Fontana, A.; Montet, D.; Barro, N. Occurrence of mycotoxins in commercial infant formulas locally produced in Ouagadougou (Burkina Faso). Food Control 2017, 73, 518–523. [Google Scholar] [CrossRef]
- Zaied, C.; Bouaziz, C.; Azizi, I.; Bensassi, F.; Chour, A.; Bacha, H.; Abid, S. Presence of ochratoxin A in Tunisian blood nephropathy patients. Exposure level to OTA. Exp. Toxicol. Pathol. 2011, 63, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Murashiki, T.; Chidewe, C.; Benhura, M.; Manema, L.; Mvumi, B.; Nyanga, L. Effectiveness of hermetic technologies in limiting aflatoxin B1 and fumonisin B1 contamination of stored maize grain under smallholder conditions in Zimbabwe. World Mycotoxin J. 2018, 11, 459–469. [Google Scholar] [CrossRef]
- Ayeni, K.I.; Atanda, O.O.; Krska, R.; Ezekiel, C.N. Present status and future perspectives of grain drying and storage practices as a means to reduce mycotoxin exposure in Nigeria. Food Control 2021, 126, 108074. [Google Scholar] [CrossRef]
- Vidal, A.; Marín, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Determination of aflatoxins, deoxynivalenol, ochratoxin A and zearalenone in wheat and oat based bran supplements sold in the Spanish market. Food Chem. Toxicol. 2013, 53, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Kuruc, J.A.; Schwarz, P.; Wolf-Hall, C. Ochratoxin A in stored U.S. barley and wheat. J. Food Prot. 2015, 78, 597–601. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Liu, F.; Wang, Q.; Selvaraj, J.N.; Xing, F.; Zhao, Y.; Liu, Y. Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms. Toxins 2016, 8, 83. [Google Scholar] [CrossRef]
- Lahouar, A.; Jedidi, I.; Sanchis, V.; Saïd, S. Aflatoxin B1, ochratoxin A and zearalenone in sorghum grains marketed in Tunisia. Food Addit. Contam. Part B 2018, 11, 103–110. [Google Scholar] [CrossRef]
- Lasram, S.; Hamdi, Z.; Ghorbel, A. Occurrence and exposure assessment of aflatoxin B1 and ochratoxin A in Pearl Millet (Pennisetum glaucum L.) from Tunisia. J. Food Qual. Hazards Control 2020, 7, 157–161. [Google Scholar] [CrossRef]
- Bouajila, A.; Lamine, M.; Hamdi, Z.; Ghorbel, A.; Gangashetty, P. A nutritional survey of local barley populations based on the mineral bioavailability, fatty acid profile, and geographic distribution of Fusarium Species and the mycotoxin zearalenone (ZEN). Agronomy 2022, 12, 916. [Google Scholar] [CrossRef]
- Oyedele, O.A.; Ezekiel, C.N.; Sulyok, M.; Adetunji, M.C.; Warth, B.; Atanda, O.O.; Krska, R. Mycotoxin risk assessment for consumers of groundnut in domestic markets in Nigeria. Int. J. Food Microbiol. 2017, 251, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Blesa, J.; Moltó, J.C.; El Akhdari, S.; Mañes, J.; Zinedine, A. Simultaneous determination of Fusarium mycotoxins in wheat grain from Morocco by liquid chromatography coupled to triple quadrupole mass spectrometry. Food Control 2014, 46, 1–5. [Google Scholar] [CrossRef]
- Rodríguez-Carrasco, Y.; Ruiz, M.J.; Font, G.; Berrada, H. Exposure estimates to Fusarium mycotoxins through cereals intake. Chemosphere 2013, 93, 2297–2303. [Google Scholar] [CrossRef] [PubMed]
- Zentai, A.; Jóźwiak, A.; Süth, M.; Farkas, Z. Carry-Over of Aflatoxin B1 from Feed to Cow Milk—A Review. Toxins 2023, 15, 195. [Google Scholar] [CrossRef] [PubMed]
- Akinyemi, M.O.; Braun, D.; Windisch, P.; Warth, B.; Ezekiel, C.N. Assessment of multiple mycotoxins in raw milk of three different animal species in Nigeria. Food Control 2022, 131, 108258. [Google Scholar] [CrossRef]
- Massahi, T.; Kiani, A.; Sharafi, K.; Karami Matin, B.; Omer, A.K.; Ebrahimzadeh, G.; Jaafari, J.; Fattahi, N. A systematic literature review for aflatoxin M1 of various milk types in Iran: Human health risk assessment, uncertainty, and sensitivity analysis. Food Control 2023, 150, 109733. [Google Scholar] [CrossRef]
- Iqbal, S.Z.; Jinap, S.; Pirouz, A.A.; Ahmad Faizal, A.R. Aflatoxin M1 in milk and dairy products, occurrence and recent challenges: A review. Trends Food Sci. Technol. 2015, 46, 110–119. [Google Scholar] [CrossRef]
- Shirima, C.P.; Kimanya, M.E.; Routledge, M.N.; Srey, C.; Kinabo, J.L.; Humpf, H.-U.; Wild, C.P.; Tu, Y.-K.; Gong, Y.Y. A prospective study of growth and biomarkers of exposure to aflatoxin and fumonisin during early childhood in Tanzania. Environ. Health Perspect. 2015, 123, 173–178. [Google Scholar] [CrossRef]
- Frey, M.; Rosim, R.; Oliveira, C. Mycotoxin co-occurrence in milks and exposure estimation: A pilot study in São Paulo, Brazil. Toxins 2021, 13, 507. [Google Scholar] [CrossRef]
- Barry, N.Y.; Dia, K.; Ndoye, A.; Ly, R. Wheat production forecasts for Tunisia amid the Ukraine crisis. In Ukraine Crisis Brief Series; AKADEMIYA2063: Kigali, Rwanda, 2023; Volume 28. [Google Scholar] [CrossRef]
- EFSA. Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to ochratoxin A in food. EFSA J. 2006, 4, 365. [Google Scholar] [CrossRef]
- Mahdjoubi, C.K.; Arroyo-Manzanares, N.; Hamini-Kadar, N.; García-Campaña, A.M.; Mebrouk, K.; Gámiz-Gracia, L. Multi-mycotoxin occurrence and exposure assessment approach in foodstuffs from Algeria. Toxins 2020, 12, 194. [Google Scholar] [CrossRef]
Analyte | Slope | Intercept | R2 (%) | LOD (µg/L) | LOQ (µg/L) |
---|---|---|---|---|---|
AFM1 | 0.156 | 0.041 | 99.64 | 0.014 | 0.045 |
AFG2 | 0.531 | 0.068 | 99.91 | 0.006 | 0.020 |
AFG1 | 0.237 | 0.046 | 99.94 | 0.014 | 0.046 |
AFB2 | 0.728 | 0.117 | 99.96 | 0.004 | 0.012 |
AFB1 | 0.531 | 0.089 | 99.93 | 0.005 | 0.016 |
ZEN | 0.010 | 0.011 | 99.28 | 0.220 | 0.733 |
OTA | 0.100 | 0.080 | 99.14 | 0.042 | 0.139 |
Analyte | Repeatability (n = 15) | Intermediate Precision (n = 15) | Recovery (n = 9) | ||||
---|---|---|---|---|---|---|---|
Level 1 a | Level 2 b | Level 1 a | Level 2 b | Level 1 a | Level 2 b | ||
Milk samples | AFM1 | 7.7 | 4.4 | 7.7 | 4.3 | 94.3 | 95.4 |
AFG2 | 5.7 | 4.2 | 7.2 | 5.3 | 99.0 | 104.5 | |
AFG1 | 4.8 | 3.9 | 8.3 | 4.7 | 93.6 | 102.3 | |
AFB2 | 4.1 | 3.6 | 6.4 | 3.8 | 94.8 | 100.5 | |
AFB1 | 5.8 | 3.7 | 8.5 | 4.6 | 96.4 | 100.3 | |
ZEN | 5.1 | 4.7 | 8.0 | 7.1 | 96.1 | 97.9 | |
OTA | 4.4 | 3.4 | 4.7 | 3.1 | 83.9 | 86.1 | |
Wheat samples | AFG2 | 3.5 | 4.7 | 6.8 | 5.8 | 96.6 | 98.9 |
AFG1 | 4.6 | 4.7 | 7.8 | 6.3 | 93.7 | 93.9 | |
AFB2 | 2.8 | 3.1 | 7.9 | 6.7 | 97.9 | 93.8 | |
AFB1 | 4.2 | 4.1 | 6.8 | 5.4 | 97.3 | 95.8 | |
ZEN | 4.4 | 3.5 | 7.5 | 6.6 | 94.0 | 94.3 | |
OTA | 3.8 | 4.8 | 5.9 | 4.9 | 90.3 | 92.9 |
Nº of Samples | Nº Positive a/ Total Samples (Incidence, b %) | Detected Mycotoxins | Nº Positive a/ Total Samples (Incidence, b %) | LOQ-LOD c | Mean conc. (µg/kg) d | Range (µg/kg) |
---|---|---|---|---|---|---|
90 | 59 (65.55%) | AFG2 | 49 (54.44%) | 11 | 0.23 | 0.12–0.58 |
OTA | 10 (11.11%) | - | 5.04 | 2.47–9.13 |
Samples | Nº Positive a/ Total Samples (Incidence, b %) | Detected Mycotoxin | Nº Positive a/ Total Samples (Incidence, b %) | Mean conc. (µg/kg) c | Range (µg/kg) |
---|---|---|---|---|---|
Stored harvest (n = 57) | 40/57 (70.17%) | AFG2 | 31 (54.39%) | 0.41 | 0.12–0.43 |
OTA | 9 (15.79%) | 4.59 | 2.47–5.60 | ||
Freshly harvest (n = 33) | 19/33 (57.57%) | AFG2 | 18 (54.55%) | 0.28 | 0.12–0.58 |
OTA | 1 (3.03%) | 9.12 |
Sampling Region | Nº Positive/Total Samples (Incidence, %) | Detected Mycotoxin | Nº Positive a/ Total Samples (Incidence, b %) | LOD-LOQ c | Mean conc. d (µg/kg) | Range (µg/kg) | RSD (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |||
Littoral Region (Mahdia) | 29/38 (76.32%) | AFG2 | 18/27 (66.66) | 11/11 (100) | 3 | 0 | 0.17 | 0.30 | 0.11–0.40 | 0.18–0.58 | 39.10 | 37.72 |
Continental Region (Beja) | 30/52 (57.69%) | AFG2 | 13/30 (43.33) | 7/22 (31.81) | 2 | 6 | 0.23 | 0.23 | 0.11–0.43 | 0.11–0.37 | 43.15 | 38.48 |
OTA | 9/30 30 | 1/30 3.33 | 0 | 0 | 4.58 | 9.13 | 2.47–5.6 | 9.13 | 20.29 | 0 |
Region and Period | Average Temperature (°C) | Humidity (%) |
---|---|---|
Littoral region June 2020–March 2021 | 21.3 | 70.0 |
Continental region June 2020–March 2021 | 19.4 | 75.2 |
Region and Period | Average Temperature (°C) | Humidity (%) |
---|---|---|
Littoral region March–May | 18.3 | 74.0 |
Continental region March–May | 16.7 | 79.3 |
Total Nº of Samples | Nº Positive a/ Total Samples (Incidence, b %) | Detected Mycotoxins | Nº Positive a/ Total Samples (Incidence, b %) | LOD-LOQ c | Mean conc. (µg/kg) d | Range (µg/kg) | RSD (%) |
---|---|---|---|---|---|---|---|
150 | 17 (11.3%) | AFG2 | 13 (8.67%) | 1 | 0.35 | 0.03–0.72 | 57.84 |
AFB2 | 3 (2%) | - | 0.30 | 0.24–0.36 | 21.20 | ||
AFB1 | 1 (0.67%) | - | 0.38 | - | - |
Sampling Region | Nº Positive/Total Samples (Incidence, %) | Detected Mycotoxin | Nº Positive a/ Total Samples (Incidence, b %) | LOD-LOQ c | Mean conc. d (µg/kg) | Range (µg/kg) | RSD (%) |
---|---|---|---|---|---|---|---|
Littoral region (Mahdia) | 5/75 (6.66%) | AFB2 | 1/5 (20%) | - | 0.31 | - | - |
AFG2 | 4/5 (80%) | 1 | 0.33 | 0.03–0.66 | 70.28 | ||
Continental region (Béja) | 12/75 (16%) | AFB1 | 1/12 (8.33) | - | 0.38 | - | - |
AFB2 | 2/12 (16.66) | - | 0.30 | 0.24–0.36 | 21.20 | ||
AFG2 | 9/12 (75%) | - | 0.37 | 0.16–0.72 | 45.40 |
Detected Mycotoxins | EDI (ng/kg b.w./Day) a | HI b | %TDI c |
---|---|---|---|
Wheat | |||
AFG2 | 2.35 | - | - |
OTA | 51.6 | 3.03 | 303.2 |
Milk | |||
AFG2 | 1.5 | - | - |
AFB1 | 1.6 | - | |
AFB2 | 1.3 | - | - |
Sampling Region | Geographic Position | Altitude (m) | Latitude | Longitude | Bioclimatic Zone |
---|---|---|---|---|---|
Littoral center region | Center East | 6 | 36807 N | 10_22051 E | Semi-Arid Inferior |
Continental north region | Northwest | 93 | 36_33004 N | 9_26035 W | Sub-Humid |
Sample | Region | Number of Samples | |
---|---|---|---|
Durum Wheat | Stored (Summer 2020) | Littoral region Continental region | 27 30 Total: n = 57 |
Pre-stored (Summer 2021) | Littoral region Continental region | 11 22 Total: n = 33 | |
Cow Milk | Littoral region Continental region | 75 75 Total: n = 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Hassouna, K.; Hamed, A.M.; Salah-Abbès, J.B.; Chaieb, K.; Abbès, S.; García-Campaña, A.M.; Gámiz-Gracia, L. Mycotoxin Occurrence in Milk and Durum Wheat Samples from Tunisia Using Dispersive Liquid–Liquid Microextraction and Liquid Chromatography with Fluorescence Detection. Toxins 2023, 15, 633. https://doi.org/10.3390/toxins15110633
Ben Hassouna K, Hamed AM, Salah-Abbès JB, Chaieb K, Abbès S, García-Campaña AM, Gámiz-Gracia L. Mycotoxin Occurrence in Milk and Durum Wheat Samples from Tunisia Using Dispersive Liquid–Liquid Microextraction and Liquid Chromatography with Fluorescence Detection. Toxins. 2023; 15(11):633. https://doi.org/10.3390/toxins15110633
Chicago/Turabian StyleBen Hassouna, Khouloud, Ahmed M. Hamed, Jalila Ben Salah-Abbès, Kamel Chaieb, Samir Abbès, Ana M. García-Campaña, and Laura Gámiz-Gracia. 2023. "Mycotoxin Occurrence in Milk and Durum Wheat Samples from Tunisia Using Dispersive Liquid–Liquid Microextraction and Liquid Chromatography with Fluorescence Detection" Toxins 15, no. 11: 633. https://doi.org/10.3390/toxins15110633
APA StyleBen Hassouna, K., Hamed, A. M., Salah-Abbès, J. B., Chaieb, K., Abbès, S., García-Campaña, A. M., & Gámiz-Gracia, L. (2023). Mycotoxin Occurrence in Milk and Durum Wheat Samples from Tunisia Using Dispersive Liquid–Liquid Microextraction and Liquid Chromatography with Fluorescence Detection. Toxins, 15(11), 633. https://doi.org/10.3390/toxins15110633