Seasonal Single-Site Sampling Reveals Large Diversity of Marine Algal Toxins in Coastal Waters and Shellfish of New Caledonia (Southwestern Pacific)
Abstract
:1. Introduction
Toxin Group | Species Involved | Lipophilicity | Syndrome | Regulatory Limit (in Bold) or Recommended Threshold Value |
---|---|---|---|---|
Azaspiracids | Azadinium spp. | Lipophilic | DSP 1 | 160 µg AZA1 eq. kg−1 of total weight [4,33] |
Brevetoxins | Karenia brevis, Chatonella spp. | Lipophilic | NSP 2 | 800 µg BTX2 kg−1 of total weight [3,34] |
Ciguatoxins | Gambierdiscus spp., Fukuyoa spp. | Lipophilic | NSP, ciguatera poisoning | 0.01 µg CTX1B eq. kg−1 of total weight [34] |
Cyanotoxins | Hydrocoleum sp., Oscillatoria sp., Anabaena sp., Lyngbya sp. | Hydrophilic | Neurotoxic, dermatotoxic, and hepatotoxic | 0.14 µg toxin day−1 kg−1 of body weight [35,36] |
Domoic Acid | Pseudo-nitzchia spp. | Hydrophilic | ASP 3 | 20 mg DA kg−1 of total weight |
Gymnodimines | Karenia selliformis, Alexandrium ostenfeldii, Alexandrium peruvianum | Lipophilic | Not yet well characterized, but toxic to mice | N/a |
Maitotoxins | Gambierdiscus spp., Fukuyoa spp. | Amphiphilic | NSP | N/a |
Microcystins | Mycrocystis spp., Planktothrix spp., | Lipophilic | Neurotoxic and hepatotoxic | 1 ng MCs day−1 kg−1of body weight [35,37] |
Okadaic Acid | Dinophysis spp., Prorocentrum spp., Phalacroma spp. | Lipophilic | DSP | 160 µg OA eq. kg−1 of total weight [3,4] |
Palytoxins | Ostreopsis spp | Amphiphilic | Respiratory and dermatotoxicity | 30 µg PLTX kg−1 of total weight [38] |
Pectenotoxins | Dinophysis spp. Prorocentrum spp. | Lipophilic | Not yet well characterized, but cardiotoxic, hepatotoxic, and neurotoxic in animal models | deregulated |
Pinnatoxins | Pinna attenuata Vulcanodinium rugosum | Lipophilic | Not yet well characterized, but highly toxic to mice | 23 µg PnTX-G kg−1 of total weight [39] |
Pteriatoxins | Pteria penguin | Lipophilic | Potent toxicity | N/a |
Saxitoxins | Alexandrium spp., Gymnodinium catenatum | Hydrophilic | PSP 4 | 800 µg STX kg−1 of total weight [3,4] |
Spirolides | Alexandrium ostenfeldii, Alexandrium peruvianum | Lipophilic | Not yet well characterized but toxic to mice | N/a |
Tetrodotoxins | Tetraodontinae | Hydrophilic | TTX poisoning (PSP-like) | 44 µg TTX kg−1 of total weight [40] |
Yessotoxins | Protoceratium reticulatum, lingulodinium polyedrum, Gonyaulax spinifera | Lipophilic | Not yet well characterized, but cardiotoxic, hepatotoxic, and neurotoxic in animal models | 3.75 mg YTX eq kg−1 of total weight [3,4] |
2. Results
2.1. SPATTs Samples
2.2. Shellfish Samples
3. Discussion
3.1. SPATTs and Seasonality
3.2. SPATTs and Bivalves
3.3. Toxins and Risk for Population and Shellfish Industries
4. Conclusions
5. Materials and Methods
5.1. Study Area and Sampling Site
5.2. Solid Phase Adsorption Toxin Tracking (SPATT): Handling and Extraction Procedure
5.3. Shellfish Samples: Collection and Extraction Procedure
5.4. LC-MS/MS Multi-Toxin Analysis
5.4.1. Method 1: Detection of OA, DTX and YTX Groups in ESI-
5.4.2. Method 2: Detection of AZAs, PTXs and Cyclic Imines in ESI+
5.4.3. Method 3: Detection of BTXs in ESI+
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, N.; Sharpe, R.A.; Barciela, R.; Nichols, G.; Davidson, K.; Berdalet, E.; Fleming, L.E. Marine harmful algal blooms and human health: A systematic scoping review. Harmful Algae 2020, 98, 101901. [Google Scholar] [CrossRef]
- Lassus, P.; Chomérat, N.; Hess, P.; Nézan, E. Toxic and Harmful Microalgae of the World Ocean. Micro-Algues Toxiques et Nuisibles de l‘Ocean Mondial; International Society for the Study of Harmful Algae: Copenhagen, Denmark; Intergovernmental Oceanographic Commission of UNESCO: Paris, France, 2016; IOC Manuals and Guides 68. [Google Scholar]
- Food and Agriculture Organisation of the United Nations and World Health Organization. Standard for Live and Raw Bivalve Molluscs. Codex Standard 292-2008. Adopted in 2008, Revised 2014 and 2015. Available online: http://www.fao.org/input/download/standards/11109/CXS_292e_2015.pdf (accessed on 1 January 2015).
- European Union. Regulation No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Off. J. Eur. Union 2004, 30, 151. [Google Scholar]
- David, G.; Leopold, M.; Dumas, P.S.; Ferraris, J.; Herrenschmidt, J.B.; Fontenelle, G. Integrated coastal zone management perspectives to ensure the sustainability of coral reefs in New Caledonia. Mar. Pollut. Bull. 2010, 61, 323–334. [Google Scholar] [CrossRef]
- Jauffrais, T.; Brisset, M.; Lagourgue, L.; Payri, C.E.; Gobin, S.; Le Gendre, R.; Van Wynsberge, S. Seasonal changes in the photophysiology of Ulva batuffolosa in a coastal barrier reef. Aquat. Bot. 2022, 179, 103515. [Google Scholar] [CrossRef]
- Ducrot, Y.-M.; Thomas, O.P.; Nicolas, M.; Kakue, G.; Desnues, A.; Payri, C.; Bertolotti, A. Toxic seaweed dermatitis in New Caledonia: An epidemiological and clinical study of 83 cases. J. Eur. Acad. Dermatol. Venereol. 2023, 37, e66–e69. [Google Scholar] [CrossRef]
- Brisset, M.; Van Wynsberge, S.; Andréfouët, S.; Payri, C.; Soulard, B.; Bourassin, E.; Gendre, R.L.; Coutures, E. Hindcast and Near Real-Time Monitoring of Green Macroalgae Blooms in Shallow Coral Reef Lagoons Using Sentinel-2: A New-Caledonia Case Study. Remote Sens. 2021, 13, 211. [Google Scholar] [CrossRef]
- Hallegraeff, G.M.; Anderson, D.M.; Belin, C.; Bottein, M.-Y.D.; Bresnan, E.; Chinain, M.; Enevoldsen, H.; Iwataki, M.; Karlson, B.; McKenzie, C.H.; et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun. Earth Environ. 2021, 2, 117. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, N.J.; Hernaman, V.; Koshiba, S.; Lako, J.; Kajtar, J.B.; Amosa, P.; Singh, A. Impacts of marine heatwaves on tropical western and central Pacific Island nations and their communities. Glob. Planet. Chang. 2022, 208, 103680. [Google Scholar] [CrossRef]
- Smith, K.E.; Burrows, M.T.; Hobday, A.J.; Sen Gupta, A.; Moore, P.J.; Thomsen, M.; Wernberg, T.; Smale, D.A. Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science 2021, 374, eabj3593. [Google Scholar] [CrossRef] [PubMed]
- Lagourgue, L.; Gobin, S.; Brisset, M.; Vandenberghe, S.; Bonneville, C.; Jauffrais, T.; Van Wynsberge, S.; Payri, C.E. Ten new species of Ulva (Ulvophyceae, Chlorophyta) discovered in New Caledonia: Genetic and morphological diversity, and bloom potential. Eur. J. Phycol. 2022, 57, 458–478. [Google Scholar] [CrossRef]
- Ducrot, Y.M.; Nicolas, M.; Payri, C.; Bertolotti, A. Large bilateral corneal ulcers caused by debromoaplysiatoxin from the blue-green alga Lyngbya majuscula in a fisherman. J. Travel Med. 2022, 29, taac075. [Google Scholar] [CrossRef] [PubMed]
- Kerbrat, A.S.; Amzil, Z.; Pawlowiez, R.; Golubic, S.; Sibat, M.; Darius, H.T.; Chinain, M.; Laurent, D. First Evidence of Palytoxin and 42-Hydroxy-palytoxin in the Marine Cyanobacterium Trichodesmium. Mar. Drugs 2011, 9, 543–560. [Google Scholar] [CrossRef]
- Kerbrat, A.S.; Darius, H.T.; Pauillac, S.; Chinain, M.; Laurent, D. Detection of ciguatoxin-like and paralysing toxins in Trichodesmium spp. from New Caledonia lagoon. Mar. Pollut. Bull. 2010, 61, 360–366. [Google Scholar] [CrossRef]
- Lemonnier, H.; Lantoine, F.; Courties, C.; Guillebault, D.; Nezan, E.; Chomerat, N.; Escoubeyrou, K.; Galinie, C.; Blockmans, B.; Laugier, T. Dynamics of phytoplankton communities in eutrophying tropical shrimp ponds affected by vibriosis. Mar. Pollut. Bull. 2016, 110, 449–459. [Google Scholar] [CrossRef]
- Payri, C.E.; Allain, V.; Aucan, J.; David, C.; David, V.; Dutheil, C.; Loubersac, L.; Menkes, C.; Pelletier, B.; Pestana, G.; et al. Chapter 27—New Caledonia. In World Seas: An Environmental Evaluation, 2nd ed.; Sheppard, C., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 593–618. [Google Scholar]
- Prioul, F.; Laplante, J.-F.; Chavance, P.; Fabry, L. Bilan Statistique Annuel de la Pêche Côtière Professionnelle de Nouvelle-Calédonie, Année 2019; Observatoire des Pêches Côtières de Nouvelle-Calédonie, Adecal Technopole: Nouméa, Nouvelle-Calédonie, 2021; 32p. [Google Scholar]
- Institut National de la Statistique et des Etudes Economiques. Statistiques Economiques, fiche 17 pêche-Aquaculture. Insee references, 2016. Available online: https://www.insee.fr/fr/statistiques/3676825?sommaire=3696937 (accessed on 1 January 2016).
- European Union. Commission Regulation (EU) No 15/2011 of 10 January 2011 amending Regulation (EC) No 2074/2005 as regards recognised testing methods for detecting marine biotoxins in live bivalve molluscs. Off. J. Eur. Union 2011, 6, 3–6. [Google Scholar]
- Nicolas, J.; Hoogenboom, R.L.A.P.; Hendriksen, P.J.M.; Bodero, M.; Bovee, T.F.H.; Rietjens, I.M.C.M.; Gerssen, A. Marine biotoxins and associated outbreaks following seafood consumption: Prevention and surveillance in the 21st century. Glob. Food Secur. 2017, 15, 11–21. [Google Scholar] [CrossRef]
- US Department of Health and Human Services Food and Drug Administration. Fish and Fishery Products Hazards and Controls Guidance; US Department of Health and Human Services Food and Drug Administration. Available online: http://www.fda.gov/FoodGuidances (accessed on 1 June 2022).
- Authority Australia New Zealand Food. Australia New Zealand Food Standards Code-Standard 1.4. 1-Contaminants and Natural Toxicants. Australia New Zealand Food Standards Code 2015. Available online: https://www.foodstandards.gov.au/code/Documents/1.4.1%20Contaminants%20v157.pdf (accessed on 1 March 2016).
- Anderson, D.M.; Andersen, P.; Bricelj, V.M.; Cullen, J.J.; Rensel, J.J. Monitoring and Management Strategies for Harmful Algal Blooms in Coastal Waters; Unesco: Paris, France, 2001. [Google Scholar]
- Roué, M.; Darius, H.T.; Chinain, M. Solid phase adsorption toxin tracking (Spatt) technology for the monitoring of aquatic toxins: A review. Toxins 2018, 10, 167. [Google Scholar] [CrossRef]
- Fux, E.; Bire, R.; Hess, P. Comparative accumulation and composition of lipophilic marine biotoxins in passive samplers and in mussels (M. edulis) on the West Coast of Ireland. Harmful Algae 2009, 8, 523–537. [Google Scholar] [CrossRef]
- MacKenzie, L.; Beuzenberg, V.; Holland, P.; McNabb, P.; Selwood, A. Solid phase adsorption toxin tracking (SPATT): A new monitoring tool that simulates the biotoxin contamination of filter feeding bivalves. Toxicon 2004, 44, 901–918. [Google Scholar] [CrossRef] [PubMed]
- Roue, M.; Darius, H.T.; Viallon, J.; Ung, A.; Gatti, C.; Harwood, D.T.; Chinain, M. Application of solid phase adsorption toxin tracking (SPATT) devices for the field detection of Gambierdiscus toxins. Harmful Algae 2018, 71, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Lance, E.; Lepoutre, A.; Savar, V.; Robert, E.; Bormans, M.; Amzil, Z. In situ use of bivalves and passive samplers to reveal water contamination by microcystins along a freshwater-marine continuum in France. Water Res. 2021, 204, 117620. [Google Scholar] [CrossRef] [PubMed]
- Caillaud, A.; de la Iglesia, P.; Barber, E.; Eixarch, H.; Mohammad-Noor, N.; Yasumoto, T.; Diogène, J. Monitoring of dissolved ciguatoxin and maitotoxin using solid-phase adsorption toxin tracking devices: Application to Gambierdiscus pacificus in culture. Harmful Algae 2011, 10, 433–446. [Google Scholar] [CrossRef]
- Garcia-Altares, M.; Casanova, A.; Bane, V.; Diogene, J.; Furey, A.; de la Iglesia, P. Confirmation of pinnatoxins and spirolides in shellfish and passive samplers from Catalonia (Spain) by liquid chromatography coupled with triple quadrupole and high-resolution hybrid tandem mass spectrometry. Mar. Drugs 2014, 12, 3706–3732. [Google Scholar] [CrossRef]
- Hattenrath-Lehmann, T.K.; Lusty, M.W.; Wallace, R.B.; Haynes, B.; Wang, Z.; Broadwater, M.; Deeds, J.R.; Morton, S.L.; Hastback, W.; Porter, L.; et al. Evaluation of Rapid, Early Warning Approaches to Track Shellfish Toxins Associated with Dinophysis and Alexandrium Blooms. Mar. Drugs 2018, 16, 28. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (E.F.S.A). Marine biotoxins in shellfish—Summary on regulated marine biotoxins. EFSA J. 2009, 7, 1306. [Google Scholar] [CrossRef]
- US Department of Health and Human Services Food and Drug Administration (U.F.a.D). Chapter 6 Natural Toxins. In Fish and Fishery Products Hazards and Controls Guidance, 4th ed.; U.S. Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Applied Nutrition: Washington, DC, USA, 2011; pp. 99–112. Available online: https://seafood.oregonstate.edu/sites/agscid7/files/snic/fish-and-fishery-products-hazards-and-controls-guidance-4th-ed-2011.pdf (accessed on 1 October 2023).
- Testai, E.; Buratti, F.M.; Funari, E.; Manganelli, M.; Vichi, S.; Arnich, N.; Biré, R.; Fessard, V.; Sialehaamoa, A. Review and analysis of occurrence, exposure and toxicity of cyanobacteria toxins in food. EFSA Support. Publ. 2016, 13, 998E. [Google Scholar] [CrossRef]
- Agence Nationale de Sécurité Sanitaire de L’alimentation (ANSES). Rapport D’expertise Relatifs à la Proposition de VTR Subchronique par Voie Orale Pour la Cylindrospermopsine. 2019; pp. 1–80. Available online: https://www.anses.fr/fr/system/files/VSR2016SA0298Ra.pdf (accessed on 7 January 2019).
- Agence Nationale de Sécurité Sanitaire de L’alimentation (ANSES). Rapport D’expertise Relatifs à la Proposition de VTR Subchronique par Voie Orale Pour la Microcystine-LR. 2019; pp. 1–96. Available online: https://www.anses.fr/fr/system/files/VSR2016SA0297Ra.pdf (accessed on 7 January 2019).
- European Food Safety Authority (EFSA). Scientific Opinion on marine biotoxins in shellfish—Palytoxin group. EFSA J. 2009, 7, 1393. [Google Scholar] [CrossRef]
- Arnich, N.; Abadie, E.; Delcourt, N.; Fessard, V.; Fremy, J.-M.; Hort, V.; Lagrange, E.; Maignien, T.; Molgo, J.; Peyrat, M.-B.; et al. Health risk assessment related to pinnatoxins in French shellfish. Toxicon 2020, 180, 1–10. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA) Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; et al. Risks for public health related to the presence of tetrodotoxin (TTX) and TTX analogues in marine bivalves and gastropods. EFSA J. 2017, 15, e04752. [Google Scholar] [CrossRef]
- Roué, M.; Smith, K.F.; Sibat, M.; Viallon, J.; Henry, K.; Ung, A.; Biessy, L.; Hess, P.; Darius, H.T.; Chinain, M. Assessment of Ciguatera and Other Phycotoxin-Related Risks in Anaho Bay (Nuku Hiva Island, French Polynesia): Molecular, Toxicological, and Chemical Analyses of Passive Samplers. Toxins 2020, 12, 321. [Google Scholar] [CrossRef]
- Zendong, Z.; Kadiri, M.; Herrenknecht, C.; Nezan, E.; Mazzeo, A.; Hess, P. Algal toxin profiles in Nigerian coastal waters (Gulf of Guinea) using passive sampling and liquid chromatography coupled to mass spectrometry. Toxicon 2016, 114, 16–27. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, L.A.; Selwood, A.I.; McNabb, P.; Rhodes, L. Benthic dinoflagellate toxins in two warm-temperate estuaries: Rangaunu and Parengarenga Harbours, Northland, New Zealand. Harmful Algae 2011, 10, 559–566. [Google Scholar] [CrossRef]
- Zendong, Z.; Bertrand, S.; Herrenknecht, C.; Abadie, E.; Jauzein, C.; Lemee, R.; Gouriou, J.; Amzil, Z.; Hess, P. Passive Sampling and High Resolution Mass Spectrometry for Chemical Profiling of French Coastal Areas with a Focus on Marine Biotoxins. Environ. Sci. Technol. 2016, 50, 8522–8529. [Google Scholar] [CrossRef] [PubMed]
- Li, F.-L.; Li, Z.-X.; Guo, M.-M.; Wu, H.-Y.; Zhang, T.-T.; Song, C.-H. Investigation of diarrhetic shellfish toxins in Lingshan Bay, Yellow Sea, China, using solid-phase adsorption toxin tracking (SPATT). Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2016, 33, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; McKenzie, L.; Stirling, D.; Adamson, J. Conversion of pectenotoxin-2 to pectenotoxin-2 seco acid in the New Zealand scallop, Pecten novaezelandiae. Fish. Sci. 2001, 67, 505–510. [Google Scholar] [CrossRef]
- Vale, P.; M de Sampayo, A. Pectenotoxin-2 seco acid, 7-epi-pectenotoxin-2 seco acid and pectenotoxin-2 in shellfish and plankton from Portugal. Toxicon 2002, 40, 979–987. [Google Scholar] [CrossRef]
- Ciminiello, P.; Dell’Aversano, C.; Fattorusso, E.; Forino, M.; Magno, S.; Guerrini, F.; Pistocchi, R.; Boni, L. Complex yessotoxins profile in Protoceratium reticulatum from north-western Adriatic sea revealed by LC-MS analysis. Toxicon 2003, 42, 7–14. [Google Scholar] [CrossRef]
- Aasen, J.; Samdal, I.A.; Miles, C.O.; Dahl, E.; Briggs, L.R.; Aune, T. Yessotoxins in Norwegian blue mussels (Mytilus edulis): Uptake from Protoceratium reticulatum, metabolism and depuration. Toxicon 2005, 45, 265–272. [Google Scholar] [CrossRef]
- Blanco, J. Accumulation of Dinophysis Toxins in Bivalve Molluscs. Toxins 2018, 10, 453. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Che, Y.; Wright, E.J.; McCarron, P.; Hess, P.; Li, A. Fatty acid ester metabolites of gymnodimine in shellfish collected from China and in mussels (Mytilus galloprovincialis) exposed to Karenia selliformis. Harmful Algae 2020, 92, 101774. [Google Scholar] [CrossRef]
- Lamas, J.P.; Arévalo, F.; Moroño, Á.; Correa, J.; Rossignoli, A.E.; Blanco, J. Gymnodimine A in mollusks from the north Atlantic Coast of Spain: Prevalence, concentration, and relationship with spirolides. Environ. Pollut. 2021, 279, 116919. [Google Scholar] [CrossRef]
- Pan, W.; Ji, Y.; Qiu, J.; Wang, G.; Tang, Z.; Li, A. Comparative study on the esterification of gymnodimine in different shellfish exposed to the dissolved toxin in seawater. Harmful Algae 2022, 115, 102233. [Google Scholar] [CrossRef] [PubMed]
- Moreira-González, A.R.; Comas-González, A.; Valle-Pombrol, A.; Seisdedo-Losa, M.; Hernández-Leyva, O.; Fernandes, L.F.; Chomérat, N.; Bilien, G.; Hervé, F.; Rovillon, G.A.; et al. Summer bloom of Vulcanodinium rugosum in Cienfuegos Bay (Cuba) associated to dermatitis in swimmers. Sci. Total Environ. 2021, 757, 143782. [Google Scholar] [CrossRef]
- Brescianini, C.; Grillo, C.; Melchiorre, N.; Bertolotto, R.; Ferrari, A.; Vivaldi, B.; Icardi, G.; Gramaccioni, L.; Funari, E.; Scardala, S. Ostreopsis ovata algal blooms affecting human health in Genova, Italy, 2005 and 2006. Wkly. Releases (1997–2007) 2006, 11, 3040. [Google Scholar] [CrossRef] [PubMed]
- Asuwo, F. Taxonomical Study on Benthic Dinoflagellates Collected in Coral Reefs. Bull. Jpn. Soc. Sci. Fish. 1981, 47, 967–978. [Google Scholar] [CrossRef]
- Zendong, Z.; Herrenknecht, C.; Abadie, E.; Brissard, C.; Tixier, C.; Mondeguer, F.; Sechet, V.; Amzil, Z.; Hess, P. Extended evaluation of polymeric and lipophilic sorbents for passive sampling of marine toxins. Toxicon. 2014, 91, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Ciminiello, P.; Dell’Aversano, C.; Dello Iacovo, E.; Forino, M.; Tartaglione, L. Liquid chromatography–high-resolution mass spectrometry for palytoxins in mussels. Anal. Bioanal. Chem. 2015, 407, 1463–1473. [Google Scholar] [CrossRef]
- Andrefouet, S.; Cabioch, G.; Flamand, B.; Pelletier, B. A reappraisal of the diversity of geomorphological and genetic processes of New Caledonian coral reefs: A synthesis from optical remote sensing, coring and acoustic multibeam observations. Coral Reefs 2009, 28, 691–707. [Google Scholar] [CrossRef]
- Zendong, Z.; Sibat, M.; Herrenknecht, C.; Hess, P.; McCarron, P. Relative molar response of lipophilic marine algal toxins in liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2017, 31, 1453–1461. [Google Scholar] [CrossRef]
- Yon, T.; Sibat, M.; Robert, E.; Lhaute, K.; Holland, W.C.; Litaker, R.W.; Bertrand, S.; Hess, P.; Réveillon, D. Sulfo-Gambierones, Two New Analogs of Gambierone Produced by Gambierdiscus excentricus. Mar. Drugs. 2021, 19. [Google Scholar] [CrossRef]
- Estevez, P.; Sibat, M.; Leao-Martins, J.M.; Tudo, A.; Rambla-Alegre, M.; Aligizaki, K.; Diogene, J.; Gago-Martinez, A.; Hess, P. Use of Mass Spectrometry to Determine the Diversity of Toxins Produced by Gambierdiscus and Fukuyoa Species from Balearic Islands and Crete (Mediterranean Sea) and the Canary Islands (Northeast Atlantic). Toxins 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Sibat, M.; Herrenknecht, C.; Darius, H.T.; Roue, M.; Chinain, M.; Hess, P. Detection of pacific ciguatoxins using liquid chromatography coupled to either low or high resolution mass spectrometry (LC-MS/MS). J. Chromatogr. A 2018, 1571, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Chomerat, N.; Bilien, G.; Derrien, A.; Henry, K.; Ung, A.; Viallon, J.; Darius, H.T.; Mahana Iti Gatti, C.; Roue, M.; Herve, F.; et al. Ostreopsis lenticularis Y. Fukuyo (Dinophyceae, Gonyaulacales) from French Polynesia (South Pacific Ocean): A revisit of its morphology, molecular phylogeny and toxicity. Harmful Algae 2019, 84, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Aulnois, M.G.d.; Roux, P.; Caruana, A.; Réveillon, D.; Briand, E.; Savar, V.; Bormans, M.; Amzil, Z. Physiological and Metabolic Responses of Freshwater and Brackish-Water Strains of Microcystis aeruginosa Acclimated to a Salinity Gradient: Insight into Salt Tolerance. Am. Soc. Microbiol. 2019, 85, 1–15. [Google Scholar] [CrossRef]
Code | Species | Type | Sampling Site | Sampling Period | n | Tissue |
---|---|---|---|---|---|---|
WT N°1 | Pteria straminea | / | Lemon Bay | Cold | 5 | Whole flesh |
WT N°2 | Pinctada maculata | Oyster | Lemon Bay | Warm | 3 | Whole flesh |
WT N°3 | Tridacna maxima | Giant clam | Lemon Bay | Warm | 1 | Whole flesh |
WT N°4 | Modiolus cf. auriculatus | Mussel | Lemon Bay | Warm | 6 | Whole flesh |
WT N°5 | Barbatia foliata | Clam | Lemon Bay | Warm | 1 | Whole flesh |
WT N°6 | Barbatia foliata | Clam | Lemon Bay | Warm | 1 | Whole flesh |
WT N°7 | Barbatia foliata | Clam | Lemon Bay | Warm | 1 | Whole flesh |
WT N°8 | Pinctada margaritifera | Oyster | Ouemo | Warm | 4 | Whole flesh |
WT N°9 | Anadara scapha or cf. trapezia | Cockle | Vata Bay | Warm | 5 | Whole flesh |
WT N°10 | Isognomon isognomon | Oyster | Vata Bay | Warm | 10 | Whole flesh |
LC-MS/MS | References | Toxins Group | Abbreviation | Targeted Toxins |
---|---|---|---|---|
Method 1 | Zendong et al., 2017 [60] with modifications | Okadaïc acid | OA/DTXs | OA, DTX1, and DTX2 |
Yessotoxines | YTXs | YTX, homo YTX, 45-OH YTX, homo 45-OH YTX, COOH YTX, and Homo COOH YTX | ||
Method 2 | Zendong et al., 2017 [60] with modifications | Azaspiracids | AZAs | AZA1 to 3 |
Pectenotoxins | PTXs | PTX1, PTX2, PTX11, and PTX2sa | ||
Cyclic imines | GYMs | Gymnodimine A, B, and C | ||
SPXs | SPX-A to -D, and SPX desMe-C and -D | |||
PnTXs | PnTX-A to -H | |||
PtTX | Pte-A to -C | |||
Portimine | ||||
Method 3 | This study | Brevetoxins | BTXs | BTX1 to 3, BTX-B5, BTX6, BTX7, and BTX9 and Brevenal |
Method 4 | Yon et al., 2021b [61] | Maitotoxines | MTXs | MTX1, MTX2, and MTX4 to MTX7, desulfo-MTX1, and desulfo-MTX2 |
Gambiertoxines | Gambierone, 44-Me Gambierone (ex MTX3), sulfo-gambierone, dihydro-sulfo gambierone gambieroxide, and gambieric acid -A to -D | |||
Method 5 | Estevez et al., 2020 [62] | Ciguatoxines | C-CTXs | C-CTX1 to 4 |
I-CTXS | I-CTX1 to 6 | |||
Method 6 | Sibat et al., 2018 [63] | P-CTXs | Type CTX3C and type CTX1B (>20 compounds) | |
Method 7 | Chomerat et al., 2019 [64] | PLTX-like | PLTXs | PLTX and 42-OH PLTX |
OvTXs | Ovatoxines a to k | |||
MscTXs | Mascarenotoxins A to C | |||
OSTs | Ostreocin-A, -B, -D, and -E1 | |||
Method 8 | Georges des Aulnois et al., 2019 [65] | Microcystins | MCs | dmMC-RR, MC-RR, MC-YR, MC-LR, dm-MC-LR, MC-LA, MC-LY, MC-LW, MC-LF, and nodularin (NOD) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sibat, M.; Mai, T.; Tanniou, S.; Biegala, I.; Hess, P.; Jauffrais, T. Seasonal Single-Site Sampling Reveals Large Diversity of Marine Algal Toxins in Coastal Waters and Shellfish of New Caledonia (Southwestern Pacific). Toxins 2023, 15, 642. https://doi.org/10.3390/toxins15110642
Sibat M, Mai T, Tanniou S, Biegala I, Hess P, Jauffrais T. Seasonal Single-Site Sampling Reveals Large Diversity of Marine Algal Toxins in Coastal Waters and Shellfish of New Caledonia (Southwestern Pacific). Toxins. 2023; 15(11):642. https://doi.org/10.3390/toxins15110642
Chicago/Turabian StyleSibat, Manoëlla, Tepoerau Mai, Simon Tanniou, Isabelle Biegala, Philipp Hess, and Thierry Jauffrais. 2023. "Seasonal Single-Site Sampling Reveals Large Diversity of Marine Algal Toxins in Coastal Waters and Shellfish of New Caledonia (Southwestern Pacific)" Toxins 15, no. 11: 642. https://doi.org/10.3390/toxins15110642
APA StyleSibat, M., Mai, T., Tanniou, S., Biegala, I., Hess, P., & Jauffrais, T. (2023). Seasonal Single-Site Sampling Reveals Large Diversity of Marine Algal Toxins in Coastal Waters and Shellfish of New Caledonia (Southwestern Pacific). Toxins, 15(11), 642. https://doi.org/10.3390/toxins15110642