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Abstract: The presence of yessotoxins (YTXs) was analyzed in 10,757 samples of Galician bivalves
from 2014 to 2022. Only YTX and 45-OH YTX were found. YTX was detected in 31% of the samples,
while 45-OH YTX was found in 11.6% of them. Among the samples containing YTX, 45-OH YTX was
detected in 37.3% of cases. The maximum recorded levels were 1.4 and 0.16 mg of YTX-equivalentsg−1,
for YTX and 45-OH YTX, respectively, which are well below the regulatory limit of the European
Union. The YTX and 45-OH YTX toxicities in the raw extracts and extracts subjected to alkaline
hydrolysis were strongly and linearly related. Due to the lack of homo-YTX in Galician samples, the
effect of alkaline hydrolysis on homo-YTX and 45OH-Homo-YTX was only checked in 23 additional
samples, observing no negative effect but a high correlation between raw and hydrolyzed extracts.
Hydrolyzed samples can be used instead of raw ones to carry out YTXs determinations in monitoring
systems, which may increase the efficiency of those systems where okadaic acid episodes are very
frequent and therefore a higher number of hydrolyzed samples are routinely analyzed. The presence
of YTX in the studied bivalves varied with the species, with mussels and cockles having the highest
percentages of YTX-detected samples. The presence of 45-OH YTX was clearly related to YTX and
was detected only in mussels and cockles. Wild populations of mussels contained proportionally
more 45-OH YTX than those that were raft-cultured. Spatially, toxin toxicities varied across the
sampling area, with higher levels in raft-cultured mussels except those of Ría de Arousa. Ría de
Ares (ARE) was the most affected geographical area, although in other northern locations, lower
toxin levels were detected. Seasonally, YTX and 45-OH YTX toxicities showed similar patterns, with
higher levels in late summer and autumn but lower toxicities of the 45-OH toxin in August. The
relationship between the two toxins also varied seasonally, in general with a minimum proportion of
45-OH YTX in July–August but with different maximum levels for raft-cultured and wild mussel
populations. Interannually, the average toxicities of YTX decreased from 2014 to 2017 and newly
increased from 2018 to 2021, but decreased slightly in 2022. The relationship between 45-OH YTX
and YTX also varied over the years, but neither a clear trend nor a similar trend for wild and raft
mussels was observed.

Keywords: yessotoxins; alkaline hydrolysis; seasonality; interspecific variation; interannual variation;
biotransformation; habitat

Key Contribution: The prevalence, interspecific, seasonal, and annual variabilities of yessotoxin and
the proportion between them during a 9-year period in Galicia are described. It is also shown that
samples subjected to alkaline hydrolysis can be used to quantify yessotoxins, thus increasing the
monitoring efficiency.
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1. Introduction

Yessotoxins (YTXs) are ladder-shaped polyether compounds that, in most cases, con-
tain two sulfate groups but can contain three or only one [1,2]. Around a hundred deriva-
tives and analogues have been identified in phytoplankton, seawater, or as products of
the metabolic activity of bivalves and other organisms [3–10]. The main toxin, yessotoxin
(YTX), was discovered by Murata et al. [11] from extracts of the digestive gland of the
scallop Patinopecten yessoensis while studying the causative agents of diarrheal shellfish
poisoning (DSP). It was found to be co-extracted with okadaic acid (OA) and to kill mice
by intraperitoneal (i.p.) injection, which led to the suspicion of its involvement in DSP
toxicities [11]. YTX, and at least some of its analogs, seem to be heat-stable [12] and seem to
be stable under alkaline conditions [13].

To date, no intoxication of humans by YTXs has been reported, but at least some
of them have been shown to kill mice by (i.p.) injection and to be cardiotoxic [14], cyto-
toxic [15], and immunotoxic [16] to mammals or mammal cells. Even though YTXs seem to
be nearly non-toxic to mammals by oral administration [17–19], the possible cardiotoxic
effects led the European Food Safety Authority (EFSA) to recommend 3.75 mg of YTX equiv-
alents kg−1 as the maximum allowable level for human consumption of mollusks [12]. This
level was included in the European Union regulation [20]. YTX was initially found to be
produced by the dinoflagellate Protoceratium reticulatum (=Gonyaulax grindleyi) in Japan [21],
and some analogs were soon found in the same species [4,5,22]. Currently, it is known
that these toxins are produced by several dinoflagellate species belonging to different
genera, such as Lingulodinium polyedrum [23–25], Gonyaulax spinifera [26,27], and Gonyaulax
taylori [28], and that these species, and consequently the YTXs, are worldwide distributed.
In Europe, these toxins are frequently found in the Mediterranean Sea [7,9,25,29–36], but
their incidence in the Atlantic area seems to be much more limited [37–41].

On several occasions, YTXs, or blooms of YTX-producing species, have been associated
with adverse effects on the marine fauna. That was the case of abalone [42] and other marine
fauna [43–45] in South Africa, Manila clams in Washington State (USA) [46], oyster larvae in
British Columbia (Canada) [47], and another abalone in California (USA) [48], and probably
also in other organisms (compiled by Landsberg [49]).

In Galicia (NW Spain, Figure 1), the EU-regulated lipophilic toxins, which include
four YTXs (YTX, 45-OH YTX, homo-YTX, and 45-OH homo-YTX), have been routinely
monitored in bivalve mollusks by LC-MS/MS since 2014. Most of the analytical efforts
are focused on the toxins of the okadaic acid group, which entails the highest risk in the
area [37], and for regulatory purposes, the analysis is performed on extracts subjected to
alkaline hydrolysis (to quantify the main toxins and their derivatives). All other regulated
toxins (YTXs and azaspiracids (AZAs) among them) and some emergent toxins are analyzed
using raw extracts of a subset of the obtained samples. In a previous study on lipophilic
toxins, we studied the YTXs in the area from 2014 to 2017, detecting only YTX and 45-OH
YTX and establishing a decreasing trend in their toxicities [37]. However, several strains
of P. reticulatum from the area have been shown to produce small proportions of non-EU-
regulated analogs [50], and a strain isolated from the Mediterranean coast of Spain contains
homo-YTX as the main toxin [50], suggesting that the toxin profile deserves additional
investigation. In this work, we have confirmed the main sources of YTX variability in
the area (Figure 1), checked the previously detected temporal trend, and evaluated the
possibility of using extracts subjected to alkaline hydrolysis to quantify the toxicities of the
regulated yessotoxins, which would make it possible to optimize those monitoring systems
without the presence of AZA toxins.
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Figure 1. Geographical localization of the areas where the samples were collected (NW Spain).

2. Results
2.1. General

From 3 January 2014 to 28 December 2022, 10,757 samples were analyzed for the
presence of yessotoxins. Only YTX and 45-OH YTX were detected in these samples. YTX
levels above the detection limit of the method were recorded in 3339 samples (31%) and
45-OH YTX in 1246 samples (11.6%). The 45-OH YTX was detected in 37.3% of the samples
containing YTX. The maximum levels were recorded on 18 August 2014 in Ría de Ares
(ARE): 1.43 mg YTX-eq kg−1 and 0.16 for YTX and 45-OH YTX.

2.2. Hydrolisable Derivatives and Quantification after Alkaline Hydrolisis

The toxicities of YTX and 45-OH YTX before and after hydrolysis were strongly and
linearly related (Figure 2). The regressions of the toxicities of each toxin in its free form
(non-hydrolyzed extracts) on those of the total toxin (free OA + hydrolysable derivatives
measured in the hydrolyzed extracts) were very good, with R2 and slopes close to 1
(Figure 2).
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Figure 2. Relationship between the toxicities of YTX, 45-OH-YTX, and Homo-YTX in non-hydrolyzed
(free toxin) and hydrolyzed (after hydrolysis) extracts. The top lines show the number of samples
included in the regression (nObs), regression equation, and corresponding determination coeffi-
cient (R2).
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No samples containing Homo-YTX were available from the area, but the effect of
hydrolysis was checked in 11 bivalve samples from intercomparative studies and 12 samples
prepared by spiking bivalves with a Homo-YTX reference solution. In that case, the R2

obtained for the regression of the results of the quantification in the raw on those of the
hydrolyzed extracts was 0.998, and the slope was 0.989 (Figure 2).

2.3. Interspecific Variation

The accumulation of YTX in the studied bivalves was species-dependent. The highest
percentages of YTX-samples in which YTX was detected were observed in mussels (M.
galloprovincialis), both raft-cultured and wild populations, and cockles (C. edule), with
percentages of presence in samples between 49.1% and 24.9% (Figure 3). In all clams
(including razor clams), the percentage of samples in which YTX was detected was much
lower, with a maximum value of 2.2% recorded in R. decussatus (Figure 3).
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Figure 3. Percentage of the analyzed samples in which YTX was detected in the studied species and
mussel habitats (M. galloprovincialis = raft-cultured mussels and M. galloprovincialis W = wild mussels).
The numbers at the top are the total number of samples analyzed.

Furthermore, 45-OH YTX was only found in the three bivalve species with the highest
incidence of YTX (except two species in which it was detected in less than three samples).
Moreover, 45-OH YTX appeared only when YTX was present, being detected in 47%, 37.3%,
and 0.9% of samples with YTX in raft mussels, wild mussels, and cockles, respectively
(Figure 4). Clearly, the percentage of 45-OH YTX detections in cockles (only three positive
samples) was substantially lower than that in mussels.

In general, the average toxicities of YTX were higher than those of 45-OH YTX in
all the bivalve species studied, with the largest difference being detected in raft mussel,
followed by wild mussel and cockle, which had the minimal difference (with only three
detections of 45-OH YTX) (Figure 5).

2.4. Relationship between YTX and 45-OH YTX

The relationship between the two toxins could only be studied in mussels because
of the low number of simultaneous detections in all other species. The relationship was
approximately linear, but with statistically significant different regression slopes for wild
and raft mussels. In general, wild mussels have more 45-OH YTX in relation to YTX than
raft-cultured mussels do. In fact, the slope of the regression line corresponding to wild
mussels was 2.9 times larger than that corresponding to raft mussels (Figure 6).
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Figure 5. YTX and 45-OH YTX toxicities in the studied species, in which YTX was detected in more
than two samples. The upper and lower lines of the boxes represent the first and third quartiles,
and the middle line is the median. Vertical lines extend to 1.5 times the interquartile range for the
corresponding quartile. Circles represent the observations that fall outside the range defined by the
extremes of the vertical lines (outliers). The numbers at the top represent the number of observations.
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mussel habitat (raft = M. galloprovincialis and wild = M. galloprovincialis W).
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2.5. Spatial Variation
2.5.1. Toxicities

Both YTX and 45-OH YTX toxicities varied with the sampling location. The ría of Ares
(ARE) was the area most affected by these toxins (Figure 7). The locations to the north of
Ferrol (FER), which include those in the Cantabrian Sea, attained substantially lower toxin
levels than the southernmost locations. In general, the spatial trends were similar for the
two toxins. In the few locations in which the two trends did not coincide, the number of
45-OH YTX detections was low.
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Figure 7. Toxicities of YTX and 45-OH YTX in Galician Rías. Boxes show the interquartile ranges
(IQR) of the observations and the median (central horizontal line). The vertical lines extend from the
first and third quartiles to the maximum or minimum observations, which do not exceed 1.5 times
the IQR. The more extreme observations are considered outliers and are represented as empty circles.
Triangles and red dots represent geometric and arithmetic means, respectively. The numbers at the
top are the total number of samples analyzed.

2.5.2. Relationship between YTX and 45-OH YTX

The relationship between the two YTXs varied with the location where the samples
were collected, both in wild and raft-cultured mussels. For raft-cultured mussels, the slopes
of the regression between 45-OH YTX and YTX ranged from 0.15 to 0.30. The lowest values
were recorded in Baiona (BAI), Camariñas (CAM), and Ares (ARE) (Figure 8). For all
other locations, the slopes were very similar and close to the recorded maximum. For wild
mussels, the slopes ranged from 0.24 to 0.55. The locations from the north coast (from
Cariño to Ribadeo, CAR to RIB), in general, were more homogeneous and, on average, had
higher slopes than the locations on the west coast, which presented an apparently random
distribution of locations with high and low slopes. Surprisingly, in the few locations in
which the two types of mussels were sampled (CAM, ARE, and FER), the magnitudes of
the slopes were inverted when compared to mussels of the same type in other locations.
Thus, these three locations are among the ones with the lowest slopes for raft mussels but
among the locations with the highest slopes for wild mussels.

2.6. Seasonal Variation
2.6.1. Toxicities

The YTX and 45-OH YTX toxicities showed a clear seasonal trend, with high average
levels from September to December for the two toxins (Figure 9). YTX levels were maximal
in August, but they did not correspond to 45-OH YTX, in which a relatively low average
toxicity was detected. The December toxicities were also lower than those of the preceding
months but higher than those of the first half of the year.
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2.6.2. Relationship between YTX and 45-OH YTX

The proportion of 45-OH YTX in relation to YTX in raft mussels varied throughout the
year, with the regression slope increasing towards spring, reaching a maximum in May, and
decreasing afterwards until August, when it started to increase until intermediate levels,
which were maintained in autumn and winter (Figure 10).
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In wild mussels, the relationship between these two toxins was different. The minimal
slopes, as in raft mussels, were recorded in summer (September and August); however,
the maximum slopes were observed in winter (December and January) instead of spring
(Figure 10).

2.7. Interannual Variation
2.7.1. Toxicities

During the period of study, the average toxicities of YTX decreased from 2014 until
2017–2018, but since that period, they increased for the next three years and slightly
decreased in 2022 (Figure 11). Regarding the interannual trend for 45-OH-YTX, it showed a
similar trend to YTX but with an earlier increase and final decrease.
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2.7.2. Relationship 45-OH YTX YTX

The relationship between 45-OH YTX and YTX in raft mussels was not constant
throughout the period of study. The slope of the regression decreased until 2018, concur-
rently with the decrease in YTX average toxicities (Figure 12). After 2018, no trend could be
detected.
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In wild mussels, the relationship between the two toxins during the studied period
was very different from that observed in raft-cultured mussels (Figure 12). Two maxima
were found in 2016 and 2021, and an intermediate minimum at 2010, contrasting with the
maxima at 2014 and 2020 and the minimum at 2018 found in raft mussels.

3. Discussion
3.1. Toxin Profile and Possible Use of Hydrolyzed Extracts to Quantity YTX

For the YTX group, only YTX and 45-OH YTX were detected in the analyzed samples.
This is consistent with our previous work [37] and, together with the mollusk profiles found
in Scotland [51] and in several dinoflagellate strains from Galicia [24,50,52], Andalusia
(Spain) [24], Portugal [53], Scotland [54], Helgoland (Germany) [55], and Norway [56],
suggests that it could be a common profile in a large part of the Atlantic coast of Europe. In
Norway, notwithstanding, the estimations of YTX toxicities were higher when obtained
by ELISA than when obtained by LC-MS, indicating that some non-identified analogs
could be involved [57], and in Sweden, some L. polyedrum strains do not contain YTX
but other analogs [3]. The estimated toxicities of both YTX and 45-OH YTX obtained
after alkaline hydrolysis of the methanolic extracts were very highly correlated with those
obtained in raw methanolic extracts. Moreover, the slope of the regression of raw vs.
hydrolyzed estimates was very close to 1, indicating that, if there were hydrolysable
derivatives of the regulated toxins, they would be present in a very small percentage. This
low contribution of derivatives to the total amount of YTXs could be expected from the
toxin profiles of some P. reticulatum strains from the Atlantic coast of Spain [50,58]. Even
when no homoyessotoxin was found in any Galician sample, the results obtained with
samples from proficiency tests indicate that hydrolyzed extracts can be used to quantify
all the regulated YTXs reliably. In geographical areas where AZA toxins are not present,
the possibility of using the hydrolyzed extract to quantify OA’s group and YTX´s group
would make the monitoring system more efficient. In a Galician-specific case where
the presence of OA toxins above the legal limit is frequent and recurrent, a significantly
higher number of samples are analyzed after alkaline hydrolyses than without hydrolysis;
therefore, it is a significant improvement to obtain accurate information about YTXs in the
hydrolyzed samples. Nowadays, according to European regulation [59], during harvesting
periods, at least with a weekly frequency, it is necessary to inject two extracts per sample:
(1) hydrolyzed extract (total content of OA/DTX toxins) and (2) raw extract (YTXs and
AZAs). According to Article 61, Point 3 of the Commission Implementing Regulation
(EU) 2019/627, “Results suggesting an accumulation of toxins in live bivalve mollusk flesh
shall be followed by intensive sampling” [59]. In this sense, in geographical areas where
the presence of OA toxins above the legal limit is frequent and recurrent, in the absence
of AZA episodes, a significantly higher number of samples are analyzed after alkaline
hydrolyses than without hydrolysis; therefore, obtaining accurate information about YTXs
in the hydrolyzed samples would be a significant improvement”.

3.2. YTX Variability among Bivalve Species

As was the case in our previous study [37], none of the analyzed samples had YTX
toxicities above the regulatory limit of 3.75 mg YTX-eq kg−1, but the percentage of sam-
ples in which these toxins were detected was higher than that previously reported. The
maximum attained levels were still far from the regulatory threshold (between one third
and a half of that level). Mussels were the most affected species by YTXs, followed by
cockles. Both presence and toxicity levels in all other species were very low, confirming our
previous observations. The detection of 45-OH YTX was practically restricted to mussels,
supporting the suggestion of Yasumoto and Takizawa [60] that mussels have a much higher
YTX biotransformation capability than other bivalve species. Raft mussels had higher YTX
toxicities than wild mussels, but the opposite happened with the levels of 45-OH YTX,
thus confirming the pattern found in our previous study. It is also clear that wild mussels
contain more 45-OH YTX in proportion to YTX than raft mussels at all YTX toxicities, which
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suggests that they have different capabilities of YTX biotransformation. The causes of this
different capability are unknown. Raft and wild mussel populations are genetically very
similar [61], as raft cultures are mostly initiated using juvenile mussels taken from wild
populations. Consequently, the observed biotransformation differences should originate
from environmental factors. The main difference between the two populations is that the
wild mussels live in the intertidal zone, therefore being subjected to periodic emersion,
while this does not happen to raft mussels. This process, however, is unlikely to have a
direct effect because of the differences in the seasonal patterns of the proportion between
the two toxins in the two populations. However, the environmental conditions to which
mussels are subjected during emersion could contribute to explaining the observed differ-
ences. Montagnac et al. [62] did not find any difference in the scope for growth between
wild and cultured bivalves in Prince Edward Island (Canada) using bivalves of the same
age, and no important difference in the reproductive cycle was found by other authors [63].
Notwithstanding, some differences in the resource allocation between wild and cultured
mussels of different ages have been reported [64]. In Galician mussels, the age difference
between wild and cultured mussels could be important because there is no commercial
exploitation of wild populations and the culture cycle is around 18 months [65].

3.3. Spatial Variation of YTXs

The highest average (geometric mean) YTX toxicities in the area were recorded from
the ría of Ares, followed by the ría of Muros, a pattern that had already been found in our
previous study dealing with the period between 2014 and 2017 [37]. The lowest levels were
recorded from the rías of Cedeira and Arousa. The fact that the two rías with the highest
toxicities are adjacent to the two with the lowest ones (or nearly adjacent) suggests that the
local factors have a special relevance, as it could be expected for toxins produced by species
that produce long-lasting resistance cysts like Lingulodinium polyedrum or Protoceratium
reticulatum. The maximum toxicities of L. polyedrum cysts in Galicia have been reported
from the area of maximum incidence of YTXs (ría of Ares), but they have also been found
in several areas of the Galician coast [66]. Protoceratium reticulatum cysts, notwithstanding,
were only rarely found in Galician sediments [67], suggesting that the former species might
be the main one responsible for the production of YTXs even when P. reticulatum is present
in Galician waters and has been shown to produce YTXs [52].

The spatial pattern of 45-OH YTX was similar to that of YTX, but the difference
between the levels of the two toxins was higher in the locations where all or most samples
were raft mussels, as could be expected (Figures 8 and 9).

3.4. Seasonality

The highest YTX toxicities in the area took place in late summer and autumn. We
do not have available records of the phytoplankton species that can produce these toxins,
but the observed pattern coincides with that recorded for the populations of L. polyedra, P.
reticulatum, and G. spinifera in these and geographically close areas [38,39,41,68,69]. During
winter, spring, and early summer, the levels are lower and the variability among years
is higher. The seasonal pattern is similar for the two toxins, with the main exception of
August, when the average level of 45-OH YTX is lower than the one that could be expected
from the YTX toxicities. One possible cause for this is that, because 45-OH YTX is a product
of YTX transformation in mussels, there is some delay in attaining its maximum levels.

The relationship between the two toxins also varied seasonally. The minimal propor-
tions of 45-OH YTX in relation to YTX (regression slope) were recorded in summer in both
raft and wild mussels, which is surprising because the temperature during this period
would be expected to favor biotransformation. The difference in the seasonal patterns of
the proportion between the two toxins in wild and raft mussels, especially the extended
period of high proportion during the winter months for wild mussels, cannot be explained
with our current knowledge.
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3.5. Interannual Variation

The decreasing trend of the average toxicities of YTX with time found in our previous
study [37] did not hold in the five subsequent years. In fact, the trend has nearly reverted,
increasing from 2018 to 2021 but slightly decreasing in 2022. The 45-OH YTX pattern was
similar but not equal. The most striking difference is its low level in 2021, when a local
maximum of YTX took place.

The proportions between the two YTXs changed with the years. We do not have any
satisfactory explanation for that.

4. Conclusions

YTX toxicities in the analyzed samples did not exceed the regulatory limit. YTX and
45-OH YTX were the only toxins detected in the analyzed samples. Appreciable amounts
of hydrolysable conjugated forms do not seem to be present because hydrolyzed extracts
can be used to quantify YTXs reliably. Mussels were the most affected species by YTXs,
followed by cockles, while other bivalve species had very low levels. The presence of
45-OH YTX was primarily restricted to mussels, suggesting different biotransformation
capabilities in mussels compared to other bivalve species. The highest YTX toxicities were
recorded in the ría of Ares and the ría of Muros, while the lowest levels were found in the
rías of Cedeira and Arousa. Local factors appear to play a significant role in YTX toxicity
levels. YTX toxicities were highest in late summer and autumn, with lower levels during
winter, spring, and early summer. The relationship between YTX and 45-OH YTX varied
seasonally, with differences in biotransformation rates during different seasons not yet
fully understood. There was a decreasing trend in the average toxicity of YTX in the years
leading up to 2017, but this trend did not continue in the subsequent years. Proportions
between the two YTXs changed over the years, and there is no clear explanation for this
phenomenon.

5. Material and Methods
5.1. Sampling

From January 2014 to December 2022, 10,757 bivalve samples were collected from
diverse Galician mollusk production areas (Figure 1) by Intecmar in the framework of the
Galician monitoring system. Sampling frequency was, at least, weekly for each production
area. Most samples were obtained from mussel (Mytilus galloprovincialis) culture facilities,
whereas others were obtained from natural beds of mussels and other bivalve species,
such as cockle (Cerastoderma edule), clams (Ruditapes decussatus, R. philippinarum, Venerupis
corrugate, and Polititapes rhomboides), and razor clams (Ensis siliqua and E. arcuatus). Since
mussels are used as sentinel organisms, the natural beds of other bivalve species were
sampled only when any of the European Union (EU)-regulated toxins were detected in
mussels.

5.2. Analysis
5.2.1. Extraction and Hydrolysis

Yessotoxins, together with the other EU-regulated toxins, were extracted from the
samples using the standardized operating methods of the EU Reference Laboratory [70].
Briefly, 100–150 g of meat was homogenized, and a 2-g subsample was taken, which was
subsequently vortexed twice in 9 mL of 100% MeOH for 1 min and centrifuged at 2000× g
for 10 min. The supernatants were combined, and the total extract was added to 20 mL
with 100% MeOH.

Alkaline hydrolysis of 5 mL aliquots of the obtained extracts was carried out with
the following procedure: (1) addition of 625 µL of 2.5 M NaOH; (2) vortexing the mixture
for 30 s; (3) heating at 76 ± 4 ◦C for 40 min; (4) allowing to reach room temperature
(usually at least 5 min); (5) checking that there were no solvent losses by evaporation
(by weight); (6) neutralizing by adding 625 µL of 2.5 M HCl, vortexing for 1 min (final
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pH of approximately 7); (7) filtering a 1-mL aliquot through a 0.22 µm syringe filter; and
(8) diluting it 5/8 (with 100% MeOH), previously to injection.

All samples were analyzed after alkaline hydrolysis because this step is needed to
quantify the toxicities of total okadaic acid and dinophysistoxins (free and esterified forms),
which is the main toxin group in the area and, consequently, the main target of the monitor-
ing system. Only a subset of all samples (512 samples) was analyzed without a previous
hydrolysis to quantify the remainder of the regulated toxins and some emergent toxins that
are less stable at high pH than those of the okadaic acid group.

5.2.2. LC-MS/MS

The LC-MS/MS method used to quantify lipophilic toxins was developed, optimized
in-house, and validated following the guidelines in the standard operation procedure of
the EU Reference Laboratory [70]. This method was based on those by Gerssen et al. [13]
and Regueiro et al. [71] and has UNE-EN ISO/IEC 17025 accreditation (Accreditation N◦

160/LE 394).
The chromatographic stationary phase was an Acquity UPLC BEH C18, 1.7 µm, in a

2.1 × 100 mm column (Waters, Barcelona, Spain), which was maintained at 45 ◦C. Mobile
phases A and B were 6.7 mM NH4OH (pH11) and MeCN 90% with 6.7 mM NH4OH. The
elution procedure was as follows: (1) an isochratic step of 25% B (1.66 min); (2) a linear
gradient from 25 to 95% B (from minutes 1.66 to 4.3); (3) a new isochratic with 95% B (to
minute 6.28); (4) return linearly to 25% B (2 min); and (5) maintenance until the ninth
minute to equilibrate the system prior to the next injection.

Three LC-MS systems were used: one Waters Acquity UPCL system (coupled to a
Waters Xevo TQ MS) and two Waters Acquity H-class systems (each coupled to a Waters
Xevo TQ-S) (Waters, Barcelona, Spain). All MSs were equipped with ESI interfaces and
operated in positive and negative ionization modes because other toxins were analyzed
simultaneously. YTXs, however, were analyzed in the negative ionization mode. All
MS systems shared the following source operating parameters: capillary voltage of 2 kV;
solvation temperature of 450 ◦C; solvation gas flow of 850 L·h−1; and cone gas flow of
150 L·h−1. The transitions corresponding to the toxins studied are listed in Table 1. In
all cases, the precursor ion was [M-2H]−2. Yessotoxins were quantified by the external
standards method using certificate reference solutions of YTX and homo-YTX obtained
from the NRC (Canada) and Laboratorio CIFGA (Spain). The 45-OH analogs of YTX and
homo-YTX were quantified by assuming the same response as their non-hydroxylated
counterparts and using the same CRMs. Quality controls were carried out by using
spiked bivalve samples and freeze-dried Mussel Tissue Certified Reference Material for
Multiple Marine Toxins from the NRC (Canada). The limits of detection (LOD) and
quantification (LOQ) in bivalve tissues for YTX, 45-OH YTX, and Homo-YTX were 0.001
and 0.06 mg YTX-eq·kg−1, respectively. For 45-OH-homo YTX, the LOD is the same, but
the LOQ is 0.03 mg YTX-eq·kg−1.

Table 1. MS/MS transitions for the analyzed yessotoxins. The first transition for each toxin was used
for quantification, and the second was used for confirmation.

Toxin Precursor Ion
(m/z)

Product Ion
(m/z)

Collision
Energy (eV)

Cone Voltage
(V)

YTX 570.4 467.4 30 45
396.3 35 45

45-OH YTX 578.4 467.4 30 45
396.4 30 45

Homo-YTX 577.5 474.4 30 48
403.4 30 48

45-OH-homo YTX 585.5 403.4 30 45
474.4 30 45
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5.3. Statistical Analysis

All statistical analyses were carried out using R [72]. For general plotting, the R
package ggplot2 [73] was used. For model II regression analyses to estimate both the
relationship between raw and hydrolyzed samples and between YTX and 45-OH YTX, the
smatr package [74,75] was used.
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