Secondary Metabolites of Biscogniauxia: Distribution, Chemical Diversity, Bioactivity, and Implications of the Occurrence
Abstract
:1. Introduction
2. Secondary Metabolites
2.1. Azaphilone Derivatives
2.2. Cerebrosides
2.3. Coumarin
2.3.1. Coumarin
2.3.2. Isocoumarin
2.3.3. Dihydroisocoumarin (Melleins)
2.4. Fatty Acids
2.5. Flavonoids
2.6. Furan
2.7. Hydroxycinnamic Acids and Derivatives
2.8. Lignans
2.9. Naphthoquinones
2.10. Peptides
2.11. Phenyl and Phenol Derivatives
2.12. Phthalides
2.13. Pyranopyran
2.14. α-Pyrones
2.15. Steroids
2.16. Terpenoids and Their Derivatives
2.16.1. Diterpenoids
2.16.2. Meroterpenoid
2.16.3. Sesquiterpenoids
2.17. Tyramine
2.18. Other
3. Biological Activity
3.1. Antifungal
3.2. Antimycobacterial
3.3. Cytotoxic Activity
3.4. Antioxidants
3.5. Antigerminative
3.6. Phytotoxic Activity
3.7. Activity against the Enzyme GSK-3β
3.8. Anti-Acetylcholinesterase (AChE) Activity and Anti-Alzheimer Disease (AD)
4. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bills, G.F.; Gloer, J.B. Biologically Active Secondary Metabolites from the Fungi. Microbiol. Spectr. 2016, 4, 1087–1119. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Ariefta, N.R.; Koseki, T.; Furuno, H.; Kwon, E.; Momma, H.; Harneti, D.; Maharani, R.; Supratman, U.; Kimura, K.I.; et al. New Polyketides, Paralactonic Acids A–E Produced by Paraconiothyrium Sp. SW-B-1, an Endophytic Fungus Associated with a Seaweed, Chondrus ocellatus Holmes. Fitoterapia 2019, 132, 75–81. [Google Scholar] [CrossRef]
- Ye, K.; Ai, H.L.; Liu, J.K. Identification and Bioactivities of Secondary Metabolites Derived from Endophytic Fungi Isolated from Ethnomedicinal Plants of Tujia in Hubei Province: A Review. Nat. Prod. Bioprospect. 2021, 11, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Der Wu, M.; Cheng, M.J.; Lin, R.J.; Chan, H.Y.; Hsieh, S.Y.; Chang, H.S.; Lin, C.L.; Chen, J.J. Chemcial Constituents of the Fungus Biscogniauxia cylindrospora. Chem. Nat. Compd. 2019, 55, 924–926. [Google Scholar] [CrossRef]
- Zhao, J.; Shan, T.; Mou, Y.; Zhou, L. Plant-Derived Bioactive Compounds Produced by Endophytic Fungi. Mini-Rev. Med. Chem. 2011, 11, 159–168. [Google Scholar] [CrossRef]
- Ju, Y.M.; Rogers, J.D. New and Interesting Biscogniauxia Taxa, with a Key to the World Species. Mycol. Res. 2001, 105, 1123–1133. [Google Scholar] [CrossRef]
- Nugent, L.K.; Sihanonth, P.; Thienhirun, S.; Whalley, A.J.S. Biscogniauxia: A Genus of Latent Invaders. Mycologist 2005, 19, 40–43. [Google Scholar] [CrossRef]
- Evidente, A.; Andolfi, A.; Maddau, L.; Franceschini, A.; Marras, F. Biscopyran, a Phytotoxic Hexasubstituted Pyranopyran Produced by Biscogniauxia mediterranea, a Fungus Pathogen of Cork Oak. J. Nat. Prod. 2005, 68, 568–571. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Zhao, H.; Xie, J.; Zou, J.; Hu, D.; Guo, L.D.; Chen, G.D.; Yao, X.S.; Gao, H. New Phthalide Derivatives from the Biscogniauxia sp. and Their Activities. Fitoterapia 2019, 137, 104184. [Google Scholar] [CrossRef]
- Cheng, M.J.; Der Wu, M.; Yanai, H.; Su, Y.S.; Chen, I.S.; Yuan, G.F.; Hsieh, S.Y.; Chen, J.J. Secondary Metabolites from the Endophytic Fungus Biscogniauxia formosana and Their Antimycobacterial Activity. Phytochem. Lett. 2012, 5, 467–472. [Google Scholar] [CrossRef]
- Jantaharn, P.; Mongkolthanaruk, W.; Suwannasai, N.; Senawong, T.; Tontapha, S.; Amornkitbumrung, V.; Boonmak, J.; Youngme, S.; McCloskey, S. Anti-Inflammatory and Anti-Proliferative Activities of Chemical Constituents from Fungus Biscogniauxia whalleyi SWUF13-085. Phytochemistry 2021, 191, 112908. [Google Scholar] [CrossRef] [PubMed]
- Sritharan, T.; Savitri Kumar, N.; Jayasinghe, L.; Araya, H.; Fujimoto, Y. Isocoumarins and Dihydroisocoumarins from the Endophytic Fungus Biscogniauxia capnodes Isolated from the Fruits of Averrhoa carambola. Nat. Prod. Commun. 2019, 14, 1–3. [Google Scholar] [CrossRef]
- Amand, S.; Langenfeld, A.; Blond, A.; Dupont, J.; Nay, B.; Prado, S. Guaiane Sesquiterpenes from Biscogniauxia nummularia Featuring Potent Antigerminative Activity. J. Nat. Prod. 2012, 75, 798–801. [Google Scholar] [CrossRef]
- Masi, M.; Bashiri, S.; Cimmino, A.; Bahmani, Z.; Abdollahzadeh, J.; Evidente, A. Phytotoxins Produced by Two Biscogniauxia rosacearum Strains, Causal Agents of Grapevine Trunk Diseases, and Charcoal Canker of Oak Trees in Iran. Toxins 2021, 13, 812. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.J.; Der Wu, M.; Hsieh, S.Y.; Chen, I.S.; Yuan, G.F. Secondary Metabolites Isolated from the Fungus Biscogniauxia cylindrospora BCRC 33717. Chem. Nat. Compd. 2011, 47, 527–530. [Google Scholar] [CrossRef]
- Silva-Hughes, A.F.; Wedge, D.E.; Cantrell, C.L.; Carvalho, C.R.; Pan, Z.; Moraes, R.M.; Madoxx, V.L.; Rosa, L.H. Diversity and Antifungal Activity of the Endophytic Fungi Associated with the Native Medicinal Cactus Opuntia humifusa (Cactaceae) from the United States. Microbiol. Res. 2015, 175, 67–77. [Google Scholar] [CrossRef]
- Wu, B.; Wiese, J.; Schmaljohann, R.; Imhoff, J.F. Biscogniauxone, a New Isopyrrolonaphthoquinone Compound From the Fungus Biscogniauxia mediterranea Isolated from Deep-Sea Sediments. Mar. Drugs 2016, 14, 204. [Google Scholar] [CrossRef]
- Origuchi, Y.M.; Ihara, J.K.; Eno, M.U. Suppression Effects of a Secondary Metabolite of Biscogniauxia Sp. Strain O-811 Obtained from Mushrooms against the Rice Blast Fungus Magnaporthe oryzae. Bull. Fac. Life Environ. Sci. Shimane Univ. 2019, 24, 14–18. [Google Scholar]
- Zhao, H.; Liu, Y.; Zhang, M.; Chen, G.D.; Hu, D.; Guo, L.D.; Zhao, Z.X.; Zhi, H.; Gao, H. Two New Diterpenoids from Biscogniauxia sp. and Their Activities. Front. Chem. 2021, 9, 749272. [Google Scholar] [CrossRef]
- Zhao, H.; Zou, J.; Xu, W.; Hu, D.; Guo, L.; Chen, J.; Chen, G.; So, K.; Yao, X.; Gao, H. Diisoprenyl-Cyclohexene/Ane-Type Meroterpenoids from Biscogniauxia sp. and Their Anti-inflammatory Activities. J. Org. Chem. 2021, 86, 11177–11188. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, G.D.; Zou, J.; He, R.R.; Qin, S.Y.; Hu, D.; Li, G.Q.; Guo, L.D.; Yao, X.S.; Gao, H. Dimericbiscognienyne A: A Meroterpenoid Dimer from Biscogniauxia sp. with New Skeleton and Its Activity. Org. Lett. 2017, 19, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, M.; Chen, G.; Hu, D.; Li, E.; Qu, Y.; Zhou, L.; Guo, L.; Yao, X.; Gao, H. Dimericbiscognienynes B and C: New Diisoprenyl-Cyclohexene-Type Meroterpenoid Dimers from Biscogniauxia sp. Chin. Chem. Lett. 2019, 30, 51–54. [Google Scholar] [CrossRef]
- Han, L.; Zheng, W.; Qian, S.Y.; Yang, M.F.; Lu, Y.Z.; He, Z.J.; Kang, J.C. New Guaiane-Type Sesquiterpenoids Biscogniauxiaols A–G with Anti-Fungal and Anti-Inflammatory Activities from the Endophytic Fungus Biscogniauxia petrensis. J. Fungi 2023, 9, 393. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Yang, S.; Qin, J. Azaphilones: Chemistry and Biology. Chem. Rev. 2012, 113, 4755–4811. [Google Scholar] [CrossRef] [PubMed]
- Pavesi, C.; Flon, V.; Mann, S.; Leleu, S.; Prado, S.; Franck, X. Biosynthesis of Azaphilones: A Review. Nat. Prod. Rep. 2021, 38, 1058–1071. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.X.; Chen, J.H. The Cerebrosides. Nat. Prod. Rep. 2003, 20, 509–534. [Google Scholar] [CrossRef]
- Barreto-Bergter, E.; Sassaki, G.L.; de Souza, L.M. Structural Analysis of Fungal Cerebrosides. Front. Microbiol. 2011, 2, 239. [Google Scholar] [CrossRef]
- Barreto-Bergter, E.; Pinto, M.R.; Rodrigues, M.L. Structure and Biological Functions of Fungal Cerebrosides. An. Acad. Bras. Cienc. 2004, 76, 67–84. [Google Scholar] [CrossRef]
- Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity. Biomed Res. Int. 2013, 2013, 963248. [Google Scholar] [CrossRef]
- Bourgaud, F.; Hehn, A.; Larbat, R.; Doerper, S.; Gontier, E.; Kellner, S.; Matern, U. Biosynthesis of Coumarins in Plants: A Major Pathway Still to Be Unravelled for Cytochrome P450 Enzymes. Phytochem. Rev. 2006, 5, 293–308. [Google Scholar] [CrossRef]
- Tsivileva, O.M.; Koftin, O.V.; Evseeva, N.V. Coumarins as Fungal Metabolites with Potential Medicinal Properties. Antibiotics 2022, 11, 1156. [Google Scholar] [CrossRef] [PubMed]
- Firmansyah, A.; Winingsih, W.; Manobi, J.D.Y. Review of Scopoletin: Isolation, Analysis Process, and Pharmacological Activity. Biointerface Res. Appl. Chem. 2021, 11, 12006–12019. [Google Scholar] [CrossRef]
- Kiang, F.M.; Chang, S.J.; Wu, C.L. Naphthalene and Isocoumarin Derivatives from the Liverwort Wettsteinia inversa. Phytochemistry 1994, 37, 1459–1461. [Google Scholar] [CrossRef]
- Reveglia, P.; Masi, M.; Evidente, A. Melleins—Intriguing Natural Compounds. Biomolecules 2020, 10, 772. [Google Scholar] [CrossRef]
- Rossi, M.H.; Yoshida, M.; Maia, J.G.S. Neolignans, Styrylpyrones and Flavonoids from an Aniba Species. Phytochemistry 1997, 45, 1263–1269. [Google Scholar] [CrossRef]
- Suzuki, T.; Holden, I.; Casida, J.E. Diphenyl Ether Herbicides Remarkably Elevate the Content in Spinacia olerácea of (E)-3-(4-Hydroxy-3-Methoxyphenyl)-JV-[2-(4-Hydroxy-3-Methoxyphenyl)Ethyl]-2- Propenamide. J. Agric. Food Chem. 1981, 29, 992–995. [Google Scholar] [CrossRef]
- Umezawa, T. Diversity in Lignan Biosynthesis. Phytochem. Rev. 2003, 2, 371–390. [Google Scholar] [CrossRef]
- Medentsev, A.G.; Akimenko, V.K. Naphthoquinone Metabolites of the Fungi. Phytochemistry 1998, 47, 935–959. [Google Scholar] [CrossRef]
- Kurobane, I.; Zaita, N.; Fukuda, A. New Metabolites of Fusarium Martii Related to Dihydrofusarubin. J. Antibiot. 1986, 39, 205–214. [Google Scholar] [CrossRef]
- Rose, G.D.; Glerasch, L.M.; Smith, J.A. Turns in Peptides and Proteins. Adv. Protein Chem. 1985, 37, 1–109. [Google Scholar] [CrossRef]
- Fernández de Ullivarri, M.; Arbulu, S.; Garcia-Gutierrez, E.; Cotter, P.D. Antifungal Peptides as Therapeutic Agents. Front. Cell. Infect. Microbiol. 2020, 10, 105. [Google Scholar] [CrossRef]
- Belofsky, G.N.; Jensen, P.R.; Fenical, W. Sansalvamide: A New Cytotoxic Cyclic Depsipeptide Produced by a Marine Fungus of the Genus Fusarium. Tetrahedron Lett. 1999, 40, 2913–2916. [Google Scholar] [CrossRef]
- Liu, S.; Gu, W.; Lo, D.; Ding, X.Z.; Ujiki, M.; Adrian, T.E.; Soff, G.A.; Silverman, R.B. N-Methylsansalvamide a Peptide Analogues. Potent New Antitumor Agents. J. Med. Chem. 2005, 48, 3630–3638. [Google Scholar] [CrossRef]
- Tolve, R.; Pasini, G.; Vignale, F.; Favati, F.; Simonato, B. Effect of Grape Pomace Addition on the Technological, Sensory, and Nutritional Properties of Durum Wheat Pasta. Foods 2020, 9, 354. [Google Scholar] [CrossRef]
- Albuquerque, P.; Casadevall, A. Quorum Sensing in Fungi a Review. Med. Mycol. 2012, 50, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, R.; Pahari, P.; Mal, D. Phthalides and Phthalans: Synthetic Methodologies and Their Applications in the Total Synthesis. Chem. Rev. 2014, 114, 6213–6284. [Google Scholar] [CrossRef]
- Jin, L.; Song, Z.; Cai, F.; Ruan, L.; Jiang, R. Chemistry and Biological Activities of Naturally Occurring and Structurally Modified Podophyllotoxins. Molecules 2023, 28, 302. [Google Scholar] [CrossRef]
- Chen, L.Z.; Wu, J.; Li, K.; Wu, Q.Q.; Chen, R.; Liu, X.H.; Ruan, B.F. Novel Phthalide Derivatives: Synthesis and Anti-Inflammatory Activity in Vitro and in Vivo. Eur. J. Med. Chem. 2020, 206, 112722. [Google Scholar] [CrossRef] [PubMed]
- McGlacken, G.P.; Fairlamb, I.J.S. 2-Pyrone Natural Products and Mimetics: Isolation, Characterisation and Biological Activity. Nat. Prod. Rep. 2005, 22, 369–385. [Google Scholar]
- Lu, X.; Xu, N.; Dai, H.F.; Mei, W.L.; Yang, Z.X.; Pei, Y.H. Three New Compounds from Endophytic Fungus L10 of Cephalotaxus hainanensis. J. Asian Nat. Prod. Res. 2009, 11, 397–400. [Google Scholar] [CrossRef]
- Gong, T.; Zhen, X.; Li, B.J.; Yang, J.L.; Zhu, P. Two New Monoterpenoid α-Pyrones from a Fungus Nectria Sp. HLS206 Associated with the Marine Sponge Gelliodes carnosa. J. Asian Nat. Prod. Res. 2015, 17, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Andolfi, A.; Boari, A.; Evidente, M.; Cimmino, A.; Vurro, M.; Ash, G.; Evidente, A. Gulypyrones A and B and Phomentrioloxins B and C Produced by Diaporthe gulyae, a Potential Mycoherbicide for Saffron Thistle (Carthamus lanatus). J. Nat. Prod. 2015, 78, 623–629. [Google Scholar] [CrossRef]
- Cai, R.; Chen, S.; Liu, Z.; Tan, C.; Huang, X.; She, Z. A New α-Pyrone from the Mangrove Endophytic Fungus Phomopsis Sp. HNY29-2B. Nat. Prod. Res. 2017, 31, 124–130. [Google Scholar] [CrossRef]
- Geiseler, O.; Podlech, J. Total Synthesis of Infectopyrone, Aplysiopsenes A-C, Ent-Aplysiopsene D, Phomapyrones A and D, 8,9-Dehydroxylarone, and Nectriapyrone. Tetrahedron 2012, 68, 7280–7287. [Google Scholar] [CrossRef]
- Evidente, A.; Rodeva, R.; Andolfi, A.; Stoyanova, Z.; Perrone, C.; Motta, A. Phytotoxic Polyketides Produced by Phomopsis foeniculi, a Strain Isolated from Diseased Bulgarian Fennel. Eur. J. Plant Pathol. 2011, 130, 173–182. [Google Scholar] [CrossRef]
- Nassiri-Koopaei, N.; Faramarzi, M.A. Recent Developments in the Fungal Transformation of Steroids. Biocatal. Biotransformation 2015, 33, 1–28. [Google Scholar] [CrossRef]
- Gan, K.H.; Kuo, S.H.; Lin, C.N. Steroidal Constituents of Ganoderma applanatum and Ganoderma neo-japonicum. J. Nat. Prod. 1998, 61, 1421–1422. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Tan, M.C.S.; De Castro, M.E.; De Los Reyes, M.M.; Oyong, G.G.; Shen, C.C. Sterols from Lentinus tigrinus. Pharmacogn. J. 2018, 10, 1079–1081. [Google Scholar] [CrossRef]
- Wi, Y.L.; Park, Y.; Ahn, J.K.; Park, S.Y.; Lee, H.J. Cytotoxic Activity of Ergosta-4,6,8(14),22-Tetraen-3-One from the Sclerotia of Polyporus umbellatus. Bull. Korean Chem. Soc. 2005, 26, 1464–1466. [Google Scholar] [CrossRef]
- Krzyczkowski, W.; Malinowska, E.; Suchocki, P.; Kleps, J.; Olejnik, M.; Herold, F. Isolation and Quantitative Determination of Ergosterol Peroxide in Various Edible Mushroom Species. Food Chem. 2009, 113, 351–355. [Google Scholar] [CrossRef]
- Ramawat, K.G.; Mérillon, J.M. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes. Nat. Prod. Phytochem. Bot. Metab. Alkaloids Phenolics Terpenes 2013, 1, 1–4242. [Google Scholar] [CrossRef]
- Smith, M.M.; Khatoon, T. Biological Activity of the Terpenoids and Their Derivatives. Fortschr. Arzneimittelforsch. 1963, 42, 279–346. [Google Scholar] [CrossRef]
- Ludwiczuk, A.; Skalicka-Woźniak, K.; Georgiev, M.I. Terpenoids. In Pharmacognosy: Fundamentals, Applications and Strategy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 233–266. ISBN 9780128020999. [Google Scholar]
- De Souza, J.J.; Vieira, I.J.C.; Rodrigues-Filho, E.; Braz-Filho, R. Terpenoids from Endophytic Fungi. Molecules 2011, 16, 10604–10618. [Google Scholar] [CrossRef] [PubMed]
- Yaoita, Y.; Kikuchi, M.; Machida, K. Terpenoids and Sterols from Mushrooms. In Studies in Natural Products Chemistry; Elsevier B.V.: Amsterdam, The Netherlands, 2015; Volume 44, pp. 1–32. ISBN 9780444634603. [Google Scholar]
- Gomm, A.; Nelson, A. A Radical Approach to Diverse Meroterpenoids. Nat. Chem. 2020, 12, 109–111. [Google Scholar] [CrossRef]
- Nazir, M.; Saleem, M.; Tousif, M.I.; Anwar, M.A.; Surup, F.; Ali, I.; Wang, D.; Mamadalieva, N.Z.; Alshammari, E.; Ashour, M.L.; et al. Meroterpenoids: A Comprehensive Update Insight on Structural Diversity and Biology. Biomolecules 2021, 11, 957. [Google Scholar] [CrossRef]
- Russo, D.; Milella, L. Analysis of Meroterpenoids. In Recent Advances in Natural Products Analysis; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 477–501. ISBN 9780128164556. [Google Scholar]
- Niu, S.; Xie, C.L.; Zhong, T.; Xu, W.; Luo, Z.H.; Shao, Z.; Yang, X.W. Sesquiterpenes from a Deep-Sea-Derived Fungus Graphostroma Sp. MCCC 3A00421. Tetrahedron 2017, 73, 7267–7273. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, H.W.; Wan, X.C.; Zou, Z.M. Complete Assignments of 1H and 13C NMR Data for Two New Sesquiterpenes from Cyperus rotundus L. Magn. Reson. Chem. 2009, 47, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Xie, C.L.; Xia, J.M.; Luo, Z.H.; Shao, Z.; Yang, X.W. New Anti-Inflammatory Guaianes from the Atlantic Hydrotherm-Derived Fungus Graphostroma Sp. MCCC 3A00421. Sci. Rep. 2018, 8, 530. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.H.; He, J.; Li, X.N.; Huang, R.; Song, F.; Chen, Y.W.; Miao, C.P. Guaiane Sesquiterpenes and Isopimarane Diterpenes from an Endophytic Fungus Xylaria Sp. Phytochemistry 2014, 105, 197–204. [Google Scholar] [CrossRef]
- Zhou, Q.M.; Chen, M.H.; Li, X.H.; Peng, C.; Lin, D.S.; Li, X.N.; He, Y.; Xiong, L. Absolute Configurations and Bioactivities of Guaiane-Type Sesquiterpenoids Isolated from Pogostemon cablin. J. Nat. Prod. 2018, 81, 1919–1927. [Google Scholar] [CrossRef]
- Barra, L.; Schulz, B.; Dickschat, J.S. Pogostol Biosynthesis by the Endophytic Fungus Geniculosporium. ChemBioChem 2014, 15, 2379–2383. [Google Scholar] [CrossRef]
- Corey, E.J.; Cane, D.E.; Libit, L. The Synthesis of Racemic α-Trans- and β-Trans-Bergamotene. J. Am. Chem. Soc. 1971, 93, 7016–7021. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, F.; Banakar, S.; Li, Z. Bortezomib-Induced New Bergamotene Derivatives Xylariterpenoids H-K from Sponge-Derived Fungus Pestalotiopsis maculans 16F-12. RSC Adv. 2019, 9, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Wu, Y.; Chen, G.D.; Hu, D.; Li, X.X.; Sun, X.; Guo, L.D.; Li, Y.; Yao, X.S.; Gao, H. Xylariterpenoids A-D, Four New Sesquiterpenoids from the Xylariaceae Fungus. RSC Adv. 2014, 4, 54144–54148. [Google Scholar] [CrossRef]
- Sevillo, L.; Castaldo, D.; Giovane, A.; Casale, R.; D’Onofrio, N.; Cautela, D.; Balestrieri, M.L. Tyramine Pathways in Citrus Plant Defense: Glycoconjugates of Tyramine and Its N-Methylated Derivatives. J. Agric. Food Chem. 2017, 65, 892–899. [Google Scholar] [CrossRef]
- Gallwey, F.B.; Hawkes, J.E.; Haycock, P.; Lewis, D. LH NM R Spectra and Conformations of Propane-l.2-Dio1, Meso- and Racemic Butane-2,3-Diols, and Some Alditols in Non-Aqueos Media. J. Chem. Soc. Perkin Trans. 1990, 2, 1979–1985. [Google Scholar] [CrossRef]
- Schneider, P.; Misiek, M.; Hoffmeister, D. In Vivo and in Vitro Production Options for Fungal Secondary Metabolites. Mol. Pharm. 2008, 5, 234–242. [Google Scholar] [CrossRef]
- Schulz, B.; Boyle, C.; Draeger, S.; Römmert, A.K.; Krohn, K. Endophytic Fungi: A Source of Novel Biologically Active Secondary Metabolites. Mycol. Res. 2002, 106, 996–1004. [Google Scholar] [CrossRef]
- Zhang, H.W.; Song, Y.C.; Tan, R.X. Biology and Chemistry of Endophytes. Nat. Prod. Rep. 2006, 23, 753–771. [Google Scholar] [CrossRef] [PubMed]
- Jha, D.K. Bioprospecting for Microbial Endophytes and Their Natural Products. NBU J. Plant Sci. 2015, 9, 1–13. [Google Scholar] [CrossRef]
- Krohn, K.; Bahramsari, R.; Flörke, U.; Ludewig, K.; Kliche-Spory, C.; Michel, A.; Aust, H.J.; Draeger, S.; Schulz, B.; Antus, S. Dihydroisocoumarins from Fungi: Isolation, Structure Elucidation, Circular Dichroism and Biological Activity. Phytochemistry 1997, 45, 313–320. [Google Scholar] [CrossRef]
- Kokubun, T.; Veitch, N.C.; Bridge, P.D.; Simmonds, M.S.J. Dihydroisocoumarins and a Tetralone from Cytospora eucalypticola. Phytochemistry 2003, 62, 779–782. [Google Scholar] [CrossRef]
- Uzma, F.; Mohan, C.D.; Hashem, A.; Konappa, N.M.; Salomone, S. Endophytic Fungi—Alternative Sources of Cytotoxic Compounds: A Review. Front. Pharmacol. 2018, 9, 309. [Google Scholar] [CrossRef]
- Goutam, J.; Singh, R.; Vijayaraman, R.S.; Meena, M. Endophytic Fungi: Carrier of Potential Antioxidants. In Fungi and Their Role in Sustainable Development: Current Perspective; Springer Nature Singapore Pte Ltd.: Singapore, 2018; pp. 539–551. ISBN 9789811303937. [Google Scholar]
- Mitscher, L.A.; Andres, W.W.; McCrae, W. Reticulol, a New Metabolic Isocoumarin. Breves Commun. Kurze Mitteilungen 1962, 5, 258–259. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.S.; Kwak, Y.S.; Kim, J.H.; Ko, S.H.; Yoon, W.H.; Kim, C.H. Antitumor Efficacy of Reticulol from Streptoverticillium against the Lung Metastasis Model B16F10 Melanoma: Lung Metastasis Inhibition by Growth Inhibition of Melanoma. Chemotherapy 2003, 49, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Furutani, Y.; Shimada, M.; Hamada, M.; Takeuchi, T.; Umezawa, H.; Furutani, Y.; Shimada, M. Reticulol, an Inhibitor of Cyclic Nucleotide Phosphodiesterases. Agric. Biol. Chem. 1977, 41, 989–993. [Google Scholar] [CrossRef]
- Niu, S.; Liu, Q.; Xia, J.M.; Xie, C.L.; Luo, Z.H.; Shao, Z.; Liu, G.; Yang, X.W. Polyketides from the Deep-Sea-Derived Fungus Graphostroma Sp. MCCC 3A00421 Showed Potent Antifood Allergic Activities. J. Agric. Food Chem. 2018, 66, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Singh, H.; Bhardwaj, N.; Bhardwaj, S.K.; Khatri, M.; Kim, K.; Peng, W. An Exploration on the Toxicity Mechanisms of Phytotoxins and Their Potential Utilities. Crit. Rev. Environ. Sci. Technol. 2022, 52, 395–435. [Google Scholar] [CrossRef]
- Xu, D.; Xue, M.; Shen, Z.; Jia, X.; Hou, X.; Lai, D. Phytotoxic Secondary Metabolites from Fungi. Toxins 2021, 13, 261. [Google Scholar] [CrossRef] [PubMed]
- Pontes, J.G.M.; Fernandes, L.S.; Vander, R.; Tasic, L.; Fill, T. Virulence Factors in the Phytopathogen-Host Interactions: An Overview Virulence Factors in the Phytopathogen-Host Interactions: An Overview. J. Agric. Food Chem. 2020, 68, 7555–7570. [Google Scholar] [CrossRef]
- Jetter, P.; Steinert, C.; Knauer, M.; Zhang, G.; Bruhn, T.; Wiese, J.; Imhoff, J.F.; Fiedler, H.; Bringmann, G. New Bhimamycins from Streptomyces Sp. AK 671*. J. Antibiot. 2013, 66, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.V.; Haeberlein, S.L.B.; Avila, J. Glycogen Synthase Kinase 3: A Drug Target for CNS Therapies. J. Neurochem. 2004, 89, 1313–1317. [Google Scholar] [CrossRef] [PubMed]
- Mccubrey, J.A.; Steelman, L.S.; Bertrand, F.E.; Davis, N.M.; Sokolosky, M.; Abrams, S.L.; Montalto, G.; Assoro, A.B.D.; Libra, M.; Nicoletti, F.; et al. GSK-3 as Potential Target for Therapeutic Intervention in Cancer. Oncotarget 2014, 5, 2881–2911. [Google Scholar] [CrossRef] [PubMed]
- Min, K.; Lee, K.; Young, G.; Jin, H. Molecular and Cellular Endocrinology Anti-Diabetic Efficacy of KICG1338, a Novel Glycogen Synthase Kinase- 3β Inhibitor, and Its Molecular Characterization in Animal Models of Type 2 Diabetes and Insulin Resistance. Mol. Cell. Endocrinol. 2015, 409, 1–10. [Google Scholar] [CrossRef]
- Dos Santos, T.C.; Gomes, T.M.; Pinto, B.A.S.; Camara, A.L.; De Andrade Paes, A.M. Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer’s Disease Therapy. Front. Pharmacol. 2018, 9, 1192. [Google Scholar] [CrossRef]
- Barbosa Filho, J.M.; Medeiros, K.C.P.; Diniz, M.D.F.F.M.; Batista, L.M.; Athayde-Filho, P.F.; Silva, M.S.; da Cunha, E.V.L.; Almeida, J.R.G.S.; Quintans-Júnior, L.J. Natural Products Inhibitors of the Enzyme Acetylcholinesterase. Rev. Bras. Farmacogn. 2006, 16, 258–285. [Google Scholar] [CrossRef]
No. | Compound Name | Fungal Strains (Solvent Used for Extraction) | Formulas | Nominal Mass | Ref. |
---|---|---|---|---|---|
Azaphilone Derivatives | |||||
1. | Biscogniazaphilone A | B. formosana (EtOH) | C24H34O4 | 409.23 | [10] |
2. | Biscogniazaphilone B | B. formosana (EtOH) | C25H32O5 | 435.21 | [10] |
Cerebrosides | |||||
3. | Cerebroside A | B. whalleyi (EtOAc) | C41H75NO9 | 748.53 | [11] |
4. | Cerebroside C | B. whaleyi (EtOAc) | C43H79NO9 | 754.1 | [11] |
Coumarins | |||||
| |||||
5. | Isoscopoletin | B. cylindrospora (EtOH) | C10H8O4 | 192.17 | [4] |
6. | Scopoletin | B. cylindrospora (EtOH) | C10H8O4 | 192.04 | [4] |
7. | Isofraxidine | B. cylindrospora (EtOH) | C11H10O5 | 222.05 | [12] |
| |||||
8. | 6-O-methyl-reticulol | B. capnodes (EtOAc) | C12H12O5 | 236.07 | [12] |
9. | Reticulol | B. capnodes (EtOAc) | C11H10O5 | 222.19 | [12] |
| |||||
10. | 3,5-dimethyl-8-methoxy-3,4-dihydroisocoumarin | B. nummularia (EtOAc) | C11H12O4 | 208.21 | [13] |
11. | 3,5-dimethyl-8-hydroxy-3,4-dihydroisocoumarin | B. nummularia (EtOAc) | C12H14O3 | 206.24 | [13] |
12. | (3R,4R)-4-hydroxymellein | B. rosacearum (EtOAc) | C10H10O4 | 194.18 | [14] |
13. | (3R,4S)-4- hydroxymellein | B. rosacearum (EtOAc) | C10H10O4 | 194.18 | [14] |
14. | (3R)-6-hydroxymellein | B. rosacearum (EtOAc) | C10H10O4 | 194.18 | [14] |
15. | 7-hydroxy-5-methylmellein | B. capnodes (EtOAc) | C11H12O4 | 208.21 | [12] |
16. | (3S)-5-hydroxy-8-O-methylmellein | B. cylindrospora (EtOH 70%) | C11H12O4 | 208.21 | [15] |
17. | 5-hydroxymethylmellein | B. cylindrospora (EtOH 70%) | C11H12O4 | 208.07 | [15] |
18. | 5-formylmellein | B. cylindrospora (EtOH 70%) | C11H10O4 | 206.06 | [15] |
19. | Mellein-5-carboxylic acid | B. cylindrospora (EtOH 70%) | C11H10O5 | 222.05 | [15] |
20. | (3R)-mellein | B. rosacearum (EtOAc) | C10H10O3 | 178.18 | [8] |
21. | 5-methylmellein | B. mediterranea (EtOAc) B. mediterranea (DCM) B. capnodes (EtOAc) B. whalleyi (EtOAc) | C11H12O3 | 192.21 | [16] [16] [12] [11] |
22. | (3R)-5-methylmellein | B. rosacearum (EtOAc) | C11H12O3 | 193 | [14] |
23. | (3R)-5-methyl-6-methoxymellein | B. rosacearum (EtOAc) | C12H14O4 | 223 | [14] |
24. | (3R)-4-methoxymellein | B. rosacearum (EtOAc) | C11H12O4 | 208.21 | [14] |
25. | 6-methoxy-5-methylmellein | B. mediterranea (MeOH) | C12H14O4 | 222.24 | [17] |
Fatty acids | |||||
26. | Linoleic acid | B. cylindrospora (EtOH) | C18H32O2 | 280.44 | [3] |
Flavonoids | |||||
27. | 5-hydroxy-3,7,4′-trimethoxyflavone | B. formosana (EtOH) | C19H18O7 | 358.3 | [10] |
Furan | |||||
28. | (3aS,4aR,8aS,9aR)-3a-hydroxy-8a-methyl-3,5-dimethylenedecahydronaphto [2,3-b]furan-2(3H)-one (HDFO) | Biscogniauxia sp. (EtOAc) | C15H20O3 | 248.31 | [18] |
Hydroxycinnamic acids and derivatives | |||||
29. | N-trans-feruloy-3-O-methyl-dopamine | B. formosana (EtOH) | C19H21NO5 | 343.4 | [10] |
Lignans | |||||
30. | Methyl 3,4-methylenedioxycinnamate | B. formosana (EtOH) | C12H14O4 | 222.24 | [10] |
31. | 3,4-methylenedioxycinnamic acid | B. formosana (EtOH) | C10H8O4 | 192.17 | [10] |
32. | 3,4-methylenedioxybenzoic acid | B. formosana (EtOH) | C8H6O4 | 166.13 | [10] |
Napthoquinone | |||||
33. | Naphtho [2,3-c]furandione (isofuranonephthoquinone) | B. mediterranea (MeOH) | C12H6O3 | 198.17 | [17] |
Peptides | |||||
| |||||
34. | cyclo (ʟ -Pro-Gly) | B. whalleyi (EtOAc) | C7H10N2O2 | 154.16 | [11] |
35. | cyclo (ʟ-Pro-ʟ-Leu) | B. whalleyi (EtOAc) | C11H18N2O2 | 210.27 | [11] |
36. | cyclo (ʟ-Pro-ʟ-Phe) | B. whalleyi (EtOAc) | C14H16N2O2 | 244.29 | [11] |
37. | cyclo (ʟ-Pro-ʟ-Val) | B. whalleyi (EtOAc) | C10H16N2O2 | 196.25 | [11] |
| |||||
38. | cyclo-(ʟ-Phe-ʟ-Leu-ʟ-Val-ʟ-Leu-ʟ-Leu) | B. mediterranea (MeOH) | C32H51N5O5 | 585.8 | [17] |
Phenyl and Phenol Derivatives | |||||
39. | 4-hydroxybenzaldehyde | B. formosana (EtOH) | C7H6O2 | 122.12 | [10] |
40. | 5-hydroxy-2-prenylhydroquinone | B. whalleyi (EtOAc) | C11H14O3 | 194.09 | [11] |
41. | 4-(3-methylbut-2-enyloxy)benzoic acid | B. formosana (EtOH) | C13H16O3 | 220.26 | [10] |
42. | 4- methoxycinnamaldehyde | B. formosana (EtOH) | C10H10O2 | 162.18 | [10] |
43. | 4-methoxy-trans-cinnamic acid | B. formosana (EtOH) | C10H10O3 | 178.18 | [10] |
44. | Methylparaben | B. cylindrospora (70% EtOH) | C8H8O3 | 152.15 | [15] |
45. | Phenylacetic Acid | B. mediterranea (EtOAc) | C8H8O2 | 136.15 | [8] |
46. | Syringaldehyde | B. cylindrospora (EtOH 70%) | C9H10O4 | 182.17 | [15] |
47. | Tyrosol | B. whalleyi (EtOAc) B. rosacearum (EtOAc) | C9H13NO2 | 167.09 | [11,14] |
48. | Vanillic acid | B. cylindrospora (EtOH 70%) | C8H8O4 | 168.14 | [15] |
Phthalides | |||||
49. | [4-[(acetyloxy)methyl]-7-methoxy-6-methyl-1(3H)-isobenzofuranone | Biscogniauxia sp. (EtOAc) | C13H14O5 | 209.08 | [9] |
50. | Biscogniphthalides A | Biscogniauxia sp. (EtOAc) | C18H23O7 | 351.14 | [9] |
51. | Biscogniphthalides B | Biscogniauxia sp. (EtOAc) | C17H21O7 | 337.12 | [9] |
52. | Biscogniphthalides C | Biscogniauxia sp. (EtOAc) | C12H13O6 | 253.07 | [9] |
53. | Biscogniphthalides D | Biscogniauxia sp. (EtOAc) | C11H13O4 | 209.08 | [9] |
54. | 7-hydroxy-5-methoxy-4,6-dimethylphthalide | B. whalleyi (EtOAc) | C11H12O3 | 208.07 | [11] |
Pyranopyran | |||||
55. | (Z)-2-methoxy-1-[7-((Z)-2-methoxybut-2-enoyl)-3,4,5,6-tetramethyl-2H,7H-pyrano [2,3-b]pyran-2-yl]but-2-en-1-one (Biscopyran) | B. mediterranea (EtOAc) | C22H28O6 | 388.18 | [8] |
α-pyrones | |||||
56. | 6-(1′, 2′-dimethyloxiran-1′-yl)-4-methoxy-3-methyl-2H-pyran-2-one | B. whalleyi (EtOAc) | C11H14O4 | 233.07 | [11] |
57. | Gulypyrone B | B. whalleyi (EtOAc) | C11H14O4 | 210.09 | [11] |
58. | 6-[(1R)-1-hydroxy-1-methyl-2-propenyl]-4-methoxy-3-methyl-2H-pyran-2-one | B. whalleyi (EtOAc) | C11H14O4 | 210.23 | [11] |
59. | Nectriapyrone | B. whalleyi (EtOAc) B. rosacearum (EtOAc) | C11H14O3 | 194.23 | [11] [14] |
60. | Phomopyrone A | B. whalleyi (EtOAc) | C11H14O4 | 210.22 | [11] |
61. | Vermopyrone | B. whalleyi (EtOAc) | C9H10O4 | 182.17 | [11] |
Steroids | |||||
62. | Cerevisterol | B. whalleyi (EtOAc) | C28H46O3 | 430.34 | [11] |
63. | Ergone | B. whalleyi (EtOAc) | C28H40O | 392.6 | [11] |
64. | Ergosta-4,6,8(14), 22-tetraen-3-one | B. formosana (EtOH) | C28H40O | 392.6 | [10] |
65. | Ergosterol | B. whalleyi (EtOAc) | C28H44O | 396.34 | [11] |
66. | Ergosterol peroxide | B. whalleyi (EtOAc) | C28H44O3 | 428.6 | [11] |
67. | 3β-hydroxystigmast-5-en-7-one | B. cylindrospora (EtOH 70%) | C29H48O2 | 428.7 | [15] |
68. | β-cytostenone | B. cylindrospora (EtOH) | C29H48O | 412.7 | [4] |
69. | β-sitosterol | B. cylindrospora (EtOH) | C29H50O | 414.7 | [4] |
Terpenoids and the Derivatives | |||||
| |||||
70. | Biscognisecoisopimarate A | Biscogniauxia sp. (EtOAc) | C23H38O6 | 433.25 | [19] |
71. | 3β-Hydroxyrickitin A | Biscogniauxia sp. (EtOAc) | C20H27O4 | 331.19 | [19] |
| |||||
72. | Biscogniacid B | Biscogniauxia sp. (EtOAc) | C12H15O5 | 239.09 | [20] |
73. | Biscogniacid C | Biscogniauxia sp. (EtOAc) | C12H15O5 | 239.09 | [20] |
74. | Biscognienyne D | Biscogniauxia sp. (EtOAc) | C16H20O4 | 299.12 | [20] |
75. | Biscognienyne F | Biscogniauxia sp. (EtOAc) | C17H20O6 | 343.11 | [20] |
76. | Biscognin A | Biscogniauxia sp. (EtOAc) | C16H23O5 | 295.15 | [20] |
77. | Biscognin B | Biscogniauxia sp. (EtOAc) | C1 6H23O4 | 279.16 | [20] |
78. | Biscognin C | Biscogniauxia sp. (EtOAc) | C15H21O4 | 265.14 | [20] |
79. | Biscognin D | Biscogniauxia sp. (EtOAc) | C16H21O4 | 277.14 | [20] |
80. | Biscognin E | Biscogniauxia sp. (EtOAc) | C16H21O4 | 277.14 | [20] |
81. | Biscognin F | Biscogniauxia sp. (EtOAc) | C16H22O4 | 301.214 | [20] |
82. | Biscogniacid A | Biscogniauxia sp. (EtOAc) | C12H13O4 | 221.08 | [21] |
83. | Biscognienyne A | Biscogniauxia sp. (EtOAc) | C16H22O3 | 285.14 | [21] |
84. | Biscognienyne B | Biscogniauxia sp. (EtOAc) | C16H20O3 | 283.13 | [21] |
85. | Biscognienyne C | Biscogniauxia sp. (EtOAc) | C15H20O4 | 287.12 | [21] |
86. | Biscognienyne E | Biscogniauxia sp. (EtOAc) | C16H20O4 | 283.13 | [20] |
87. | Dimericbiscognienynes A | Biscogniauxia sp. (EtOAc) | C32H40O6 | 545.28 | [21] |
88. | Dimericbiscognienynes B | Biscogniauxia sp. (EtOAc) | C32H42O6 | 545.28 | [22] |
89. | Dimericbiscognienynes C | Biscogniauxia sp. (EtOAc) | C32H41O6 | 521.29 | [22] |
| |||||
90. | Biscogniauxiaol A | B. petrensis (MeOH) | C15H23O3 | 251.1644 | [23] |
91. | Biscogniauxiaol B | B. petrensis (MeOH) | C15H28O3 | 279.1927 | [23] |
92. | Biscogniauxiaol C | B. petrensis (MeOH) | C15H28O4 | 295.1882 | [23] |
93. | Biscogniauxiaol D | B. petrensis (MeOH) | C15H28O4 | 295.187 | [23] |
94. | Biscogniauxiaol E | B. petrensis (MeOH) | C15H28O4 | 295.1878 | [23] |
95. | Biscogniauxiaol F | B. petrensis (MeOH) | C16H28O4 | 307.1873 | [23] |
96. | Biscogniauxiaol G | B. petrensis (MeOH) | C15H28O3 | 277.1764 | [23] |
97. | Epiguaidiol A | B. whalleyi (EtOAc) | C15H26O2 | 238.37 | [11] |
98. | Graphostromane E | B. whalleyi (EtOAc) | C15H26O2 | 261.18 | [11] |
99. | (1R*,4S*,5S*,7S*,10R*)-guaia-11(12)-en-7,10-diol | B. whalleyi (EtOAc) | C15H26O2 | 261.18 | [11] |
100. | (1R,4S,5S,7R,10R,11R)-guaiane-10,11,12-triol | B. whalleyi (EtOAc) | C15H27O3 | 255.37 | [11] |
101. | (1R,4S,5S,7R,10R,11S)-guaiane-10,11,12-triol | B. whalleyi (EtOAc) | C15H27O3 | 255.37 | [11] |
102. | Patchouliguaiol A | B. whalleyi (EtOAc) | C15H24O2 | 236.34 | [11] |
103. | Pogostol | B. whalleyi (EtOAc) | C15H26O | 222.37 | [11] |
104. | Xyralanone | B. whalleyi (EtOAc) B. nummularia (EtOAc) | C15H27O3 | 255.37 | [11,13] |
105. | Xylaranol A | B. whalleyi (EtOAc) | C8H10O4 | 170.16 | [11] |
106. | Xylaranol B | B. nummularia (EtOAc) | C15H28O3 | 257.29 | [13] |
107. | Xylariterpenoids A | B. whalleyi (EtOAc) | C15H25O3 | 253.36 | [11] |
108. | Xylariterpenoids B | B. whalleyi (EtOAc) | C15H25O3 | 253.36 | [11] |
109. | Xylariterpenoid L | B. whalleyi (EtOAc) | C15H22O2 | 257.15 | [11] |
110. | Xylariterpenoid M | B. whalleyi (EtOAc) | C15H24O4 | 291.15 | [11] |
111. | Xylariterpenoid N | B. whalleyi (EtOAc) | C15H23O | 219.17 | [11] |
112. | (1R,2S,6R,7S)-1,2-dihydroxy-α-bisabolol | B. whalleyi (EtOAc) | C15H22O | 277.17 | [11] |
Tyramines | |||||
113. | N-trans-feruloyltyramine | B. cylindrospora (EtOH 70%) | C18H19NO4 | 313.35 | [15] |
114. | N-cis-feruloyltyramine | B. cylindrospora (EtOH 70%) | C18H19NO4 | 313.3 | [15] |
Other | |||||
115. | Meso-2,3-butanediol | B. rosacearum (EtOAc) | C4H10O2 | 90.07 | [14] |
Strains | The Part Where the Mushroom Grows | Growing Conditions | Identified Compounds | Biological Activity | Ref. |
---|---|---|---|---|---|
B. mediterranea Ohu 19B | Opuntia humifusa plant | Potato dextrose agar (PDA) medium | 20 | Antifungal (C. fragariae, C. gloeosporioide C. acutatum) | [16] |
B. petrensis MFLUCC14-0151 | Dendrobium orchids | Martin modified (MM) medium | 90–96 | Antifungal (C. albicans) | [23] |
B. formosana BCRC 33718 | Cinnamomum sp | Potato dextrose agar (PDA) medium | 1, 2, 26, 28–31, 38, 40–42, 63 | Antimycobacterial (M. tuberculosis) | [10] |
B. whalleyi SWUF13-085 | Corticated wood | Potato dextrose agar (PDA) medium | 3, 4, 53, 57, 58, 82–90, 107–112 | Cytotoxic activity (HeLa cells, HT29, HT116 cells, MCF-7 cells, Vero cells) and NO production inhibition | [11] |
B. capnodes TAC-2014 | Averrhoa carambola | Potato dextrose broth (PDB) medium | 7, 8, 15, 21 | Antioxidant activity | [12] |
B. rosacearum IRAN 4194C and IRAN 4287C | Vitis vinifera L. | Potato dextrose broth (PDB) medium | 12–14, 20, 22–24, 46, 58, 115 | Phytotoxic activity | [14] |
B. nummularia LCP 05669 | Cephalotaxus harringtonia | Potato dextrose agar containing V8 medium | 10, 11, 104, 106 | Antigerminative activity | [13] |
B. mediterranea LF657 | Deep-sea sediments | Five different agar media (Cytophaga-Flavobacterium-Bacteroides medium, tryptone, yeast extract, Bacto™ agar) | 24, 32, 37 | Activity against the enzyme GSK-3β | [17] |
Biscogniauxia sp. No. 71-10-1-1 | Usnea mutabilis Stirt. | - | 82–95, 87 82, 87 | Cytotoxic activity (HeLa, SW480, PANC-1) Anti-AD activities | [21] |
Biscogniauxia sp. No. 69-8-7-1 | Rimelia reticulata | Potato dextrose agar (PDA) medium | 49–52 | AChE activity | [9] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purbaya, S.; Harneti, D.; Safriansyah, W.; Rahmawati; Wulandari, A.P.; Mulyani, Y.; Supratman, U. Secondary Metabolites of Biscogniauxia: Distribution, Chemical Diversity, Bioactivity, and Implications of the Occurrence. Toxins 2023, 15, 686. https://doi.org/10.3390/toxins15120686
Purbaya S, Harneti D, Safriansyah W, Rahmawati, Wulandari AP, Mulyani Y, Supratman U. Secondary Metabolites of Biscogniauxia: Distribution, Chemical Diversity, Bioactivity, and Implications of the Occurrence. Toxins. 2023; 15(12):686. https://doi.org/10.3390/toxins15120686
Chicago/Turabian StylePurbaya, Sari, Desi Harneti, Wahyu Safriansyah, Rahmawati, Asri Peni Wulandari, Yeni Mulyani, and Unang Supratman. 2023. "Secondary Metabolites of Biscogniauxia: Distribution, Chemical Diversity, Bioactivity, and Implications of the Occurrence" Toxins 15, no. 12: 686. https://doi.org/10.3390/toxins15120686
APA StylePurbaya, S., Harneti, D., Safriansyah, W., Rahmawati, Wulandari, A. P., Mulyani, Y., & Supratman, U. (2023). Secondary Metabolites of Biscogniauxia: Distribution, Chemical Diversity, Bioactivity, and Implications of the Occurrence. Toxins, 15(12), 686. https://doi.org/10.3390/toxins15120686