The Role of α3β1 Integrin Modulation on Fabry Disease Podocyte Injury and Kidney Impairment
Abstract
:1. Introduction
2. Results
2.1. CQ Decreases Podocyte Viability
2.2. CQ Promotes Acid Organelle Accumulation
2.3. CQ Promotes Podocyte Structural Changes
2.4. Effects of CQ on α3β1 Integrin
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Reagents
5.2. Podocyte Cell Culture and Treatment Conditions
5.3. Cell Viability Assay
5.4. Acid Organelle Accumulation Assay
5.5. Fluorescence Lysosome Inclusions Visualization Assay
5.6. Actin-F Cytoskeleton and α3 Integrin Visualization Assay
5.7. Integrins α3 and β1 Gene Expression
5.8. Analysis of Integrin α3 Levels via Western Blotting
5.9. Morphological and Ultrastructural Analysis Performed via a Scan Electronic Microscopy
5.10. Data Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Battaglia, Y.; Fiorini, F.; Azzini, C.; Esposito, P.; De Vito, A.; Granata, A.; Storari, A.; Mignani, R. Deficiency in the Screening Process of Fabry Disease: Analysis of Chronic Kidney Patients Not on Dialysis. Front Med. (Lausanne) 2021, 8, 640876. [Google Scholar] [CrossRef] [PubMed]
- Castelli, V.; Stamerra, C.A.; d’Angelo, M.; Cimini, A.; Ferri, C. Current and Experimental Therapeutics for Fabry Disease. Clin. Genet. 2021, 100, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Bichet, D.G.; Aerts, J.M.; Auray-Blais, C.; Maruyama, H.; Mehta, A.B.; Skuban, N.; Krusinska, E.; Schiffmann, R. Assessment of Plasma Lyso-Gb3 for Clinical Monitoring of Treatment Response in Migalastat-Treated Patients with Fabry Disease. Genet. Med. 2021, 23, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Kok, K.; Zwiers, K.C.; Boot, R.G.; Overkleeft, H.S.; Aerts, J.M.F.G.; Artola, M. Fabry Disease: Molecular Basis, Pathophysiology, Diagnostics and Potential Therapeutic Directions. Biomolecules 2021, 11, 271. [Google Scholar] [CrossRef] [PubMed]
- Boggio, P.; Luna, P.C.; Abad, M.E.; Larralde, M. Doença de Fabry. An. Bras. Dermatol. 2009, 84, 367–376. [Google Scholar] [CrossRef]
- Nagamatsu, K.; Sekijima, Y.; Nakamura, K.; Nakamura, K.; Hattori, K.; Ota, M.; Shimizu, Y.; Endo, F.; Ikeda, S.I. Prevalence of Fabry Disease and GLA c.196G>C Variant in Japanese Stroke Patients. J. Hum. Genet. 2017, 62, 665–670. [Google Scholar] [CrossRef]
- Nakao, S.; Kodama, C.; Takenaka, T.; Tanaka, A.; Yasumoto, Y.; Yoshida, A.; Kanzaki, T.; Enriquez, A.L.D.; Eng, C.M.; Tanaka, H.; et al. Fabry Disease: Detection of Undiagnosed Hemodialysis Patients and Identification of a “Renal Variant” Phenotype. Kidney Int. 2003, 64, 801–807. [Google Scholar] [CrossRef]
- Shu, L.; Vivekanandan-Giri, A.; Pennathur, S.; Smid, B.E.; Aerts, J.M.F.G.; Hollak, C.E.M.; Shayman, J.A. Establishing 3-Nitrotyrosine as a Biomarker for the Vasculopathy of Fabry Disease. Kidney Int. 2014, 86, 58–66. [Google Scholar] [CrossRef]
- Abou Daher, A.; El Jalkh, T.; Eid, A.A.; Fornoni, A.; Marples, B.; Zeidan, Y.H. Translational Aspects of Sphingolipid Metabolism in Renal Disorders. Int. J. Mol. Sci. 2017, 18, 2528. [Google Scholar] [CrossRef]
- Liebau, M.C.; Braun, F.; Höpker, K.; Weitbrecht, C.; Bartels, V.; Müller, R.U.; Brodesser, S.; Saleem, M.A.; Benzing, T.; Schermer, B.; et al. Dysregulated Autophagy Contributes to Podocyte Damage in Fabry’s Disease. PLoS ONE 2013, 8, e63506. [Google Scholar] [CrossRef]
- Albay, D.; Adler, S.G.; Philipose, J.; Calescibetta, C.C.; Romansky, S.G.; Cohen, A.H. Chloroquine-Induced Lipidosis Mimicking Fabry Disease. Modern Pathol. 2005, 18, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.M.; Martul, E.V.; Reboredo, J.M.; Cigarrán, S. Curvilinear Bodies in Hydroxychloroquine-Induced Renal Phospholipidosis Resembling Fabry Disease. Clin. Kidney J. 2013, 6, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Linthorst, G.E.; Hollak, C.E.M.; Müller-Höcker, J. Chloroquine-Induced Phospholipidosis of the Kidney Mimicking Fabry’s Disease (multiple letters). Hum. Pathol. 2003, 34, 1358–1359. [Google Scholar] [CrossRef]
- Manabe, S.; Mochizuki, T.; Sato, M.; Kataoka, H.; Taneda, S.; Honda, K.; Uchida, K.; Nitta, K. Lupus Nephritis and Hydroxychloroquine-Associated Zebra Bodies: Not Just in Fabry Disease. Kidney Med. 2021, 3, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Yogasundaram, H.; Hung, W.; Paterson, I.D.; Sergi, C.; Oudit, G.Y. Chloroquine-induced cardiomyopathy: A reversible cause of heart failure. ESC Heart Failure 2018, 5, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Ducharme, J.; Farinotti, R. Clinical Pharmacokinetics and Metabolism of Chloroquine. Focus on Recent Advancements. Clin. Pharmacokinet. 1996, 31, 257–274. [Google Scholar] [CrossRef]
- Gonzalez-Noriega, A.; Grubb, J.H.; Talkad, V.; Sly, W.S. Chloroquine Inhibits Lysosomal Enzyme Pinocytosis and Enhances Lysosomal Enzyme Secretion by Impairing Receptor Recycling. J. Cell Biol. 1980, 85, 839–852. [Google Scholar] [CrossRef]
- Sachs, N.; Sonnenberg, A. Cell-Matrix Adhesion of Podocytes in Physiology and Disease. Nat. Rev. Nephrol. 2013, 9, 200–210. [Google Scholar] [CrossRef]
- Greka, A.; Mundel, P. Cell Biology and Pathology of Podocytes. Annu. Rev. Physiol. 2012, 74, 299–323. [Google Scholar] [CrossRef]
- Nagata, M. Podocyte Injury and Its Consequences. Kidney Int. 2016, 89, 1221–1230. [Google Scholar] [CrossRef]
- Inagaki, M.; Katsumoto, T.; Nanba, E.; Ohno, K.; Suehiro, S.; Takeshita, K. Lysosomal Glycosphingolipid Storage in Chloroquine-Induced α-Galactosidase-Deficient Human Endothelial Cells with Transformation by Simian Virus 40: In Vitro Model of Fabry Disease. Acta Neuropathol. 1993, 85, 272–279. [Google Scholar] [CrossRef]
- Gregório, P.C.; da Cunha, R.S.; Biagini, G.; Bosquetti, B.; Budag, J.; Ortiz, A.; Sánchez-Niño, M.D.; Barreto, F.C.; Stinghen, A.E.M. Chloroquine May Induce Endothelial Injury through Lysosomal Dysfunction and Oxidative Stress. Toxicol. Appl. Pharmacol. 2021, 414, 115412. [Google Scholar] [CrossRef] [PubMed]
- Seydelmann, N.; Wanner, C.; Störk, S.; Ertl, G.; Weidemann, F. Fabry Disease and the Heart. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Turkmen, K.; Guclu, A.; Sahin, G.; Kocyigit, I.; Demirtas, L.; Erdur, F.M.; Sengül, E.; Ozkan, O.; Emre, H.; Turgut, F.; et al. The Prevalence of Fabry Disease in Patients with Chronic Kidney Disease in Turkey: The TURKFAB Study. Kidney Blood Press Res. 2016, 41, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Law, H.K.W.; Zhang, Y.; Wu, Y.; Zhu, G.H.; Saleem, M.A.; Huang, W.Y. TMT-Based Proteomic Analysis Reveals the Effects of Chloroquine on Human Podocytes. Am. J. Transl. Res. 2020, 12, 4290–4301. [Google Scholar] [PubMed]
- Mundel, P.; Kriz, W. Structure and Function of Podocytes: An Update. Anat. Embryol. 1995, 192, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Perico, L.; Conti, S.; Benigni, A.; Remuzzi, G. Podocyte-Actin Dynamics in Health and Disease. Nat. Rev. Nephrol. 2016, 12, 692–710. [Google Scholar] [CrossRef]
- Baraldi, A.; Furci, L.; Zambruno, G.; Rubbiani, E.; Annessi, G.; Lusvarghi, E. Very Late Activation-3 Integrin Is the Dominant Β1-Integrin on the Glomerular Capillary Wall: An Immunofluorescence Study in Nephrotic Syndrome. Nephron 1992, 62, 382–388. [Google Scholar] [CrossRef]
- Toyoda, M.; Najafian, B.; Kim, Y.; Caramori, M.L.; Mauer, M. Endothelial Fenestration in Human Type 1 Diabetic. Diabetes 2007, 56, 2155–2160. [Google Scholar] [CrossRef]
- Weil, E.J.; Lemley, K.V.; Mason, C.C.; Yee, B.; Jones, L.I.; Blouch, K.; Lovato, T.; Richardson, M.; Myers, B.D.; Nelson, R.G. Podocyte Detachment and Reduced Glomerular Capillary Endothelial Fenestration Promote Kidney Disease in Type 2 Diabetic Nephropathy. Kidney Int. 2012, 82, 1010–1017. [Google Scholar] [CrossRef]
- Han, S.Y.; Kang, Y.S.; Jee, Y.H.; Han, K.H.; Cha, D.R.; Kang, S.W.; Han, D.S. High Glucose and Angiotensin II Increase Β1 Integrin and Integrin-Linked Kinase Synthesis in Cultured Mouse Podocytes. Cell Tissue Res. 2006, 323, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Sawada, K.; Toyoda, M.; Kaneyama, N.; Shiraiwa, S.; Moriya, H.; Miyatake, H.; Tanaka, E.; Yamamoto, N.; Miyauchi, M.; Kimura, M.; et al. Upregulation of α 3 β 1-Integrin in Podocytes in Early-Stage Diabetic Nephropathy. J. Diabetes Res. 2016, 2016, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kreidberg, J.A.; Donovan, M.J.; Goldstein, S.L.; Rennke, H.; Shepherd, K.; Jones, R.C.; Jaenisch, R. Alpha 3 Beta 1 Integrin Has a Crucial Role in Kidney and Lung Organogenesis. Development 1996, 122, 3537–3547. [Google Scholar] [CrossRef]
- Sachs, N.; Kreft, M.; Van Den Bergh Weerman, M.A.; Beynon, A.J.; Peters, T.A.; Weening, J.J.; Sonnenberg, A. Kidney Failure in Mice Lacking the Tetraspanin CD151. J. Cell Biol. 2006, 175, 33–39. [Google Scholar] [CrossRef]
- Chen, J.; Gui, D.; Chen, Y.; Mou, L.; Liu, Y.; Huang, J. Astragaloside IV Improves High Glucose-Induced Podocyte Adhesion Dysfunction via A3β1 Integrin Upregulation and Integrin-Linked Kinase Inhibition. Biochem. Pharmacol. 2008, 76, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Dessapt, C.; Baradez, M.O.; Hayward, A.; Dei Cas, A.; Thomas, S.M.; Viberti, G.; Gnudi, L. Mechanical Forces and TGFβ1 Reduce Podocyte Adhesion through A3β1 Integrin Downregulation. Nephrol. Dial. Transplant. 2009, 24, 2645–2655. [Google Scholar] [CrossRef]
- Reiser, J.; Oh, J.; Shirato, I.; Asanuma, K.; Hug, A.; Mundel, T.M.; Honey, K.; Ishidoh, K.; Kominami, E.; Kreidberg, J.A.; et al. Podocyte Migration during Nephrotic Syndrome Requires a Coordinated Interplay between Cathepsin L and A3 Integrin. J. Biol. Chem. 2004, 279, 34827–34832. [Google Scholar] [CrossRef]
- Fujino, T.; Hasebe, N. Alteration of Histone H3K4 Methylation in Glomerular Podocytes Associated with Proteinuria in Patients with Membranous Nephropathy. BMC Nephrol. 2016, 17, 1–15. [Google Scholar] [CrossRef]
- Schiwek, D.; Endlich, N.; Holzman, L.; Holthöfer, H.; Kriz, W.; Endlich, K. Stable Expression of Nephrin and Localization to Cell-Cell Contacts in Novel Murine Podocyte Cell Lines. Kidney Int. 2004, 66, 91–101. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral Red Uptake Assay for the Estimation of Cell Viability/ Cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
Gene | Oligonucleotides * |
---|---|
Itgb1 | 5′-AACTTGTTGGTCAGCAACGC-3′ (F) 5′-AACCGCAACCTGCATGATTG-3′ (R) |
Itga3 | 5′-CCTCTTCGGCTACTCGGTC-3′ (F) 5′-CCGGTTGGTATAGTCATCACCC-3′ (R) |
Rplp0 | 5′-CGACCTGGAAGTCCAACTAC-3′ (F) 5′-ACTTGCTGCATCTGCTTG-3′ (R) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosquetti, B.; Santana, A.A.; Gregório, P.C.; Cunha, R.S.d.; Miniskiskosky, G.; Budag, J.; Franco, C.R.C.; Ramos, E.A.d.S.; Barreto, F.C.; Stinghen, A.E.M. The Role of α3β1 Integrin Modulation on Fabry Disease Podocyte Injury and Kidney Impairment. Toxins 2023, 15, 700. https://doi.org/10.3390/toxins15120700
Bosquetti B, Santana AA, Gregório PC, Cunha RSd, Miniskiskosky G, Budag J, Franco CRC, Ramos EAdS, Barreto FC, Stinghen AEM. The Role of α3β1 Integrin Modulation on Fabry Disease Podocyte Injury and Kidney Impairment. Toxins. 2023; 15(12):700. https://doi.org/10.3390/toxins15120700
Chicago/Turabian StyleBosquetti, Bruna, Aline Aparecida Santana, Paulo Cézar Gregório, Regiane Stafim da Cunha, Guilherme Miniskiskosky, Julia Budag, Célia Regina Cavichiolo Franco, Edneia Amancio de Souza Ramos, Fellype Carvalho Barreto, and Andréa Emilia Marques Stinghen. 2023. "The Role of α3β1 Integrin Modulation on Fabry Disease Podocyte Injury and Kidney Impairment" Toxins 15, no. 12: 700. https://doi.org/10.3390/toxins15120700
APA StyleBosquetti, B., Santana, A. A., Gregório, P. C., Cunha, R. S. d., Miniskiskosky, G., Budag, J., Franco, C. R. C., Ramos, E. A. d. S., Barreto, F. C., & Stinghen, A. E. M. (2023). The Role of α3β1 Integrin Modulation on Fabry Disease Podocyte Injury and Kidney Impairment. Toxins, 15(12), 700. https://doi.org/10.3390/toxins15120700