Bacillus thuringiensis Cyt Proteins as Enablers of Activity of Cry and Tpp Toxins against Aedes albopictus
Abstract
:1. Introduction
2. Results
2.1. Activity of Cry and Cyt Proteins from Strain AM 65-52 against A. albopictus Larvae
2.2. Potential Mosquitocidal Cry, Cyt and Tpp Genes from the BST Collection
2.3. Characterization of the Bt Recombinant Strains Expressing the New Potential Mosquitocidal Proteins
2.4. Synergies between Cyt and AM 65-52 Cry Proteins
2.5. Cyt Proteins as Enablers of Activity of Cry and Tpp Toxins
3. Discussion
4. Materials and Methods
4.1. Total DNA Extraction and Genomic Sequencing of the Bacterial Strains
4.2. Identification of the Potential Mosquitocidal Genes in the BST Collection
4.3. Bacterial Strains and Plasmids Used in the Cloning Process
4.4. Amplification, Cloning and Sequencing of Cyt1a-like, Cyt1d-like, Cry4-like, Cry53-like, Cry56a-like and Tpp36-like
- cyt1-like
- cry4-like
- cry53-like
- cry56A-like
- tpp36-like
4.5. Nucleotide Sequence Accession Numbers
4.6. Spore-and-Crystal Mixture Production, Protein Quantification and SDS-PAGE Analysis
4.7. Bioassays on L2 Larvae of A. Albopictus
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kambhampati, S.; Black Iv, W.C.; Rai, K.S. Geographic Origin of the US and Brazilian Aedes Albopictus Inferred from Allozyme Analysis. Heredity 1991, 67, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Bonizzoni, M.; Gasperi, G.; Chen, X.; James, A.A. The Invasive Mosquito Species Aedes Albopictus: Current Knowledge and Future Perspectives. Trends Parasitol. 2013, 29, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Adhami, J.; Reiter, P. Introduction and Establishment of Aedes (Stegomyia) Albopictus Skuse (Diptera: Culicidae) in Albania. J. Am. Mosq. Control. Assoc. 1998, 14, 340–343. [Google Scholar] [PubMed]
- Tippelt, L.; Werner, D.; Kampen, H. Tolerance of Three Aedes Albopictus Strains (Diptera: Culicidae) from Different Geographical Origins towards Winter Temperatures under Field Conditions in Northern Germany. PLoS ONE 2019, 14, e0219553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatini, A.; Raineri, V.; Trovato, G.; Coluzzi, M. Aedes Albopictus in Italy and Possible Diffusion of the Species into the Mediterranean Area. Parassitologia 1990, 32, 301–304. [Google Scholar]
- Rezza, G. Chikungunya Is Back in Italy: 2007–2017. J. Travel Med. 2018, 25, tay004. [Google Scholar] [CrossRef] [Green Version]
- Lwande, O.W.; Obanda, V.; Lindström, A.; Ahlm, C.; Evander, M.; Näslund, J.; Bucht, G. Globe-Trotting Aedes Aegypti and Aedes Albopictus: Risk Factors for Arbovirus Pandemics. Vector-Borne Zoonotic Dis. 2020, 20, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, V.; Agostini, V.; Moroni, E.; Colombo, G.; Lombardo, G.; Rambaldi Migliore, N.; Gabrieli, P.; Garofalo, M.; Gagliardi, S.; Gomulski, L.M.; et al. The Worldwide Spread of Aedes Albopictus: New Insights from Mitogenomes. Front. Genet. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.U.G.; Reiner, R.C.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and Future Spread of the Arbovirus Vectors Aedes Aegypti and Aedes Albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leta, S.; Beyene, T.J.; de Clercq, E.M.; Amenu, K.; Kraemer, M.U.G.; Revie, C.W. Global Risk Mapping for Major Diseases Transmitted by Aedes Aegypti and Aedes Albopictus. Int. J. Infect. Diseases 2018, 67, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Sasayama, M.; Benjathummarak, S.; Kawashita, N.; Rukmanee, P.; Sangmukdanun, S.; Masrinoul, P.; Pitaksajjakul, P.; Puiprom, O.; Wuthisen, P.; Kurosu, T.; et al. Chikungunya Virus Was Isolated in Thailand, 2010. Virus Genes 2014, 49, 485–489. [Google Scholar] [CrossRef] [Green Version]
- da Cunha, R.V.; Trinta, K.S. Chikungunya Virus: Clinical Aspects and Treatment. Mem. Inst. Oswaldo Cruz 2017, 112, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Rezza, G. Aedes Albopictus and the Reemergence of Dengue. BMC Public Health 2012, 12, 72. [Google Scholar] [CrossRef] [Green Version]
- Gardner, L.M.; Chen, N.; Sarkar, S. Global Risk of Zika Virus Depends Critically on Vector Status of Aedes Albopictus. Lancet Infect. Dis 2016, 16, 522–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciota, A.T.; Bialosuknia, S.M.; Zink, S.D.; Brecher, M.; Ehrbar, D.J.; Morrissette, M.N.; Kramer, L.D. Effects of Zika Virus Strain and Aedes Mosquito Species on Vector Competence. Emerg. Infect. Dis 2017, 23, 1110–1117. [Google Scholar] [CrossRef] [Green Version]
- Gómez, M.; Martinez, D.; Muñoz, M.; Ramírez, J.D. Aedes Aegypti and Ae. Albopictus Microbiome/Virome: New Strategies for Controlling Arboviral Transmission? Parasit Vectors 2022, 15, 287. [Google Scholar] [CrossRef]
- Rivero, A.; Vézilier, J.; Weill, M.; Read, A.F.; Gandon, S. Insecticide Control of Vector-Borne Diseases: When Is Insecticide Resistance a Problem? PLoS Pathog 2010, 6, 5–6. [Google Scholar] [CrossRef] [Green Version]
- Medlock, J.M.; Hansford, K.M.; Schaffner, F.; Versteirt, V.; Hendrickx, G.; Zeller, H.; van Bortel, W. A Review of the Invasive Mosquitoes in Europe: Ecology, Public Health Risks, and Control Options. Vector-Borne Zoonotic Dis. 2012, 12, 435–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, M.M.; Bisset, J.A.; Fernández, D. Levels of Insecticide Resistance and Resistance Mechanisms in Aedes Aegypti from Some Latin American Countries. J. Am. Mosq. Control Assoc. 2007, 23, 420–429. [Google Scholar] [CrossRef]
- Hemingway, J.; Hawkes, N.J.; McCarroll, L.; Ranson, H. The Molecular Basis of Insecticide Resistance in Mosquitoes. Insect Biochem. Mol. Biol. Insect Biochem. Mol. Biol. 2004, 34, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Marcombe, S.; Farajollahi, A.; Healy, S.P.; Clark, G.G.; Fonseca, D.M. Insecticide Resistance Status of United States Populations of Aedes Albopictus and Mechanisms Involved. PLoS ONE 2014, 9, e101992. [Google Scholar] [CrossRef] [Green Version]
- Liu, N. Insecticide Resistance in Mosquitoes: Impact, Mechanisms, and Research Directions. Annu. Rev. Entomol. 2015, 60, 537–559. [Google Scholar] [CrossRef] [PubMed]
- Department of Control of Neglected Tropical Diseases WHO Pesticide Evaluation Scheme (WHOPES). Pesticides and Their Application for the Control of Vectors and Pests of Public Health Importance; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Kache, P.A.; Eastwood, G.; Collins-Palmer, K.; Katz, M.; Falco, R.C.; Bajwa, W.I.; Armstrong, P.M.; Andreadis, T.G.; Diuk-Wasser, M.A. Environmental Determinants of Aedes Albopictus Abundance at a Northern Limit of Its Range in the United States. Am. J. Trop. Med. Hyg. 2020, 102, 436–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raymond, B.; Federici, B.A. In Defense of Bacillus Thuringiensis, the Safest and Most Successful Microbial Insecticide Available to Humanity—A Response to EFSA. FEMS Microbiol. Ecol. 2017, 93, fix084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirth, M.C.; Park, H.W.; Walton, W.E.; Federici, B.A. Cyt1A of Bacillus thuringiensis Delays Evolution of Resistance to Cry11A in the Mosquito Culex Quinquefasciatus. Appl. Environ. Microbiol. 2005, 71, 185–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stalinski, R.; Tetreau, G.; Gaude, T.; Després, L. Pre-Selecting Resistance against Individual Bti Cry Toxins Facilitates the Development of Resistance to the Bti Toxins Cocktail. J. Invertebr. Pathol. 2014, 119, 50–53. [Google Scholar] [CrossRef]
- Stalinski, R.; Laporte, F.; Tetreau, G.; Després, L. Receptors Are Affected by Selection with Each Bacillus thuringiensis Israelensis Cry Toxin but Not with the Full Bti Mixture in Aedes Aegypti. Infect. Genet. Evol. 2016, 44, 218–227. [Google Scholar] [CrossRef]
- Lee, S.B.; Aimanova, K.G.; Gill, S.S. Alkaline Phosphatases and Aminopeptidases Are Altered in a Cry11Aa Resistant Strain of Aedes Aegypti. Insect. Biochem. Mol. Biol. 2014, 54, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Cadavid-Restrepo, G.; Sahaza, J.; Orduz, S. Treatment of an Aedes Aegypti Colony with the Cry11Aa Toxin for 54 Generations Results in the Development of Resistance. Mem. Inst. Oswaldo Cruz 2012, 107, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Boyce, R.; Lenhart, A.; Kroeger, A.; Velayudhan, R.; Roberts, B.; Horstick, O. Bacillus thuringiensis Israelensis (Bti) for the Control of Dengue Vectors: Systematic Literature Review. Trop. Med. Int. Health 2013, 18, 564–577. [Google Scholar] [CrossRef]
- Russell, T.L.; Brown, M.D.; Purdie, D.M.; Ryan, P.A.; Kay, B.H. Efficacy of VectoBac (Bacillus thuringiensis Variety Israelensis) Formulations for Mosquito Control in Australia. J. Econ. Entomol. 2003, 96, 1786–1791. [Google Scholar] [CrossRef]
- Federici, B.A.; Park, H.W.; Bideshi, D.K.; Wirth, M.C.; Johnson, J.J. Recombinant Bacteria for Mosquito Control. J. Exp. Biol. 2003, 206, 3877–3885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamgang, B.; Marcombe, S.; Chandre, F.; Nchoutpouen, E.; Nwane, P.; Etang, J.; Corbel, V.; Paupy, C. Insecticide Susceptibility of Aedes Aegypti and Aedes Albopictus in Central Africa. Parasit Vectors 2011, 4, 79. [Google Scholar] [CrossRef] [Green Version]
- Guerchicoff, A.; Ugalde, R.A.; Rubinstein, C.P. Identification and Characterization of a Previously Undescribed Cyt Gene in Bacillus thuringiensis subsp. Israelensis. Appl. Environ. Microbiol. 1997, 63, 2716–2721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waalwijk, C.; Dullemans, A.M.; van Workum, E.S.; Visser, B. Molecular Cloning and the Nucleotide Sequence of the Mr 28000 Crystal Protein Gene of Bacilus Thuringiensis Subsp. Israelensis. Nucleic Acids Res. 1985, 13, 8207–8217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, I.; Sorokin, A.; Kapatral, V.; Reznik, G.; Bhattacharya, A.; Mikhailova, N.; Burd, H.; Joukov, V.; Kaznadzey, D.; Walunas, T.; et al. Comparative Genome Analysis of Bacillus Cereus Group Genomes with Bacillus Subtilis. FEMS Microbio.l Lett. 2005, 250, 175–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donovan, W.P.; Dankocsik, C.; Pearce Gilbert, M. Molecular Characterization of a Gene Encoding a 72-Kilodalton Mosquito-Toxic Crystal Protein from Bacillus thuringiensis subsp. Israelensis. J. Bacteriol. 1988, 170, 4732–4738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, C.; O’Neil, S.; Ben-Dov, E.; Jones, A.F.; Murphy, L.; Quail, M.A.; Holden, M.T.G.; Harris, D.; Zaritsky, A.; Parkhill, J. Complete Sequence and Organization of PBtoxis, the Toxin-Coding Plasmid of Bacillus thuringiensis Subsp. Israelensis. Appl. Environ. Microbiol. 2002, 68, 5082–5095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valtierra-De-Luis, D.; Villanueva, M.; Lai, L.; Williams, T.; Caballero, P. Potential of Cry10Aa and Cyt2Ba, Two Minority δ-Endotoxins Produced by Bacillus thuringiensis Ser. Israelensis, for the Control of Aedes Aegypti Larvae. Toxins 2020, 6, 355. [Google Scholar] [CrossRef]
- Park, H.-W.; Bideshi, D.K.; Federici, B.A. Overview of the Basic Biology of Bacillus thuringiensis with Emphasis on Genetic Engineering of Bacterial Larvicides for Mosquito Control. Open Toxinol. J. 2010, 3, 83–100. [Google Scholar]
- Valtierra-de-Luis, D.; Villanueva, M.; Berry, C.; Caballero, P. Potential for Bacillus thuringiensis and Other Bacterial Toxins as Biological Control Agents to Combat Dipteran Pests of Medical and Agronomic Importance. Toxins 2020, 12, 773. [Google Scholar] [CrossRef]
- Silva-Filha, M.; Romão, T.; Rezende, T.; Carvalho, K.; de Menezes, H.G.; Nascimento, N.A.D.; Soberón, M.; Bravo, A. Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance. Toxins 2021, 13, 523. [Google Scholar] [CrossRef]
- Ben-Dov, E. Bacillus thuringiensis subsp. Israelensis and Its Dipteran-Specific Toxins. Toxins 2014, 6, 1222–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crickmore, N.; Bone, E.J.; Williams, J.A.; Ellar, D.J. Contribution of the Individual Components of the δ-Endotoxin Crystal to the Mosquitocidal Activity of Bacillus thuringiensis Subsp. Israelensis. FEMS Microbiol. Lett. 1995, 131, 249–254. [Google Scholar] [CrossRef]
- Fernández-Luna, M.T.; Tabashnik, B.E.; Lanz-Mendoza, H.; Bravo, A.; Soberón, M.; Miranda-Ríos, J. Single Concentration Tests Show Synergism among Bacillus thuringiensis Subsp. Israelensis Toxins against the Malaria Vector Mosquito Anopheles Albimanus. J. Invertebr. Pathol. 2010, 104, 231–233. [Google Scholar] [CrossRef]
- Georghiou, G.P.; Wirth, M.C. Influence of Exposure to Single versus Multiple Toxins of Bacillus thuringiensis Subsp. Israelensis on Development of Resistance in the Mosquito Culex Quinquefasciatus (Diptera: Culicidae). Appl. Environ. Microbiol. 1997, 63, 1095–1101. [Google Scholar] [CrossRef] [Green Version]
- Wirth, M.C.; Georghiou, G.P.; Federici, B.A. CytA Enables CryIV Endotoxins of Bacillus thuringiensis to Overcome High Levels of CryIV Resistance in the Mosquito, Culex Quinquefasciatus. Proc. Natl. Acad. Sci. USA 1997, 94, 10536–10540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchler-Bauer, A.; Bo, Y.; Han, L.; He, J.; Lanczycki, C.J.; Lu, S.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; et al. CDD/SPARCLE: Functional Classification of Proteins via Subfamily Domain Architectures. Nucleic Acids Res. 2017, 45, D200–D203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adalat, R.; Saleem, F.; Crickmore, N.; Naz, S.; Shakoori, A.R. In Vivo Crystallization of Three-Domain Cry Toxins. Toxins 2017, 9, 80. [Google Scholar] [CrossRef] [Green Version]
- Sazhenskiy, V.; Zaritsky, A.; Itsko, M. Expression in Escherichia Coli of the Native Cyt1Aa from Bacillus thuringiensis subsp. Israelensis. Appl. Environ. Microbiol. 2010, 76, 3409–3411. [Google Scholar] [CrossRef] [Green Version]
- Wu1, D.; Federici’, B.A. A 20-Kilodalton Protein Preserves Cell Viability and Promotes CytA Crystal Formation during Sporulation in Bacillus thuringiensis. J. Bacteriol. 1993, 175, 5276–5280. [Google Scholar]
- Caballero, J.; Jiménez-Moreno, N.; Orera, I.; Williams, T.; Fernández, A.B.; Villanueva, M.; Ferré, J.; Caballero, P.; Ancín-Azpilicueta, C.; Johnson, K.N. Unraveling the Composition of Insecticidal Crystal Proteins in Bacillus thuringiensis: A Proteomics Approach. Appl. Environ. Microbiol. 2020, 86, e00476-20. [Google Scholar] [CrossRef]
- Crickmore, N.; Berry, C.; Panneerselvam, S.; Mishra, R.; Connor, T.R. Bacterial Pesticidal Protein Resource Center, Viewed (02/12/2022). Available online: https://www.Bpprc.Org (accessed on 12 November 2022).
- de Barros Moreira Beltrão, H.; Silva-Filha, M.H.N.L. Interaction of Bacillus thuringiensis Svar. Israelensis Cry Toxins with Binding Sites from Aedes Aegypti (Diptera: Culicidae) Larvae Midgut. FEMS Microbiol. Lett. 2007, 266, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Delécluse, A.; Bourgouin, C.; Klier, A.; Rapoport, G. Specificity of Action on Mosquito Larvae of Bacillus thuringiensis Israelensis Toxins Encoded by Two Different Genes. Mol. Genet. Genom. 1988, 214, 42–47. [Google Scholar] [CrossRef]
- Chilcott, C.N.; Ellar, D.J. Comparative Toxicity of Bacillus thuringiensis Var. Israelensis Crystal Proteins in Aiuo and in Tritvo. Microbiology 1988, 134, 2551–2558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otieno-Ayayo, Z.N.; Zaritsky, A.; Wirth, M.C.; Manasherob, R.; Khasdan, V.; Cahan, R.; Ben-Dov, E. Variations in the Mosquito Larvicidal Activities of Toxins from Bacillus thuringiensis ssp. Israelensis. Environ. Microbiol. 2008, 10, 2191–2199. [Google Scholar] [CrossRef] [PubMed]
- Hawley, W. The Biology of Aedes Albopictus. J. Am. Mosq. Control Assoc. Suppl. 1988, 1, 1–39. [Google Scholar] [PubMed]
- Albieri, A.; Carrieri, M.; Angelini, P.; Baldacchini, F.; Venturelli, C.; Zeo, S.M.; Bellini, R. Quantitative Monitoring of Aedes Albopictus in Emilia-Romagna, Northern Italy: Cluster Investigation and Geostatistical Analysis. Bull. Insectology 2010, 63, 209–216. [Google Scholar]
- Caputo, B.; Ienco, A.; Cianci, D.; Pombi, M.; Petrarca, V.; Baseggio, A.; Devine, G.J.; della Torre, A. The “Auto-Dissemination” Approach: A Novel Concept to Fight Aedes Albopictus in Urban Areas. PLoS Negl. Trop. Dis. 2012, 6, e1793. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Carroll, J.; Ellar, D.J. Crystal Structure of Insecticidal 6-Endotoxin 0 from Bacillus thuringiensis at 2.5 A Resolution. Nature 1991, 353, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wang, B.C.; Yu, Z.; Sun, M. Structural Insights into Bacillus thuringiensis Cry, Cyt and Parasporin Toxins. Toxins 2014, 6, 2732–2770. [Google Scholar] [CrossRef] [Green Version]
- Bravo, A.; Gill, S.S.; Soberón, M. Mode of Action of Bacillus thuringiensis Cry and Cyt Toxins and Their Potential for Insect Control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Best, H.L.; Williamson, L.J.; Lipka-Lloyd, M.; Waller-Evans, H.; Lloyd-Evans, E.; Rizkallah, P.J.; Berry, C. The Crystal Structure of Bacillus thuringiensis Tpp80Aa1 and Its Interaction with Galactose-Containing Glycolipids. Toxins 2022, 14, 863. [Google Scholar] [CrossRef] [PubMed]
- Pérez, C.; Fernandez, L.E.; Sun, J.; Folch, J.L.; Gill, S.S.; Soberó, M.; Bravo, A. Bacillus thuringiensis subsp. Israelensis Cyt1Aa Synergizes Cry11Aa Toxin by Functioning as a Membrane-Bound Receptor. Proc. Natl. Acad. Sci. USA 2005, 102, 18303–18308. [Google Scholar] [CrossRef] [Green Version]
- Wirth, M.C.; Delécluse, A.; Walton, W.E. Cyt1Ab1 and Cyt2Ba1 from Bacillus thuringiensis Subsp. Medellin and B. thuringiensis Subsp. Israelensis Synergize Bacillus sphaericus against Aedes Aegypti and Resistant Culex Quinquefasciatus (Diptera: Culicidae). Appl. Environ. Microbiol. 2001, 67, 3280–3284. [Google Scholar] [CrossRef] [Green Version]
- Tetreau, G.; Stalinski, R.; David, J.P.; Després, L. Monitoring Resistance to Bacillus thuringiensis subsp. Israelensis in the Field by Performing Bioassays with Each Cry Toxin Separately. Mem. Inst. Oswaldo Cruz. 2013, 108, 894–900. [Google Scholar] [CrossRef]
- Paris, M.; Tetreau, G.; Laurent, F.; Lelu, M.; Despres, L.; David, J.P. Persistence of Bacillus thuringiensis Israelensis (Bti) in the Environment Induces Resistance to Multiple Bti Toxins in Mosquitoes. Pest Manag. Sci. 2011, 67, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Delecluse, A.; Poncet, S.; Klier, A.; Rapoport, G. Expression of CryIVA and CryIVB Genes, Independently or in Combination, in a Crystal-Negative Strain of Bacillus thuringiensis Subsp. Israelensis. Appl. Environ. Microbiol. 1993, 59, 3922–3927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah, M.A.F.; Alzate, O.; Mohammad, M.; McNall, R.J.; Adang, M.J.; Dean, D.H. Introduction of Culex Toxicity into Bacillus thuringiensis Cry4Ba by Protein Engineering. Appl. Environ. Microbiol. 2003, 69, 5343–5353. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zheng, A.P.; Tan, F.R.; Wang, S.Q.; Deng, Q.M.; Li, S.C.; Wang, L.X.; Li, P. Characterisation and Expression of a Novel Holotype Crystal Protein Gene, Cry56Aa1, from Bacillus thuringiensis Strain Ywc2-8. Biotechnol. Lett. 2010, 32, 283–288. [Google Scholar] [CrossRef]
- Borodovsky Mark; McIninch James GENMARK: Parallel Gene Recognition for Both DNA Strands. Comput. Chem. 1993, 17, 123–133. [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Available online: Https://Blast.Ncbi.Nlm.Nih.Gov/Blast.Cgi (accessed on 12 November 2022).
- Crickmore, N.; Berry, C.; Panneerselvam, S.; Mishra, R.; Connor, T.R.; Bonning, B.C. A Structure-Based Nomenclature for Bacillus thuringiensis and Other Bacteria-Derived Pesticidal Proteins. J. Invertebr. Pathol. 2020, 186, 107438. [Google Scholar] [CrossRef] [PubMed]
- Crickmore, N.; Zeigler, D.R.; Feitelson, J.; Schnepf, E.; van Rie, J.; Lereclus, D.; Baum, J.; Dean, D.H. Revision of the Nomenclature for the Bacillus thuringiensis Pesticidal Crystal Proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 807–813. [Google Scholar] [CrossRef] [Green Version]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and Sequence Analysis Tools Services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef]
- Xu, Y.; Nagai, M.; Bagdasarian, M.; Smith, T.W.; Walker, E.D. Expression of the P20 Gene from Bacillus thuringiensis H-14 Increases Cry11A Toxin Production and Enhances Mosquito-Larvicidal Activity in Recombinant Gram-Negative Bacteria. Appl. Environ. Microbiol. 2001, 67, 3010–3015. [Google Scholar] [CrossRef] [Green Version]
- Charpentier, E.; Anton, A.I.; Barry, P.; Alfonso, B.; Fang, Y.; Novick, R.P. Novel Cassette-Based Shuttle Vector System for Gram-Positive Bacteria. Appl. Environ. Microbiol. 2004, 70, 6076–6085. [Google Scholar] [CrossRef] [Green Version]
- Stewart, G.S.; Johnstone, K.; Hagelberg, E.; Ellar, D.J. Commitment of Bacterial Spores to Germinate A Measure of the Trigger Reaction. Biochem. J. 1981, 198, 101–106. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Mclaughlin, R.E.; Dulmage, H.T.; Alls, R.; Couch, T.L.; Dame, D.A.; Hall, I.M.; Rose, R.I.; Versoi, P.L. Standard Bioassay for the Potency Assessment of Bacillus thuringiensis Serotype H-14 against Mosquito Larvae [Aedes Aegypti, Biological Control]. Bull. Entomol. Soc. Am. 1984, 30, 26–29. [Google Scholar]
- Finney, D.J. Probit Analysis. J. Pharm. Sci. 1971, 60, 1432. [Google Scholar]
- Tabashnikt, B.E. Evaluation of Synergism among Bacillus thuringiensis Toxins. Appl. Environ. Microbiol. 1992, 58, 3343–3346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment | Observed LC50 (ng/mL) | Lower Limits | Upper Limits | χ2 | df | Slope | SE Slope | Intercept |
---|---|---|---|---|---|---|---|---|
Cry4Aa | 178 | 142 | 226 | 6.66 | 4 | 1.80 | 0.202 | −4.04 |
Cry4Ba | 46 | 30.4 | 65.7 | 2.45 | 4 | 1.17 | 0.182 | −1.95 |
Cry11Aa | 228 | 144 | 324 | 3.14 | 4 | 1.11 | 0.166 | −2.61 |
Cyt1Aa | 171 | 133 | 219 | 4.55 | 4 | 1.85 | 0.223 | −4.12 |
AM 65-52 | 0.019 | 0.013 | 0.024 | 4.20 | 4 | 1.66 | 0.191 | 2.90 |
Target Database | Pairwise Identity % | MW (kDa) | Accession Number of Reference | Accession Number | Strain |
---|---|---|---|---|---|
cyt1Aa5 | 65 | 31 | CAD30079 | OQ397557 | BST059.3 |
cyt1Da1 | 48 | 59 | ADV33305 | OQ397558 | BST059.3 |
cry4Aa4 | 38 | 132 | AFB18317 | OQ397551 | BST230 |
cry53Ab1 | 40 | 76 | ACP43734 | OQ397553 | BST230 |
cry56Aa2 | 54 | 73 | ADK38584 | OQ397555 | BST230 |
tpp36Aa1 | 30 | 56 | AAK64558 | OQ397552 | BST230 |
Treatment | Observed LC50 (ng/mL) | Expected LC50 (ng/mL) | Lower Limits | Upper Limits | χ2 | df | Slope | SE Slope | Intercept | Synergism Factor |
---|---|---|---|---|---|---|---|---|---|---|
Cyt1Aa + Cry4Aa | 6.04 | 170 | 4.68 | 8.13 | 1.91 | 4 | 1.66 | 0.212 | −1.30 | 28.14 |
Cyt1Aa + Cry4Ba | 3.08 | 100 | 2.05 | 5.29 | 7.42 | 4 | 2.14 | 0.243 | −1.05 | 32.46 |
Cyt1Aa + Cry11Aa | 17.1 | 195.6 | 13.8 | 21.0 | 1.92 | 4 | 2.37 | 0.257 | −2.93 | 11.44 |
Cyt1A-like + Cry11Aa | 19.7 | 456 | 16.1 | 24 | 0.704 | 4 | 2.04 | 0.215 | −2.69 | 23.14 |
Treatment | Observed LC50 (ng/mL) | Lower Limits | Upper Limits | χ2 | df | Slope | SE Slsope | Intercept |
---|---|---|---|---|---|---|---|---|
Cyt1Aa | 171 | 133 | 219 | 4.55 | 4 | 1.85 | 0.223 | −4.12 |
Cry56A-like | >105 | |||||||
Cyt1Aa+Cry56A-like | 23.3 | 19.2 | 27.9 | 3.71 | 4 | 2.20 | 0.220 | −3.01 |
Cyt1A-like | >105 | |||||||
Cry53-like | >105 | |||||||
Cyt1A-like+Cry53-like | 1331 | 1091 | 1649 | 2.87 | 4 | 2.03 | 0.202 | −6.35 |
Cyt1A-like | >105 | |||||||
Cry56A-like | >105 | |||||||
Cyt1A-like+Cry56A-like | 186 | 138 | 239 | 6.26 | 4 | 1.59 | 0.192 | −3.60 |
Cyt1A-like | >105 | |||||||
Tpp36-like | >105 | |||||||
Cyt1A-like+Tpp36-like | 1053 | 860 | 1298 | 5.85 | 4 | 2.04 | 0.208 | −6.18 |
Primer Name | Sequence (5′-3′) |
---|---|
Cyt1Aa_like_FW_PstI | GTGTCGACCAAAGGCAGTGGTGTTTTAAG |
Cyt1Aa_like_RV_SalI | CTCTGCAGGGGCTACCCAATTATAATCG |
p20-Fw-SalI | CCTGCAGGGATAAAATTGGAGGATAATTGATG |
p20-Rv-SacI | GGCATGCGTTTCCAGTGCATTCAATTTAC |
Cry4Aa4_FW_SalI_BST230 | GTCGACGAAATTCAATTGGAAATGGAGGAAC |
Cry4Aa_RV_SacI_BST230 | GAGCTCCTTTTTTCCAAATTTGTAATAGAAT |
Orf_Cry56_FW_PstI | CTGCAGCAGCAAAAAATACGCAGAAAAGGTA |
Orf_Cry56_RV_SalI | GTCGACGAATCGTTAACGGTTATATCTTTG |
Cry56Aa2_FW_SalI_BST230 | GTCGACGGACTACATAAGGAGTGAAA |
Cry56Aa2_RV_SacI_BST230 | GAGCTCCTATAGAACTGGCCGCTTGA |
Cry53+Orf2_FW_SalI | GTCGACGGACTACATAAGGAGTGAAAAAT |
Cry53+Orf2_RV_SacI | GAGCTCCTAATTCTCATTTGGAATCGT |
Tpp36Aa1_FW_SalI_BST230 | GTCGACGAAAAAAATCACATAAGGAGTG |
Tpp36Aa1_RV_SacI_BST230 | GAGCTCCCCTTACTTCGTTCTACTTAC |
Cyt1Aa4like_FW_PstI | CTGCAGCAAAGGCAGTGGTGTTTTAAG |
Cyt1Aa4Like_RV_SalI | GTCGACGGGCTACCCAATTATAATCG |
Cyt1Da1_like_FW_PstI | CTGCAGCGAGAGAGGTATAAATATGAACC |
Cyt1Da1_like_RV_SaII | GTCGACGTAAGAACCCTACGACTAGG |
MCS-TT_MfeI | CAATTGGCATGCCTGCAGGTCGACTCTAGAAGATCTCCCGGGTACCGAGC |
MCS-TT_AatII | GACGTCAAAGGCGCCTGTCACTTTGCTTG |
Sequencing | |
Cry4Aa_seq_BST230 | CTAGTGAATAATGTAGGTTCTTTA |
Cry4Aa_seq1_BST230 | CAAGTATGCAATACTGCTTAC |
Cry4Aa_seq2_BST230 | GATATGGTTTCTATTTCACTTG |
Cry4Aa_seq3_BST230 | GTCAATCAAGAAATTTACTTCAAA |
Cry56orf_seq_FW | GAAGTGTCACGATCGCCAT |
Cry56orf_seq_RV | TTCACATGTTCCAATGCTTCA |
Cry56orf_seq_FW_1 | ATTCCGGCTGCACATGTAAC |
Cry56orf_seq_RV_1 | GAGCTGTTTGGTGAAGTATCCA |
Cry56orf_seq_FW_2 | CCATAACATTATATACTAACGTGG |
Cry56orf_seq_RV_2 | TACTGCTCAGATGCCACGTT |
Cry53like_FW_seq1 | GTAGAGAAATGACCATAACAG |
Cry53like_RV_seq2 | GCAGGAAATAGAGCAACTATATCT |
Cry53like_FW_seq3 | GCTTTGTCACTAAATAATTTGCG |
Cry53like_RV_seq4 | GTAAGCAAAATTCTCATTTCGCAA |
Cry53like_RV_seq5 | CATACCTAAGTTTGTATTTGTATCT |
Cry53like_FW_seq6 | GATTTTCATATTGACACAGGAGA |
Tpp36like_FW_seq1 | CATTAATTCCGTGTATACTTGTAAA |
Tpp36like_RV_seq2 | CTGCTAATGAATATTGATAATCA |
Seq pCyt1A F (59) | CATATATTTGCACCGTCTAATGG |
MCS-TT_AatII | GACGTCAAAGGCGCCTGTCACTTTGCTTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, L.; Villanueva, M.; Muruzabal-Galarza, A.; Fernández, A.B.; Unzue, A.; Toledo-Arana, A.; Caballero, P.; Caballero, C.J. Bacillus thuringiensis Cyt Proteins as Enablers of Activity of Cry and Tpp Toxins against Aedes albopictus. Toxins 2023, 15, 211. https://doi.org/10.3390/toxins15030211
Lai L, Villanueva M, Muruzabal-Galarza A, Fernández AB, Unzue A, Toledo-Arana A, Caballero P, Caballero CJ. Bacillus thuringiensis Cyt Proteins as Enablers of Activity of Cry and Tpp Toxins against Aedes albopictus. Toxins. 2023; 15(3):211. https://doi.org/10.3390/toxins15030211
Chicago/Turabian StyleLai, Liliana, Maite Villanueva, Ane Muruzabal-Galarza, Ana Beatriz Fernández, Argine Unzue, Alejandro Toledo-Arana, Primitivo Caballero, and Carlos J. Caballero. 2023. "Bacillus thuringiensis Cyt Proteins as Enablers of Activity of Cry and Tpp Toxins against Aedes albopictus" Toxins 15, no. 3: 211. https://doi.org/10.3390/toxins15030211
APA StyleLai, L., Villanueva, M., Muruzabal-Galarza, A., Fernández, A. B., Unzue, A., Toledo-Arana, A., Caballero, P., & Caballero, C. J. (2023). Bacillus thuringiensis Cyt Proteins as Enablers of Activity of Cry and Tpp Toxins against Aedes albopictus. Toxins, 15(3), 211. https://doi.org/10.3390/toxins15030211