Processing Properties and Potency of Bacillus thuringiensis Cry Toxins in the Rice Leaffolder Cnaphalocrocis medinalis (Guenée)
Abstract
:1. Introduction
2. Results
2.1. Processing of Cry Toxins with Different Concentrations of C. medinalis Midgut Extracts
2.2. Processing of Cry Toxins with C. medinalis Midgut Extracts over Time
2.3. Potency of Cry Toxin Processed by C. medinalis Midgut Extracts
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Insects
5.2. Toxins
5.3. Preparation of Midgut Extracts
5.4. Processing of Cry Toxins with Different Concentrations of C. medinalis Midgut Extracts
5.5. Processing of Cry Toxins with C. medinalis Midgut Extracts over Time
5.6. Bioassays
5.7. Data analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 775–806. [Google Scholar] [CrossRef] [Green Version]
- Van Frankenhuyzen, K. Insecticidal activity of Bacillus thuringiensis crystal proteins. J. Insect Physiol. 2009, 101, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Adang, M.J.; Crickmore, N.; Jurat-Fuentes, J.L. Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. Adv. Insect Physiol. 2014, 47, 39–87. [Google Scholar]
- Ali, S.; Zafar, Y.; Ali, G.M.; Nazir, F. Bacillus thuringiensis and its application in agriculture. Afr. J. Biotechnol. 2010, 9, 2022–2031. [Google Scholar]
- Sanahuja, G.; Banakar, R.; Twyman, R.; Capell, T.; Christou, P. Bacillus thuringiensis: A century of research, development and commercial applications. Plant Biotech. J. 2011, 9, 283–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchis, V. From microbial sprays to insect-resistant transgenic plants: History of the biopesticide Bacillus thuringiensis. A review. Agron. Sustain. Dev. 2011, 31, 217–231. [Google Scholar] [CrossRef]
- Bravo, A.; Gómez, I.; Porta, H.; García-Gómez, B.I.; Rodriguez-Almazan, C.; Pardo, L.; Soberón, M. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb. Biotechnol. 2013, 6, 17–26. [Google Scholar] [CrossRef]
- Heckel, D.G. How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. Arch. Insect. Biochem. Physiol. 2020, 104, e21673. [Google Scholar] [CrossRef] [Green Version]
- Bel, Y.; Ferré, J.; Hernández-Martínez, P. Bacillus thuringiensis toxins: Functional characterization and mechanism of action. Toxins 2020, 12, 785. [Google Scholar] [CrossRef]
- Ferré, J.; Van Rie, J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 2002, 47, 501–533. [Google Scholar] [CrossRef]
- Bravo, A.; Gomez, I.; Conde, J.; Muñoz-Garay, C.; Sánchez, J.; Miranda, R.; Zhuang, M.; Gill, S.S.; Soberón, M. Oligoerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim. Biophys. Acta 2004, 1667, 38–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Candas, M.; Griko, N.B.; Rose-Young, L.; Bulla, L.A., Jr. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death Differ. 2005, 12, 1407–1416. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Candas, M.; Griko, N.B.; Taussig, R.; Bulla, L.A., Jr. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 2006, 103, 9897–9902. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Griko, N.B.; Corona, S.K.; Bulla, L.A., Jr. Enhanced exocytosis of the receptor BT-R(1) induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 149, 581–588. [Google Scholar] [CrossRef]
- Guo, Z.; Kang, S.; Chen, D.; Wu, Q.; Wang, S.; Xie, W.; Zhu, X.; Baxter, S.W.; Zhou, X.; Jurat-Fuentes, J.L.; et al. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth. PLoS Genet. 2015, 11, e1005124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terra, W.R.; Ferriera, C. Biochemistry of Digestion. In Insect Molecular Biology and Biochemistry; Gilbert, L.I., Ed.; Elsevier: New York, NY, USA, 2012; pp. 365–418. [Google Scholar]
- Linser, P.J.; Dinglasan, R.R. Chapter One–Insect Gut Structure, Function, Development, and Target of Biological Toxins. In Advances in Insect Physiology; Dhadialla, T.S., Gill, S.S., Eds.; Academic Press: Oxford, UK, 2014; pp. 1–13. [Google Scholar]
- Oppert, K.; Kramer, J.; Beeman, R.; Johnson, D.; McGaughey, W.H. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J. Biol. Chem. 1997, 272, 23473–23476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo-López, L.; Soberón, M.; Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins:mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 2013, 37, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Miranda, R.; Zamudio, F.Z.; Bravo, A. Processing of Cry1Ab delta-endotoxin from Bacillus thuringiensis by Manduca sexta and Spodoptera frugiperda midgut proteases: Role in protoxin activation and toxin inactivation. Insect Biochem. Mol. Biol. 2001, 31, 1155–1163. [Google Scholar] [CrossRef]
- Yamazaki, T.; Ishikawa, T.; Pandian, G.N.; Okazaki, K.; Haginoya, K.; Tachikawa, Y.; Mitsui, T.; Miyamoto, K.; Angusthanasombat, C.; Hori, H. Midgut juice of Plutella xylostella highly resistant to Bacillus thuringiensis Cry1Ac contains a three times larger amount of glucosinolate sulfatase which binds to Cry1Ac compared to that of susceptible strain. Pestic. Biochem. Phys. 2011, 101, 125–131. [Google Scholar] [CrossRef]
- Pang, A.S.D.; Gringorten, J.L. Degradation of Bacillus thuringiensis δ-endotoxin in host insect gut juice. FEMS Microbiol. Lett. 1998, 167, 281–285. [Google Scholar] [CrossRef]
- Sugimura, M.; Iwahana, H.; Sato, R. Unusual proteolytic processing of a δ-endotoxin from Bacillus thuringiensis strain Buibui by larval midgut-juice of Anomala cuprea Hope (Coleoptera: Scarabaeidae). Appl. Entomol. Zool. 1997, 32, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Brunet, J.F.; Vachon, V.; Marsolais, M.; Van Rie, J.; Schwartz, J.L.; Laprade, R. Midgut juice components affect pore formation by the Bacillus thuringiensis insecticidal toxin Cry9Ca. J. Invertebr. Pathol. 2010, 104, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.; Sneh, B.; Strizhov, N.; Prudovsky, E.; Regev, A.; Koncz, C.; Schell, J.; Zilberstein, A. Digestion of δ-entotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to Cry1C. Insect Biochem. Mol. Biol. 1996, 26, 365–373. [Google Scholar] [CrossRef] [PubMed]
- MacIntosh, S.C.; Kishore, G.M.; Perlak, F.J.; Marrone, P.G.; Stone, T.B.; Sims, S.R.; Fuchs, R. Potentiation of Bacillus thuringiensis insecticidal activity by serine protease inhibitor. J. Agr. Food Chem. 1990, 8, 1145–1152. [Google Scholar] [CrossRef]
- Yuan, L.P. Development of hybrid rice to ensure food security. Rice Sci. 2014, 21, 1–2. [Google Scholar] [CrossRef]
- Zhang, Q.F. Strategies for developing green super rice. Proc. Natl. Acad. Sci. USA 2007, 104, 16402–16409. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Shelton, A.; Ye, G.Y. Insect-resistant genetically modified rice in China: From research to commercialization. Annu. Rev. Entomol. 2011, 56, 81–101. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Shen, J.; Yuan, L.; Jiang, R.; Chen, X.; Davies, W.J.; Zhang, F. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Agric. 2012, 63, 13–24. [Google Scholar] [CrossRef]
- Savary, S.; Horgan, F.; Willocquet, L.; Heong, K.L. A review of principles for sustainable pest management in rice. Crop. Prot. 2012, 32, 54–63. [Google Scholar] [CrossRef]
- Shepard, B.M.; Barrion, A.T.; Litsinger, J.A. Rice Feeding Insects of Tropical Asia; IRRI: Manila, Philippines, 1995. [Google Scholar]
- Cheng, J.A. Rice Pests; China Agricultural Press: Beijing, China, 1996. [Google Scholar]
- Yang, Y.J.; Xu, H.X.; Zheng, X.S.; Tian, J.C.; Lu, Y.H.; Lu, Z.X. Progresses in management technology of rice leaffolders in China. J. Plant Prot. 2015, 42, 691–701. [Google Scholar]
- Rajendran, R.; Rajendran, S.; Sandra, B.P.C. Varietal resistance of rice to leaffolder. Int. Rice Res. Newsl. 1986, 11, 17–18. [Google Scholar]
- Wang, D.G.; Zhou, S.F.; Yang, A.M.; Yang, S.X. Application of bio-pesticide Bt agent in the green technology of rice pest management. Plant Dr. 2005, 18, 14–15. [Google Scholar]
- Zheng, X.S.; Yang, Y.J.; Xu, H.X.; Chen, H.; Wang, B.J.; Lin, Y.J.; Lu, Z.X. Resistance performances of transgenic Bt rice lines T2A-1 and T1c-19 against Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). J. Econ. Entomol. 2011, 104, 1730–1735. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.J.; Xu, H.X.; Zheng, X.S.; Lu, Z.X. Susceptibility and selectivity of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) to different Cry toxins. J. Econ. Entomol. 2012, 105, 2122–2128. [Google Scholar] [CrossRef] [PubMed]
- Karim, S.; Dean, D.H. Toxicity and receptor binding properties of Bacillus thuringiensis δ–endotoxins to the midgut brush border membrane vesicles of the rice leaf folders, Cnaphalocrocis medinalis and Marasmia patnalis. Curr. Microbiol. 2000, 41, 276–283. [Google Scholar] [CrossRef]
- Jurat-Fuentes, J.L.; Heckel, D.G.; Ferré, J. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annu. Rev. Entomol. 2021, 66, 121–140. [Google Scholar] [CrossRef]
- Liu, L.; Li, Z.; Luo, X.; Zhang, X.; Chou, S.H.; Wang, J.; He, J. Which is stronger? A continuing battle between cry toxins and insects. Front Microbiol. 2021, 12, 665101. [Google Scholar] [CrossRef]
- Fabrick, J.A.; Li, X.; Carrière, Y.; Tabashnik, B.E. Molecular genetic basis of lab- and field-selected Bt resistance in pink bollworm. Insects 2023, 14, 201. [Google Scholar] [CrossRef]
- Gassmann, A.J.; Shrestha, R.B.; Kropf, A.L.; St Clair, C.R.; Brenizer, B.D. Field-evolved resistance by western corn rootworm to Cry34/35Ab1 and other Bacillus thuringiensis traits in transgenic maize. Pest Manag. Sci. 2020, 76, 268–276. [Google Scholar] [CrossRef]
- Wu, Z.H.; Yang, Y.J.; Xu, H.X.; Zheng, X.S.; Tian, J.C.; Lu, Y.H.; Lu, Z.X. Changes in growth and development and main enzyme activities in midgut of Cnaphalocrocis medinalis intermittently treated with low amount of Bt rice leaves over generations. Chin. J. Rice Sci. 2015, 29, 417–423. (In Chinese) [Google Scholar]
- Xu, L.; Pan, Z.Z.; Zhang, J.; Liu, B.; Zhu, Y.J.; Chen, Q.X. Proteolytic activation of Bacillus thuringiensis Cry2Ab through a belt-and-braces approach. J. Agri. Food Chem. 2016, 64, 7195–7200. [Google Scholar] [CrossRef]
- Yang, Y.J.; Xu, H.X.; Wu, Z.H.; Lu, Z.X. pH influences the profiles of midgut extracts in Cnaphalocrocis medinalis (Guenée) and its degradation of activated Cry toxins. J. Integr. Agri. 2020, 19, 775–784. [Google Scholar] [CrossRef]
- Yang, Y.J.; Xu, H.X.; Wu, Z.H.; Lu, Z.X. Effect of protease inhibitors on the profiles of midgut juices in Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and its degradation to activated Cry toxins. J. Integr. Agri. 2021, 20, 2195–2203. [Google Scholar] [CrossRef]
- Roh, Y.J.; Choi, J.Y.; Li, M.S.; Jin, B.R.; Je, Y.H. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 2007, 17, 547–559. [Google Scholar] [PubMed]
- Crickmore, N.; Baum, J.; Bravo, A.; Lereclus, D.; Narva, K.; Sampson, K.; Schnepf, E.; Sun, M.; Zeigler, D.R. Bacillus Thuringiensis Toxin Nomenclature. 2013. Available online: https://www.btnomenclature.info/ (accessed on 1 March 2023).
- Xu, X.; Yu, L.; Wu, Y. Disruption of a cadherin gene associated with resistance to Cry1Ac δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl. Environ. Microbiol. 2005, 71, 948–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avilla, C.; Vargas-Osuna, E.; Gonzalez-Cabrera, J.; Ferre, J.; Gonzalez-Zamora, J.E. Toxicity of several δ-endotoxins of Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera: Noctuidae) from Spain. J. Invertebr. Pathol. 2005, 90, 51–54. [Google Scholar] [CrossRef]
- Bird, L.J.; Akhurst, R.J. Variation in susceptibility of Helicoverpa armigera (Hubner) and Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) in Australia to two Bacillus thuringiensis toxins. J. Invertebr. Pathol. 2007, 94, 84–94. [Google Scholar] [CrossRef]
- Hernandez-Martinez, P.; Ferre, J.; Escriche, B. Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis. J. Invertebr. Pathol. 2007, 97, 245–250. [Google Scholar] [CrossRef]
- Gao, Y.L.; Hu, Y.; Fu, Q.; Zhang, J.; Oppert, B.; Lai, F.X.; Peng, Y.F.; Zhang, Z.T. Screen of Bacillus thuringiensis toxins for transgenic rice to control Seamia inferens and Chilo suppressalis. J. Invertebr. Pathol. 2011, 105, 11–15. [Google Scholar] [CrossRef]
- Li, H.; Bouwer, G. The larvicidal activity of Bacillus thuringiensis Cry proteins against Thaumatotibia leucotreta (Lepidoptera: Tortricidae). Crop. Prot. 2012, 32, 47–53. [Google Scholar] [CrossRef]
- Tomimoto, K.; Hayakawa, T.; Hori, H. Pronase digestion of brush border membrane-bound Cry1A shows that almost the whole activated Cry1Aa molecule penetrates into the membrane. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006, 144, 413–422. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, Y.; Liao, Q.; Carballar-Lejarazú, R.; Sheng, L.; Wang, S.; Zhou, J.; Zhang, F.; Wu, S. Proteolytic activation of Bacillus thuringiensis Cry3Aa toxin in the red palm weevil (Coleoptera: Curculionidae). J. Econ. Entomol. 2021, 114, 2406–2411. [Google Scholar] [CrossRef] [PubMed]
- Kaiser-Alexnat, R.; Büchs, W.; Huber, J. Studies on the Proteolytic Processing and Binding of Bt Toxins Cry3Bb1 and Cry34Ab1/Cry35Ab1 in the Midgut of Western Corn Rootworm (Diabrotica virgifera virgifera LeConte). In Insect Pathogens and Insect Parasitic Nematodes, Proceedings of the 12th European Meeting of the IOBC/wprs Working Group, Pamplona, Spain, 22-25 June 2009; Ehlers, R.U., Crickmore, N., Enkerli, J., Glazer, I., Lopez-Ferber, M., Tkaczuk, C., Eds.; IOBC/wprs Bulletin: Zurich, Switzerland, 2009; Volume 45, pp. 235–238. [Google Scholar]
- Milne, R.E.; Pang, A.S.; Kaplan, H. A protein complex from Choristoneura fumiferana gut-juice involved in the precipitation of delta-endotoxin from Bacillus thuringiensis subsp. sotto. Insect Biochem. Mol. Biol. 1995, 25, 1101–1114. [Google Scholar] [CrossRef] [PubMed]
- Tojo, A.; Aizawa, K. Dissolution and degradation of Bacillus thuringiensis delta-endotoxin by gut juice protease of the silkworm Bombyx mori. Appl. Environ. Microbiol. 1983, 45, 576–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lightwood, D.J.; Ellar, D.J.; Jarrett, P. Role of proteolysis in determining potency of Bacillus thuringiensis Cry1Ac δ-endotoxin. Appl. Environ. Microbiol. 2000, 66, 5174–5181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, A.S.; Gringorten, J.L.; Bai, C. Activation and fragmentation of Bacillus thuringiensis delta-endotoxin by high concentrations of proteolytic enzymes. Can. J. Microbiol. 1999, 45, 816–825. [Google Scholar] [CrossRef]
- Bai, C.; Yi, S.X.; Degheele, D. Determination of protease activity in regurgitated gut juice from larvae of Pieris brassicae, Mamestra brassicae and Spodoptera littoralis. Med. Fac Landbouww Rijksuniv. Gent. 1990, 55, 439–798. [Google Scholar]
- Rajagopal, R.; Arora, N.; Sivakumar, S.; Rao, N.G.; Nimbalkar, S.A.; Bhatnagar, R.K. Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin. Biochem. J. 2009, 419, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Tetreau, G.; Bayyareddy, K.; Jones, C.M.; Stalinski, R.; Riaz, M.A.; Paris, M.; David, J.P.; Adang, M.J.; Després, L. Larval midgut modifications associated with Bti resistance in the yellow fever mosquito using proteomic and transcriptomic approaches. BMC Genom. 2012, 13, 248–262. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.C.; West, S.; Liu, F.X.; He, Y. Interaction of proteinase inhibitors with Cry1Ac toxicity and the presence of 15 chymotrypsin cDNAs in the midgut of the tobacco budworm, Heliothis virescens (F.) (Lepidoptera: Noctuidae). Pest Manag. Sci. 2012, 68, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, Y.; O’Donoghue, A.J.; Jiang, Z.; Carballar-Lejarazú, R.; Liang, G.; Hu, X.; Wang, R.; Xu, L.; Guan, X.; et al. Engineering of multiple trypsin/chymotrypsin sites in Cry3A to enhance its activity against Monochamus alternatus Hope larvae. Pest Manag. Sci. 2020, 76, 3117–3126. [Google Scholar] [CrossRef]
- Pigott, C.R.; Ellar, D.J. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev. 2007, 71, 255–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.J.; Xu, H.X.; Lu, Y.H.; Wang, C.Y.; Lu, Z.X. Midgut transcriptomal response of the rice leaffolder, Cnaphalocrocis medinalis (Guenée) to Cry1C toxin. PLoS ONE 2018, 13, e0191686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Lu, K.; Qian, J.; Guo, J.; Xu, H.; Lu, Z. Identification and characterization of ABC proteins in an important rice insect pest, Cnaphalocrocis medinalis unveil their response to Cry1C toxin. Int. J. Biol. Macromol. 2023, 237, 123949. [Google Scholar] [CrossRef] [PubMed]
- Elleuch, J.; Jaoua, S.; Tounsi, S.; Zghal, R.Z. Cry1Ac toxicity enhancement towards lepidopteran pest Ephestia kuehniella through its protection against excessive proteolysis. Toxicon 2016, 120, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye-protein binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ye, G.Y.; Hu, C.; Shu, Q.Y.; Cui, H.R.; Gao, M.W. The application of detached- leaf bioassay for evaluating the resistance of Bt transgenic rice to stem borers. Acta Phytophy. Sin. 2000, 27, 1–6. [Google Scholar]
- LeOra Software. PoloPlus: A User’s Guide to Probit and Logit Analysis; LeOra Software: Berkeley, CA, USA, 2003. [Google Scholar]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
Toxins | n | Slope (SE) | LC50 (95%FL) (μg/mL) |
---|---|---|---|
Cry1Aa | 300 | 1.684 (0.181) | 1.981 (1.556–2.472) |
Cry1Aa processed by midgut extracts | 300 | 1.562 (0.174) | 3.498 (2.438–5.136) |
Cry1Ac | 300 | 1.511 (0.180) | 0.673 (0.397–0.989) |
Cry1Ac processed by midgut extracts | 300 | 1.427 (0.168) | 1.068 (0.664–1.609) |
Cry1C | 300 | 1.695 (0.180) | 1.207 (0.961–1.506) |
Cry1C processed by midgut extracts | 300 | 1.498 (0.174) | 2.186 (1.463–3.534) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wu, Z.; He, X.; Xu, H.; Lu, Z. Processing Properties and Potency of Bacillus thuringiensis Cry Toxins in the Rice Leaffolder Cnaphalocrocis medinalis (Guenée). Toxins 2023, 15, 275. https://doi.org/10.3390/toxins15040275
Yang Y, Wu Z, He X, Xu H, Lu Z. Processing Properties and Potency of Bacillus thuringiensis Cry Toxins in the Rice Leaffolder Cnaphalocrocis medinalis (Guenée). Toxins. 2023; 15(4):275. https://doi.org/10.3390/toxins15040275
Chicago/Turabian StyleYang, Yajun, Zhihong Wu, Xiaochan He, Hongxing Xu, and Zhongxian Lu. 2023. "Processing Properties and Potency of Bacillus thuringiensis Cry Toxins in the Rice Leaffolder Cnaphalocrocis medinalis (Guenée)" Toxins 15, no. 4: 275. https://doi.org/10.3390/toxins15040275
APA StyleYang, Y., Wu, Z., He, X., Xu, H., & Lu, Z. (2023). Processing Properties and Potency of Bacillus thuringiensis Cry Toxins in the Rice Leaffolder Cnaphalocrocis medinalis (Guenée). Toxins, 15(4), 275. https://doi.org/10.3390/toxins15040275