Proton-Pump Inhibitors and Serum Concentrations of Uremic Toxins in Patients with Chronic Kidney Disease
Abstract
:1. Introduction
2. Results
2.1. Baseline Patients’ Characteristics
2.2. Crude Analysis: Associations between Uremic Toxins and Proton-Pump Inhibitors
2.3. Adjusted Analyses: Associations between Uremic Toxins and Proton-Pump Inhibitors
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Medication Exposure
4.3. Outcome: Quantification of UTs
4.4. Covariates
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charles, C.; Ferris, A.H. Chronic kidney disease. Prim. Care Clin. Off. Pract. 2020, 47, 585–595. [Google Scholar] [CrossRef] [PubMed]
- El Chamieh, C.; Liabeuf, S.; Massy, Z. Uremic Toxins and Cardiovascular Risk in Chronic Kidney Disease: What Have We Learned Recently beyond the Past Findings? Toxins 2022, 14, 280. [Google Scholar] [CrossRef] [PubMed]
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Mills, K.T.; Xu, Y.; Zhang, W.; Bundy, J.D.; Chen, C.-S.; Kelly, T.N.; Chen, J.; He, J. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015, 88, 950–957. [Google Scholar] [CrossRef] [Green Version]
- Liabeuf, S.; Drüeke, T.B.; Massy, Z.A. Protein-bound uremic toxins: New insight from clinical studies. Toxins 2011, 3, 911–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, K.T.; Singh, P.; Nigam, S.K. Gut-derived uremic toxin handling in vivo requires OAT-mediated tubular secretion in chronic kidney disease. JCI Insight 2020, 5, e133817. [Google Scholar] [CrossRef] [Green Version]
- Mihaila, S.M.; Faria, J.; Stefens, M.F.; Stamatialis, D.; Verhaar, M.C.; Gerritsen, K.G.; Masereeuw, R. Drugs commonly applied to kidney patients may compromise renal tubular uremic toxins excretion. Toxins 2020, 12, 391. [Google Scholar] [CrossRef]
- Nigam, S.K.; Bush, K.T.; Martovetsky, G.; Ahn, S.-Y.; Liu, H.C.; Richard, E.; Bhatnagar, V.; Wu, W. The organic anion transporter (OAT) family: A systems biology perspective. Physiol. Rev. 2015, 95, 83–123. [Google Scholar] [CrossRef]
- Huo, X.; Liu, K. Renal organic anion transporters in drug–drug interactions and diseases. Eur. J. Pharm. Sci. 2018, 112, 8–19. [Google Scholar] [CrossRef]
- Wu, W.; Bush, K.T.; Nigam, S.K. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Sci. Rep. 2017, 7, 4939. [Google Scholar] [CrossRef] [Green Version]
- Nigam, S.K.; Wu, W.; Bush, K.T.; Hoenig, M.P.; Blantz, R.C.; Bhatnagar, V. Handling of Drugs, Metabolites, and Uremic Toxins by Kidney Proximal Tubule Drug Transporters. Clin. J. Am. Soc. Nephrol. 2015, 10, 2039–2049. [Google Scholar] [CrossRef] [Green Version]
- André, C.; Mernissi, T.; Choukroun, G.; Bennis, Y.; Kamel, S.; Liabeuf, S.; Bodeau, S. The Prescription of Drugs That Inhibit Organic Anion Transporters 1 or 3 Is Associated with the Plasma Accumulation of Uremic Toxins in Kidney Transplant Recipients. Toxins 2021, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.-S.; Yu, C.-P.; Hsieh, Y.-W.; Chao, P.-D.L.; Sweet, D.H.; Hou, Y.-C.; Lin, S.-P. Effects of antibiotics on the pharmacokinetics of indoxyl sulfate, a nephro-cardiovascular toxin. Xenobiotica 2020, 50, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Liabeuf, S.; Lambert, O.; Metzger, M.; Hamroun, A.; Laville, M.; Laville, S.M.; Frimat, L.; Pecoits-Filho, R.; Fouque, D.; Massy, Z.A.; et al. Adverse outcomes of proton pump inhibitors in patients with chronic kidney disease: The CKD-REIN cohort study. Br. J. Clin. Pharmacol. 2021, 87, 2967–2976. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Lee, H.; Oh, S.H.; Park, J.; Park, S.; Jeon, J.S.; Noh, H.; Han, D.C.; Kwon, S.H. Chronic kidney disease (CKD) patients are exposed to more proton pump inhibitor (PPI) s compared to non-CKD patients. PLoS ONE 2018, 13, e0203878. [Google Scholar]
- Forgacs, I.; Loganayagam, A. Overprescribing proton pump inhibitors. Br. Med. J. Publ. Group 2008, 336, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dharmarajan, T.S. The use and misuse of proton pump inhibitors: An opportunity for deprescribing. J. Am. Med. Dir. Assoc. 2021, 22, 15–22. [Google Scholar] [CrossRef]
- Haastrup, P.F.; Thompson, W.; Søndergaard, J.; Jarbøl, D. Side Effects of Long-Term Proton Pump Inhibitor Use: A Review. Basic Clin. Pharmacol. Toxicol. 2018, 123, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.; Poly, T.N.; Walther, B.A.; Dubey, N.K.; Ningrum, D.N.A.; Shabbir, S.-A. Adverse outcomes of long-term use of proton pump inhibitors: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2018, 30, 1395–1405. [Google Scholar] [CrossRef]
- Xie, Y.; Bowe, B.; Yan, Y.; Xian, H.; Li, T.; Al-Aly, Z. Estimates of all cause mortality and cause specific mortality associated with proton pump inhibitors among US veterans: Cohort study. BMJ 2019, 365, l1580. [Google Scholar] [CrossRef] [Green Version]
- Chioukh, R.; Noel-Hudson, M.-S.; Ribes, S.; Fournier, N.; Becquemont, L.; Verstuyft, C. Proton Pump Inhibitors Inhibit Methotrexate Transport by Renal Basolateral Organic Anion Transporter hOAT3. Drug Metab. Dispos. 2014, 42, 2041–2048. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ren, J.; Sun, Q.; Zhang, Z.; Lin, Y.; Deng, S.; Wang, C.; Huo, X.; Sun, C.; Tian, X.; et al. Organic anion transporter 3 (OAT3)-mediated transport of dicaffeoylquinic acids and prediction of potential drug-drug interaction. Eur. J. Pharm. Sci. 2019, 133, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Narumi, K.; Sato, Y.; Kobayashi, M.; Furugen, A.; Kasashi, K.; Yamada, T.; Teshima, T.; Iseki, K. Effects of proton pump inhibitors and famotidine on elimination of plasma methotrexate: Evaluation of drug-drug interactions mediated by organic anion transporter 3. Biopharm. Drug Dispos. 2017, 38, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Santucci, R.; Levêque, D.; Lescoute, A.; Kemmel, V.; Herbrecht, R. Delayed elimination of methotrexate associated with co-administration of proton pump inhibitors. Anticancer. Res. 2010, 30, 3807–3810. [Google Scholar] [PubMed]
- Ikemura, K.; Hamada, Y.; Kaya, C.; Enokiya, T.; Muraki, Y.; Nakahara, H.; Fujimoto, H.; Kobayashi, T.; Iwamoto, T.; Okuda, M. Lansoprazole Exacerbates Pemetrexed-Mediated Hematologic Toxicity by Competitive Inhibition of Renal Basolateral Human Organic Anion Transporter 3. Drug Metab. Dispos. 2016, 44, 1543–1549. [Google Scholar] [CrossRef] [Green Version]
- Hamada, Y.; Ikemura, K.; Iwamoto, T.; Okuda, M. Stereoselective Inhibition of Renal Basolateral Human Organic Anion Transporter 3 by Lansoprazole Enantiomers. Pharmacology 2018, 101, 176–183. [Google Scholar] [CrossRef]
- Yu, C.-P.; Sweet, D.H.; Peng, Y.-H.; Hsieh, Y.-W.; Chao, P.-D.L.; Hou, Y.-C.; Lin, S.-P. Effects of nonsteroidal anti-inflammatory drugs on the renal excretion of indoxyl sulfate, a nephro-cardiovascular toxin, in rats. Eur. J. Pharm. Sci. 2017, 101, 66–70. [Google Scholar] [CrossRef]
- Cunha, R.S.D.; Azevedo, C.A.B.; Falconi, C.A.; Ruiz, F.F.; Liabeuf, S.; Carneiro-Ramos, M.S.; Stinghen, A.E.M. The Interplay between Uremic Toxins and Albumin, Membrane Transporters and Drug Interaction. Toxins 2022, 14, 177. [Google Scholar] [CrossRef]
- Granados, J.C.; Richelle, A.; Gutierrez, J.M.; Zhang, P.; Zhang, X.; Bhatnagar, V.; Lewis, N.E.; Nigam, S.K. Coordinate regulation of systemic and kidney tryptophan metabolism by the drug transporters OAT1 and OAT3. J. Biol. Chem. 2021, 296, 100575. [Google Scholar] [CrossRef]
- Laville, S.M.; Metzger, M.; Stengel, B.; Jacquelinet, C.; Combe, C.; Fouque, D.; Laville, M.; Frimat, L.; Ayav, C.; Speyer, E.; et al. Evaluation of the adequacy of drug prescriptions in patients with chronic kidney disease: Results from the CKD-REIN cohort. Br. J. Clin. Pharmacol. 2018, 84, 2811–2823. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, H.; Sakaguchi, Y.; Sugimoto, R.; Kaneko, K.-I.; Iwata, H.; Kotani, S.; Nakajima, M.; Ishima, Y.; Otagiri, M.; Maruyama, T. Human organic anion transporters function as a high-capacity transporter for p-cresyl sulfate, a uremic toxin. Clin. Exp. Nephrol. 2014, 18, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Bruno, G.; Zaccari, P.; Rocco, G.; Scalese, G.; Panetta, C.; Porowska, B.; Pontone, S.; Severi, C. Proton pump inhibitors and dysbiosis: Current knowledge and aspects to be clarified. World J. Gastroenterol. 2019, 25, 2706–2719. [Google Scholar] [CrossRef] [PubMed]
- Rysz, J.; Franczyk, B.; Ławiński, J.; Olszewski, R.; Ciałkowska-Rysz, A.; Gluba-Brzózka, A. The Impact of CKD on Uremic Toxins and Gut Microbiota. Toxins 2021, 13, 252. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Johnson, D.; Xu, H.; Carrero, J.; Pascoe, E.; French, C.; Campbell, K. Dietary protein-fiber ratio associates with circulating levels of indoxyl sulfate and p-cresyl sulfate in chronic kidney disease patients. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 860–865. [Google Scholar] [CrossRef]
- Stengel, B.; Combe, C.; Jacquelinet, C.; Briançon, S.; Fouque, D.; Laville, M.; Frimat, L.; Pascal, C.; Herpe, Y.-E.; Deleuze, J.-F.; et al. The French Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) cohort study. Nephrol. Dial. Transplant. 2014, 29, 1500–1507. [Google Scholar] [CrossRef] [Green Version]
- Fabresse, N.; Uteem, I.; Lamy, E.; Massy, Z.; Larabi, I.A.; Alvarez, J.-C. Quantification of free and protein bound uremic toxins in human serum by LC-MS/MS: Comparison of rapid equilibrium dialysis and ultrafiltration. Clin. Chim. Acta 2020, 507, 228–235. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Levey, A.S.; Eckardt, K.U.; Dorman, N.M.; Christiansen, S.L.; Hoorn, E.J.; Ingelfinger, J.R.; Inker, L.A.; Levin, A.; Mehrotra, R.; Palevsky, P.M.; et al. Nomenclature for kidney function and disease: Report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2020, 97, 1117–1129. [Google Scholar] [CrossRef]
- Buuren, S.; Groothuis-Oudshoorn, K.; Robitzsch, A.; Vink, G.; Doove, L.; Jolani, S. Multivariate Imputation by Chained Equations in R. Comprehensive R Archive. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. 2013. Available online: http://www.R-project.org/ (accessed on 1 March 2023).
Characteristics | Total (n = 680) a | PPI Use (n = 211) a | No PPI Use (n = 469) a | p-Value b | Imputed Data |
---|---|---|---|---|---|
Age at baseline (years) | 68 [61–77] | 71 [65–78] | 67 [59–75] | <0.001 | 0% |
Women | 31% | 37% | 28% | 0.02 | 0% |
eGFR at baseline (mL/min/1.73 m2) | 32 [23–41] | 30 [22–39] | 32 [24–42] | 0.02 | 0% |
Albuminuria categories | 0.38 | 8% | |||
A1 (Normal to mildly increased) | 30% | 27% | 31% | ||
A2 (Moderately increased) | 30% | 33.5% | 28% | ||
A3 (Severely increased) | 40% | 39.5% | 41% | ||
History of acute kidney injury | 21% | 28% | 17.5% | 0.002 | 7.5% |
Smoking status | |||||
Never smoker | 38% | 39.5% | 37.5% | 0.69 | 0.7% |
Current smoker | 13% | 13.5% | 12% | ||
Former smoker | 49% | 47% | 50.50% | ||
Hypertension | 96.6% | 98% | 96% | 0.16 | 0.3% |
Diabetes | 40% | 44% | 38.5% | 0.16 | 0.3% |
Dyslipidemia | 73% | 79.4% | 69.6% | 0.008 | 0.4% |
History of cardiovascular disease | 52% | 63.5% | 47.3% | <0.001 | 0.6% |
Serum albumin (g/L) | 40.5 [37.8–43] | 40 [37.5–42] | 41 [38–43] | 0.03 | 14% |
Hemoglobin (g/dl) | 13.1 (1.64) | 12.8 (1.7) | 13.2 (1.5) | 0.002 | 0.6% |
High-sensitivity C-reactive protein (mg/L) | 2 [1–6] | 4 [2–8] | 2 [1–5] | <0.001 | 0% |
Body mass index (kg/m2) | 28 [25.2–31.4] | 28.5 [25.1–32.4] | 27.8 [25.2–31] | 0.38 | 1.1% |
Total number of medications | 8 [5–10] | 10 [8–12] | 7 [4–9] | <0.001 | 0.29% |
Types of PPI | PPI Prescription (n = 211) a |
---|---|
Omeprazole | 41 (19.5%) |
Esomeprazole | 100 (47.5%) |
Pantoprazole | 11 (5%) |
Lansoprazole | 48 (23%) |
Rabeprazole | 11 (5%) |
Uremic Toxin | Total (n = 680) a | PPI Use (n = 211) a | No PPI Use (n = 469) a | p-Value b | Imputed Data |
---|---|---|---|---|---|
Indoxyl sulfate (mg/L) | 0% | ||||
Free | 0.06 [0.03–0.1] | 0.08 [0.04–0.14] | 0.05 [0.03–0.1] | <0.001 | |
Total | 4.7 [2.7–8.0] | 5.7 [3.3–10.60] | 4.3 [2.4–7.20] | <0.001 | |
Indole-3-acetic acid (mg/L) | 0% | ||||
Free | 0.034 [0.023–0.053] | 0.035 [0.024–0.056] | 0.034 [0.023–0.05] | 0.31 | |
Total | 0.59 [0.38–0.88] | 0.57 [0.37–0.80] | 0.6 [0.4–0.90] | 0.6 | |
Kynurenine (mg/L) | 0% | ||||
Free | 0.15 [0.10–0.20] | 0.2 [0.1–0.22] | 0.15 [0.1–0.2] | 0.04 | |
Total | 1.40 [1.07–1.86] | 1.44 [1.04–1.90] | 1.38 [1.08–1.80] | 0.97 | |
Kynurenic acid (mg/L) | 0% | ||||
Free | <LOD | NA | NA | ||
Total | 0.029 [0.018–0.043] | 0.03 [0.02–0.04] | 0.03 [0.02–0.04] | 0.54 | |
P-cresyl sulfate (mg/L) | 0% | ||||
Free | 0.22 [0.11–0.47] | 0.31 [0.15–0.57] | 0.20 [0.09–0.41] | <0.001 | |
Total | 16 [8–27] | 18 [11–30] | 15 [8–25] | 0.003 | |
P-cresyl glucuronide (mg/L) | 0% | ||||
Free | 0.06 [0.02–0.13] | 0.09 [0.04–0.17] | 0.05 [0.02–0.11] | <0.001 | |
Total | 0.08 [0.03–0.19] | 0.13 [0.05–0.24] | 0.06 [0.03–0.16] | <0.001 | |
Hippuric acid (mg/L) | 0% | ||||
Free | 0.91 [0.44–1.91] | 1.05 [0.50–2.07] | 0.86 [0.42–1.78] | 0.025 | |
Total | 3.7 [1.9–7.8] | 4.2 [2.1–8.2] | 3.5 [1.8–7.3] | 0.17 | |
3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (mg/L) | 0% | ||||
Free | 0.011 [0.006–0.017] | 0.010 [0.005–0.016] | 0.011 [0.006–0.017] | 0.11 | |
Total | 2.9 [1.4–5.5] | 2.6 [1.2–5.2] | 3.0 [1.6–5.7] | 0.06 | |
Phenylacetylglutamine (mg/L) | 2.55 [1.31–4.25] | 3.21 [1.87–5.44] | 2.22 [1.17–3.74] | <0.001 | 0% |
Trimethylamine N-oxide (mg/L) | 1.48 [0.87–2.56] | 1.49 [0.86–2.54] | 1.48 [0.87–2.56] | 0.9 | 0% |
Urea (mmol/L) | 12.6 [9.5–17.5] | 12.8 [9.8–17.3] | 12.4 [9.5–17.5] | 0.57 | 6.10% |
Log Uremic Toxin | Crude Analysis | Adjusted Analysis | ||
---|---|---|---|---|
Beta [95% CI] | p-Value | Beta [95% CI] | p-Value a | |
Free indoxyl sulfate | 0.40 [0.24, 0.57] | <0.001 | 0.19 [0.02, 0.35] | 0.02 |
Total indoxyl sulfate | 0.37 [0.22, 0.51] | <0.001 | 0.24 [0.1, 0.3] | 0.001 |
Free kynurenine | 0.10 [0.02, 0.18] | 0.02 | 0.01 [−0.1, 0.07] | 0.7 |
Free p-cresyl sulfate | 0.38 [0.19, 0.58] | <0.001 | 0.05 [−0.1, 0.2] | 0.6 |
Total p-cresyl sulfate | 0.23 [0.06, 0.39] | 0.003 | 0.002 [−0.17, 0.17] | 0.9 |
Free p-cresyl glucuronide | 0.51 [0.33, 0.70] | <0.001 | 0.24 [0.05, 0.4] | 0.01 |
Total p-cresyl glucuronide | 0.52 [0.33, 0.72] | <0.001 | 0.23 [0.02, 0.4] | 0.02 |
Free hippuric acid | 0.20 [0.03, 0.37] | 0.02 | 0.13 [−0.04, 0.3] | 0.1 |
Phenylacetylglutamine | 0.36 [0.22, 0.50] | <0.001 | 0.14 [0.09, 0.2] | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Chamieh, C.; Larabi, I.A.; Laville, S.M.; Jacquelinet, C.; Combe, C.; Fouque, D.; Laville, M.; Frimat, L.; Pecoits-Filho, R.; Lange, C.; et al. Proton-Pump Inhibitors and Serum Concentrations of Uremic Toxins in Patients with Chronic Kidney Disease. Toxins 2023, 15, 276. https://doi.org/10.3390/toxins15040276
El Chamieh C, Larabi IA, Laville SM, Jacquelinet C, Combe C, Fouque D, Laville M, Frimat L, Pecoits-Filho R, Lange C, et al. Proton-Pump Inhibitors and Serum Concentrations of Uremic Toxins in Patients with Chronic Kidney Disease. Toxins. 2023; 15(4):276. https://doi.org/10.3390/toxins15040276
Chicago/Turabian StyleEl Chamieh, Carolla, Islam Amine Larabi, Solène M. Laville, Christian Jacquelinet, Christian Combe, Denis Fouque, Maurice Laville, Luc Frimat, Roberto Pecoits-Filho, Céline Lange, and et al. 2023. "Proton-Pump Inhibitors and Serum Concentrations of Uremic Toxins in Patients with Chronic Kidney Disease" Toxins 15, no. 4: 276. https://doi.org/10.3390/toxins15040276
APA StyleEl Chamieh, C., Larabi, I. A., Laville, S. M., Jacquelinet, C., Combe, C., Fouque, D., Laville, M., Frimat, L., Pecoits-Filho, R., Lange, C., Stengel, B., Alencar De Pinho, N., Alvarez, J. -C., Massy, Z. A., & Liabeuf, S., on behalf of the Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) Study Group. (2023). Proton-Pump Inhibitors and Serum Concentrations of Uremic Toxins in Patients with Chronic Kidney Disease. Toxins, 15(4), 276. https://doi.org/10.3390/toxins15040276