Increasing the Passive Range of Joint Motion in Stroke Patients Using Botulinum Toxin: The Role of Pain Relief
Abstract
:1. Introduction
2. Results
2.1. Findings in Elbow Flexors before BoNT-A Injection (T0)
2.2. Findings in Finger Flexors before BoNT-A Injection (T0)
2.3. Findings in Elbow Flexors after BoNT-A Injection (T1)
2.4. Findings in Finger Flexors after BoNT-A Injection (T1)
3. Discussion
3.1. Spasticity or Spastic Dystonia?
3.2. Pain Pathophysiology in Patients with Spastic Dystonia and Mechanisms of BoNT-A Action on Pain
3.3. P-ROM Changes in Elbow and Finger Joints
3.4. Limitation of the Study
4. Conclusions
5. Materials and Methods
5.1. Study Design
5.2. Patients’ Selection
5.2.1. Inclusion Criteria
- Age ≥ 18 years;
- Chronic hemiparesis due to a single stroke occurred >6 months before the assessment;
- Muscle hypertonia of elbow and/or finger flexors treated with BoNT-A;
- Clinical assessment performed just before (T0) and 3–6 weeks after BoNT-A (T1) including: (a) extension p-ROM measurements of elbow and fingers; (b) pain perceived at the elbow and fingers during extension p-ROM measurement; (c) muscle tone of elbow and finger flexors; (d) pathological postures of elbow and fingers.
5.2.2. Exclusion Criteria
- Recurrent strokes;
- Other medical conditions in addition to stroke likely to interfere with the clinical assessment reported in the inclusion criteria;
- Use of intrathecal baclofen;
- BoNT-A injection in the upper limb in the three months before assessment;
- Severe cognitive impairment (score of Mini Mental State Examination < 21);
- Severe aphasia interfering with patient’s assessment.
5.3. Assessment of p-ROM
5.4. Pain Assessment
5.5. Muscle Tone Assessment
5.6. Postures Assessment
5.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lorentzen, J.; Pradines, M.; Gracies, J.-M.; Bo Nielsen, J. On Denny-Brown’s “spastic Dystonia”-What Is It and What Causes It? Clin. Neurophysiol. 2018, 129, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Forman, C.R.; Svane, C.; Kruuse, C.; Gracies, J.-M.; Nielsen, J.B.; Lorentzen, J. Sustained Involuntary Muscle Activity in Cerebral Palsy and Stroke: Same Symptom, Diverse Mechanisms. Brain Commun. 2019, 1, fcz037. [Google Scholar] [CrossRef] [PubMed]
- Frenkel-Toledo, S.; Solomon, J.M.; Shah, A.; Baniña, M.C.; Berman, S.; Soroker, N.; Liebermann, D.G.; Levin, M.F. Tonic Stretch Reflex Threshold as a Measure of Spasticity after Stroke: Reliability, Minimal Detectable Change and Responsiveness. Clin. Neurophysiol. 2021, 132, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Gracies, J.-M. Pathophysiology of Spastic Paresis. I: Paresis and Soft Tissue Changes. Muscle Nerve 2005, 31, 535–551. [Google Scholar] [CrossRef]
- Dietz, V.; Sinkjaer, T. Spastic Movement Disorder: Impaired Reflex Function and Altered Muscle Mechanics. Lancet Neurol. 2007, 6, 725–733. [Google Scholar] [CrossRef]
- Malhotra, S.; Cousins, E.; Ward, A.; Day, C.; Jones, P.; Roffe, C.; Pandyan, A. An Investigation into the Agreement between Clinical, Biomechanical and Neurophysiological Measures of Spasticity. Clin. Rehabil. 2008, 22, 1105–1115. [Google Scholar] [CrossRef]
- Currà, A.; Gasbarrone, R.; Cardillo, A.; Fattapposta, F.; Missori, P.; Marinelli, L.; Bonifazi, G.; Serranti, S.; Trompetto, C. In Vivo Non-Invasive near-Infrared Spectroscopy Distinguishes Normal, Post-Stroke, and Botulinum Toxin Treated Human Muscles. Sci. Rep. 2021, 11, 17631. [Google Scholar] [CrossRef]
- Matozinho, C.V.O.; Teixeira-Salmela, L.F.; Samora, G.A.R.; Sant’Anna, R.; Faria, C.D.C.M.; Scianni, A. Incidence and Potential Predictors of Early Onset of Upper-Limb Contractures after Stroke. Disabil. Rehabil. 2021, 43, 678–684. [Google Scholar] [CrossRef]
- Fergusson, D.; Hutton, B.; Drodge, A. The Epidemiology of Major Joint Contractures: A Systematic Review of the Literature. Clin. Orthop. Relat. Res. 2007, 456, 22–29. [Google Scholar] [CrossRef]
- Hoang, P.D.; Gandevia, S.C.; Herbert, R.D. Prevalence of Joint Contractures and Muscle Weakness in People with Multiple Sclerosis. Disabil. Rehabil. 2014, 36, 1588–1593. [Google Scholar] [CrossRef]
- Pradines, M.; Ghédira, M.; Bignami, B.; Vielotte, J.; Bayle, N.; Marciniak, C.; Burke, D.; Hutin, E.; Gracies, J.-M. Do Muscle Changes Contribute to the Neurological Disorder in Spastic Paresis? Front. Neurol. 2022, 13, 817229. [Google Scholar] [CrossRef] [PubMed]
- Jacinto, J.; Camões-Barbosa, A.; Carda, S.; Hoad, D.; Wissel, J. A Practical Guide to Botulinum Neurotoxin Treatment of Shoulder Spasticity 1: Anatomy, Physiology, and Goal Setting. Front. Neurol. 2022, 13, 1004629. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, M.; Iocco, M.; Molteni, F.; Santamato, A.; Smania, N. Italian Spasticity Study Group Management of Stroke Patients Submitted to Botulinum Toxin Type A Therapy: A Delphi Survey of an Italian Expert Panel of Specialist Injectors. Eur. J. Phys. Rehabil. Med. 2014, 50, 525–533. [Google Scholar] [PubMed]
- Gracies, J.-M.; Brashear, A.; Jech, R.; McAllister, P.; Banach, M.; Valkovic, P.; Walker, H.; Marciniak, C.; Deltombe, T.; Skoromets, A.; et al. Safety and Efficacy of AbobotulinumtoxinA for Hemiparesis in Adults with Upper Limb Spasticity after Stroke or Traumatic Brain Injury: A Double-Blind Randomised Controlled Trial. Lancet Neurol. 2015, 14, 992–1001. [Google Scholar] [CrossRef]
- Wissel, J.; Fheodoroff, K.; Hoonhorst, M.; Müngersdorf, M.; Gallien, P.; Meier, N.; Hamacher, J.; Hefter, H.; Maisonobe, P.; Koch, M. Effectiveness of AbobotulinumtoxinA in Post-Stroke Upper Limb Spasticity in Relation to Timing of Treatment. Front. Neurol. 2020, 11, 104. [Google Scholar] [CrossRef]
- Andringa, A.; van de Port, I.; van Wegen, E.; Ket, J.; Meskers, C.; Kwakkel, G. Effectiveness of Botulinum Toxin Treatment for Upper Limb Spasticity Poststroke Over Different ICF Domains: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2019, 100, 1703–1725. [Google Scholar] [CrossRef]
- Shaw, L.C.; Price, C.I.M.; van Wijck, F.M.J.; Shackley, P.; Steen, N.; Barnes, M.P.; Ford, G.A.; Graham, L.A.; Rodgers, H. Botulinum Toxin for the Upper Limb After Stroke (BoTULS) Trial: Effect on Impairment, Activity Limitation, and Pain. Stroke 2011, 42, 1371–1379. [Google Scholar] [CrossRef]
- Rosales, R.L.; Kong, K.H.; Goh, K.J.; Kumthornthip, W.; Mok, V.C.T.; Delgado-De Los Santos, M.M.; Chua, K.S.G.; Abdullah, S.J.B.F.; Zakine, B.; Maisonobe, P.; et al. Botulinum Toxin Injection for Hypertonicity of the Upper Extremity within 12 Weeks after Stroke: A Randomized Controlled Trial. Neurorehabil Neural Repair 2012, 26, 812–821. [Google Scholar] [CrossRef]
- Wissel, J.; Camões-Barbosa, A.; Comes, G.; Althaus, M.; Scheschonka, A.; Simpson, D.M. Pain Reduction in Adults with Limb Spasticity Following Treatment with IncobotulinumtoxinA: A Pooled Analysis. Toxins 2021, 13, 887. [Google Scholar] [CrossRef]
- Trompetto, C.; Marinelli, L.; Mori, L.; Puce, L.; Avanti, C.; Saretti, E.; Biasotti, G.; Amella, R.; Cotellessa, F.; Restivo, D.A.; et al. Effectiveness of Botulinum Toxin on Pain in Stroke Patients Suffering from Upper Limb Spastic Dystonia. Toxins 2022, 14, 39. [Google Scholar] [CrossRef]
- Pavone, F.; Luvisetto, S. Botulinum Neurotoxin for Pain Management: Insights from Animal Models. Toxins 2010, 2, 2890–2913. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ding, Z.; Xu, W.; He, L.; Huang, J.; Zhang, C.; Guo, Q.; Zou, W. Botulinum Toxin Type A Counteracts Neuropathic Pain by Countering the Increase of GlyT2 Expression in the Spinal Cord of CCI Rats. Brain Res. 2022, 1796, 148095. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, L.; Currà, A.; Trompetto, C.; Capello, E.; Serrati, C.; Fattapposta, F.; Pelosin, E.; Phadke, C.; Aymard, C.; Puce, L.; et al. Spasticity and Spastic Dystonia: The Two Faces of Velocity-Dependent Hypertonia. J. Electromyogr. Kinesiol. 2017, 37, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Trompetto, C.; Currà, A.; Puce, L.; Mori, L.; Serrati, C.; Fattapposta, F.; Abbruzzese, G.; Marinelli, L. Spastic Dystonia in Stroke Subjects: Prevalence and Features of the Neglected Phenomenon of the Upper Motor Neuron Syndrome. Clin. Neurophysiol. 2019, 130, 521–527. [Google Scholar] [CrossRef]
- Lance, J.W. Symposium Synopsis. In Spasticity: Disordered Motor Control; Year Book; Feldman, R.G., Young, R.R., Koella, W.P., Eds.; Year Book Medical Pubs: Chicago, IL, USA, 1980; pp. 485–494. [Google Scholar]
- Burke, D. Spasticity as an Adaptation to Pyramidal Tract Injury. Adv. Neurol. 1988, 47, 401–423. [Google Scholar]
- Marinelli, L.; Trompetto, C.; Mori, L.; Vigo, G.; Traverso, E.; Colombano, F.; Abbruzzese, G. Manual Linear Movements to Assess Spasticity in a Clinical Setting. PLoS ONE 2013, 8, e53627. [Google Scholar] [CrossRef]
- Thilmann, A.F.; Fellows, S.J.; Garms, E. The Mechanism of Spastic Muscle Hypertonus. Variation in Reflex Gain over the Time Course of Spasticity. Brain 1991, 114, 233–244. [Google Scholar] [PubMed]
- Trompetto, C.; Marinelli, L.; Puce, L.; Mori, L.; Serrati, C.; Fattapposta, F.; Currà, A. “Spastic Dystonia” or “Inability to Voluntary Silence EMG Activity”? Time for Clarifying the Nomenclature. Clin. Neurophysiol. 2019, 130, 1076–1077. [Google Scholar] [CrossRef] [PubMed]
- Sheean, G.; McGuire, J.R. Spastic Hypertonia and Movement Disorders: Pathophysiology, Clinical Presentation, and Quantification. PM R 2009, 1, 827–833. [Google Scholar] [CrossRef]
- Trompetto, C.; Marinelli, L.; Mori, L.; Pelosin, E.; Currà, A.; Molfetta, L.; Abbruzzese, G. Pathophysiology of Spasticity: Implications for Neurorehabilitation. Biomed. Res. Int. 2014, 2014, 354906. [Google Scholar] [CrossRef]
- Pandyan, A.; Gregoric, M.; Barnes, M.; Wood, D.; Wijck, F.V.; Burridge, J.; Hermens, H.; Johnson, G. Spasticity: Clinical Perceptions, Neurological Realities and Meaningful Measurement. Disabil. Rehabil. 2005, 27, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Wissel, J. Towards Flexible and Tailored Botulinum Neurotoxin Dosing Regimens for Focal Dystonia and Spasticity–Insights from Recent Studies. Toxicon 2018, 147, 100–106. [Google Scholar] [CrossRef]
- Gracies, J.-M. Pathophysiology of Spastic Paresis. II: Emergence of Muscle Overactivity. Muscle Nerve 2005, 31, 552–571. [Google Scholar] [CrossRef]
- Sheean, G.; Lannin, N.A.; Turner-Stokes, L.; Rawicki, B.; Snow, B.J. Botulinum Toxin Assessment, Intervention and after-Care for Upper Limb Hypertonicity in Adults: International Consensus Statement: BoNT-A Consensus Statement: AUL. Eur. J. Neurol. 2010, 17, 74–93. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.C.; Kang, H.; Tseng, W.; Lin, S.; Chan, C.; Chen, H.; Chou, T.; Wang, H.; Lau, W.Y.; Nosaka, K. Muscle Damage Induced by Maximal Eccentric Exercise of the Elbow Flexors after 3-week Immobilization. Scand. Med. Sci. Sport. 2023, 33, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-H.; Wang, Y.-C.; Hu, G.-W.; Ding, X.-Q.; Shen, X.-H.; Yang, H.; Rong, J.-F.; Wang, X.-Q. The Effects of Gender, Functional Condition, and ADL on Pressure Pain Threshold in Stroke Patients. Front. Neurosci. 2021, 15, 705516. [Google Scholar] [CrossRef] [PubMed]
- Shajahan, S.; Sun, L.; Harris, K.; Wang, X.; Sandset, E.C.; Yu, A.Y.; Woodward, M.; Peters, S.A.; Carcel, C. Sex Differences in the Symptom Presentation of Stroke: A Systematic Review and Meta-Analysis. Int. J. Stroke 2023, 18, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Matak, I.; Bölcskei, K.; Bach-Rojecky, L.; Helyes, Z. Mechanisms of Botulinum Toxin Type A Action on Pain. Toxins 2019, 11, 459. [Google Scholar] [CrossRef]
- Paterson, K.; Lolignier, S.; Wood, J.N.; McMahon, S.B.; Bennett, D.L.H. Botulinum Toxin-a Treatment Reduces Human Mechanical Pain Sensitivity and Mechanotransduction. Ann. Neurol. 2014, 75, 591–596. [Google Scholar] [CrossRef]
- Yi, K.; Choi, Y.; Cong, L.; Lee, K.; Hu, K.; Kim, H. Effective Botulinum Toxin Injection Guide for Treatment of Cervical Dystonia. Clin. Anat. 2020, 33, 192–198. [Google Scholar] [CrossRef]
- Yi, K.; Lee, J.; Hur, H.; Lee, H.; Choi, Y.; Kim, H. Distribution of the Intramuscular Innervation of the Triceps Brachii: Clinical Importance in the Treatment of Spasticity with Botulinum Neurotoxin. Clin. Anat. 2023. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Puce, L.; Currà, A.; Marinelli, L.; Mori, L.; Capello, E.; Di Giovanni, R.; Bodrero, M.; Solaro, C.; Cotellessa, F.; Fattapposta, F.; et al. Spasticity, Spastic Dystonia, and Static Stretch Reflex in Hypertonic Muscles of Patients with Multiple Sclerosis. Clin. Neurophysiol. Pract. 2021, 6, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Price, D.D.; Bush, F.M.; Long, S.; Harkins, S.W. A Comparison of Pain Measurement Characteristics of Mechanical Visual Analogue and Simple Numerical Rating Scales. Pain 1994, 56, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Smith, M.B. Assessment of Strength Deficits in Eight Paretic Upper Extremity Muscle Groups of Stroke Patients with Hemiplegia. Phys. Ther. 1987, 67, 522–525. [Google Scholar] [CrossRef]
Muscle | Number of Injected Patients (Percentage) | Dose of BoNT-A: Mean ± SD (Range) |
---|---|---|
Elbow flexor muscles (48 patients) | ||
Biceps brachii | 47/48 (98%) | 82 ± 31 (50–150) |
Brachialis | 47/48 (98%) | 63 ± 20 (50–100) |
Brachioradialis | 22/48 (46%) | 49 ± 5 (25–50) |
Finger flexor muscles (64 patients) | ||
Flexor digitorum superficialis | 60/64 (94%) | 108 ± 57 (25–300) |
Flexor digitorum profundus | 49/64 (77%) | 70 ± 26 (25–150) |
Intrinsic finger muscles | 50/64 (78%) | 67 ± 24 (25–100) |
All | Normal p-ROM | Decreased p-ROM | p-Value | |
---|---|---|---|---|
ELBOW | n = 48 | n = 30 | n = 18 | |
Age, mean (SD) | 66.44 (10.92) | 63.57 (10.08) | 71.22 (10.83) | 0.017 |
Male Sex, n (%) | 32 (67%) | 22 (73%) | 10 (56%) | 0.206 |
Ischemic lesion, n (%) | 35 (73%) | 23 (77%) | 12 (67%) | 0.450 |
Years since stroke, mean (SD) | 7.41 (4.60) | 6.68 (4.23) | 8.63 (5.04) | 0.158 |
Number of previous injections, mean (SD) | 7.13 (5.76) | 7.27 (5.94) | 6.89 (5.61) | 0.829 |
Under treatment for spasticity | 14 (29%) | 10 (33%) | 4 (22%) | 0.521 |
Under treatment for depression | 14 (29%) | 10 (33%) | 4 (22%) | 0.521 |
MAS at T0 | 2.17 (0.87) | 1.70 (0.50) | 2.94 (0.80) | <0.001 |
Loss of p-ROM at T0 | --- | --- | 28.89 (20.90) | --- |
Posture at T0 | 2.44 (0.54) | 2.30 (0.53) | 2.67 (0.49) | 0.0216 |
Pain at T0 | 2.26 (2.72) | 0.57 (1.36) | 5.08 (1.96) | <0.001 |
FINGERS | n = 64 | n = 50 | n = 14 | |
Age, mean (SD) | 65.36 (11.16) | 65.14 (10.56) | 66.14 (13.52) | 0.769 |
Male Sex, n (%) | 40 (63%) | 33 (66%) | 7 (50%) | 0.274 |
Ischemic lesion, n (%) | 43 (67%) | 32 (64%) | 11 (79%) | 0.305 |
Years since stroke, mean (SD) | 6.75 (4.46) | 6.69 (4.42) | 6.98 (4.75) | 0.832 |
Number of previous injections, mean (SD) | 5.97 (5.76) | 5.90 (5.61) | 6.21 (6.48) | 0.858 |
Under treatment for spasticity | 16 (25%) | 12 (24%) | 4 (29%) | 0.736 |
Under treatment for depression | 21 (33%) | 14 (28%) | 7 (50%) | 0.196 |
MAS at T0 | 2.77 (0.66) | 2.54 (0.50) | 3.57 (0.51) | <0.001 |
Loss of p-ROM at T0 | --- | --- | 3.57 (0.85) | --- |
Posture at T0 | 2.30 (0.52) | 2.18 (0.48) | 2.71 (0.47) | 0.001 |
Pain at T0 | 2.61 (3.61) | 0.98 (1.89) | 8.43 (1.74) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trompetto, C.; Marinelli, L.; Mori, L.; Bragazzi, N.; Maggi, G.; Cotellessa, F.; Puce, L.; Vestito, L.; Molteni, F.; Gasperini, G.; et al. Increasing the Passive Range of Joint Motion in Stroke Patients Using Botulinum Toxin: The Role of Pain Relief. Toxins 2023, 15, 335. https://doi.org/10.3390/toxins15050335
Trompetto C, Marinelli L, Mori L, Bragazzi N, Maggi G, Cotellessa F, Puce L, Vestito L, Molteni F, Gasperini G, et al. Increasing the Passive Range of Joint Motion in Stroke Patients Using Botulinum Toxin: The Role of Pain Relief. Toxins. 2023; 15(5):335. https://doi.org/10.3390/toxins15050335
Chicago/Turabian StyleTrompetto, Carlo, Lucio Marinelli, Laura Mori, Nicola Bragazzi, Giulia Maggi, Filippo Cotellessa, Luca Puce, Lucilla Vestito, Franco Molteni, Giulio Gasperini, and et al. 2023. "Increasing the Passive Range of Joint Motion in Stroke Patients Using Botulinum Toxin: The Role of Pain Relief" Toxins 15, no. 5: 335. https://doi.org/10.3390/toxins15050335
APA StyleTrompetto, C., Marinelli, L., Mori, L., Bragazzi, N., Maggi, G., Cotellessa, F., Puce, L., Vestito, L., Molteni, F., Gasperini, G., Farina, N., Bissolotti, L., Sciarrini, F., Millevolte, M., Balestrieri, F., Restivo, D. A., Chisari, C., Santamato, A., Del Felice, A., ... Currà, A. (2023). Increasing the Passive Range of Joint Motion in Stroke Patients Using Botulinum Toxin: The Role of Pain Relief. Toxins, 15(5), 335. https://doi.org/10.3390/toxins15050335