Microcystins and Cyanobacterial Contaminants in the French Small-Scale Productions of Spirulina (Limnospira sp.)
Abstract
:1. Introduction
2. Results
2.1. Microcystins in Spirulina Products and Cultures
2.2. Cyanobacterial Contaminants
3. Discussion
4. Materials and Methods
4.1. Data Collection
4.2. Microcystin Analyses
4.3. Cyanobacteria Enumeration
4.4. Review of MCs in Spirulina Products
4.5. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castenholz, R.W.; Rippka, R.; Herdman, M.; Wilmotte, A. Form-Arthrospira. Bergey’s Man. Syst. Archaea Bact. 2015, 1–3. [Google Scholar] [CrossRef]
- Nowicka-Krawczyk, P.; Mühlsteinová, R.; Hauer, T. Detailed Characterization of the Arthrospira Type Species Separating Commercially Grown Taxa into the New Genus Limnospira (Cyanobacteria). Sci. Rep. 2019, 9, 694. [Google Scholar] [CrossRef] [PubMed]
- Sili, C.; Torzillo, G.; Vonshak, A. Arthrospira (Spirulina). In Ecology of Cyanobacteria II; Springer: Berlin/Heidelberg, Germany, 2012; pp. 677–705. [Google Scholar] [CrossRef]
- Fužinato, S.; Fodora, A.; Subakov-Simić, G. Arthrospira Fusiformis (Voronichin) Komarek et Lund (Cyanoprokaryota) A New Species for Europe. Algol. Stud. 2010, 134, 17–24. [Google Scholar] [CrossRef]
- Misztak, A.E.; Waleron, M.; Furmaniak, M.; Waleron, M.M.; Bazhenova, O.; Daroch, M.; Waleron, K.F. Comparative Genomics and Physiological Investigation of a New Arthrospira/Limnospira Strain O9. 13F Isolated from an Alkaline, Winter Freezing, Siberian Lake. Cells 2021, 10, 3411. [Google Scholar] [CrossRef]
- Ciferri, O. Spirulina, the Edible Microorganism. Microbiol. Rev. 1983, 47, 551. [Google Scholar] [CrossRef]
- Capelli, B.; Cysewski, G.R. Potential Health Benefits of Spirulina Microalgae. Nutrafoods 2010, 9, 19–26. [Google Scholar] [CrossRef]
- Furmaniak, M.A.; Misztak, A.E.; Franczuk, M.D.; Wilmotte, A.; Waleron, M.; Waleron, K.F. Edible Cyanobacterial Genus Arthrospira: Actual State of the Art in Cultivation Methods, Genetics, and Application in Medicine. Front. Microbiol. 2017, 8, 2541. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuča, K. The Antioxidant, Immunomodulatory, and Anti-Inflammatory Activities of Spirulina: An Overview. Arch. Toxicol. 2016, 90, 1817–1840. [Google Scholar] [CrossRef]
- Carmichael, W. The Toxins of Cyanobacteria. Sci. Am. 1994, 270, 78–86. [Google Scholar] [CrossRef]
- Bouaïcha, N.; Miles, C.O.; Beach, D.G.; Labidi, Z.; Djabri, A.; Benayache, N.Y.; Nguyen-Quang, T. Structural Diversity, Characterization and Toxicology of Microcystins. Toxins 2019, 11, 714. [Google Scholar] [CrossRef]
- World Health Organization. Cyanobacterial Toxins: Microcystins. Background Document for Development of WHO Guidelines for Drinking-Water Quality and Guidelines for Safe Recreational Water Environments. 2020. Available online: https://www.who.int/publications/m/item/background-documents-for-development-of-who-guidelines-for-drinking-water-quality-and-guidelines-for-safe-recreational-water-environments (accessed on 20 April 2023).
- Massey, I.Y.; Wu, P.; Wei, J.; Luo, J.; Ding, P.; Wei, H.; Yang, F. A Mini-Review on Detection Methods of Microcystins. Toxins 2020, 12, 641. [Google Scholar] [CrossRef]
- Gilroy, D.J.; Kauffman, K.W.; Hall, R.A.; Huang, X.; Chu, F.S. Assessing Potential Health Risks from Microcystin Toxins in Blue-Green Algae Dietary Supplements. Environ. Health Perspect. 2000, 108, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Testai, E.; Buratti, F.M.; Funari, E.; Manganelli, M.; Vichi, S.; Arnich, N.; Biré, R.; Fessard, V.; Sialehaamoa, A. Review and Analysis of Occurrence, Exposure and Toxicity of Cyanobacteria Toxins in Food. EFSA Support. Publ. 2016, 13, 998E. [Google Scholar] [CrossRef]
- Yu, F.-Y.; Liu, B.-H.; Chou, H.-N.; Chu, F.S. Development of a Sensitive ELISA for the Determination of Microcystins in Algae. J. Agric. Food Chem. 2002, 50, 4176–4182. [Google Scholar] [CrossRef] [PubMed]
- Heussner, A.H.; Mazija, L.; Fastner, J.; Dietrich, D.R. Toxin Content and Cytotoxicity of Algal Dietary Supplements. Toxicol. Appl. Pharmacol. 2012, 265, 263–271. [Google Scholar] [CrossRef]
- Marsan, D.; Conrad, S.; Stutts, W.; Parker, C.; Deeds, J. Evaluation of Microcystin Contamination in Blue-Green Algal Dietary Supplements Using a Protein Phosphatase Inhibition-Based Test Kit. Heliyon 2018, 4, e00573. [Google Scholar] [CrossRef]
- Saker, M.L.; Welker, M.; Vasconcelos, V.M. Multiplex PCR for the Detection of Toxigenic Cyanobacteria in Dietary Supplements Produced for Human Consumption. Appl. Microbiol. Biotechnol. 2007, 73, 1136–1142. [Google Scholar] [CrossRef]
- Jiang, Y.; Xie, P.; Chen, J.; Liang, G. Detection of the Hepatotoxic Microcystins in 36 Kinds of Cyanobacteria Spirulina Food Products in China. Food Addit. Contam. 2008, 25, 885–894. [Google Scholar] [CrossRef]
- Ortelli, D.; Edder, P.; Cognard, E.; Jan, P. Fast Screening and Quantitation of Microcystins in Microalgae Dietary Supplement Products and Water by Liquid Chromatography Coupled to Time of Flight Mass Spectrometry. Anal. Chim. Acta 2008, 617, 230–237. [Google Scholar] [CrossRef]
- Vichi, S.; Lavorini, P.; Funari, E.; Scardala, S.; Testai, E. Contamination by Microcystis and Microcystins of Blue–Green Algae Food Supplements (BGAS) on the Italian Market and Possible Risk for the Exposed Population. Food Chem. Toxicol. 2012, 50, 4493–4499. [Google Scholar] [CrossRef]
- Manali, K.M.; Arunraj, R.; Kumar, T.; Ramya, M. Detection of Microcystin Producing Cyanobacteria in Spirulina Dietary Supplements Using Multiplex HRM Quantitative PCR. J. Appl. Phycol. 2017, 29, 1279–1286. [Google Scholar] [CrossRef]
- Roy-Lachapelle, A.; Solliec, M.; Bouchard, M.F.; Sauvé, S. Detection of Cyanotoxins in Algae Dietary Supplements. Toxins 2017, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Van Hassel, W.H.R.; Ahn, A.-C.; Huybrechts, B.; Masquelier, J.; Wilmotte, A.; Andjelkovic, M. LC-MS/MS Validation and Quantification of Cyanotoxins in Algal Food Supplements from the Belgium Market and Their Molecular Origins. Toxins 2022, 14, 513. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Muriana, M.D.M.; Lara, F.J.; Del Olmo-Iruela, M.; García-Campaña, A.M. Determination of Multiclass Cyanotoxins in Blue-Green Algae (BGA) Dietary Supplements Using Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry. Toxins 2023, 15, 127. [Google Scholar] [CrossRef] [PubMed]
- Bernard, C.; Ballot, A.; Thomazeau, S.; Maloufi, S.; Furey, A.; Mankiewicz-Boczek, J.; Pawlik-Skowrońska, B.; Capelli, C.; Salmaso, N. Appendix 2: Cyanobacteria Associated with the Production of Cyanotoxins. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; John Wiley & Sons, Inc.: Chichester, UK, 2016; pp. 501–525. [Google Scholar] [CrossRef]
- Cronberg, G.; Carpenter, E.J.; Carmichael, W.W. Taxonomy of Harmful Cyanobacteria. In Manual on Harmful Marine Microalgae; UNESCO Publishing: Paris, France, 2003; pp. 523–562. ISBN 92-3-103871-0. [Google Scholar]
- Funari, E.; Testai, E. Human Health Risk Assessment Related to Cyanotoxins Exposure. Crit. Rev. Toxicol. 2008, 38, 97–125. [Google Scholar] [CrossRef]
- Pagliara, P.; De Benedetto, G.E.; Francavilla, M.; Barca, A.; Caroppo, C. Bioactive Potential of Two Marine Picocyanobacteria Belonging to Cyanobium and Synechococcus Genera. Microorganisms 2021, 9, 2048. [Google Scholar] [CrossRef]
- Van Hassel, W.H.R.; Andjelkovic, M.; Durieu, B.; Marroquin, V.A.; Masquelier, J.; Huybrechts, B.; Wilmotte, A. A Summer of Cyanobacterial Blooms in Belgian Waterbodies: Microcystin Quantification and Molecular Characterizations. Toxins 2022, 14, 61. [Google Scholar] [CrossRef]
- Lincoln, E.P.; Carmichael, W.W. Preliminary Tests of Toxicity of Synechocystis Sp. Grown on Wastewater Medium. In The Water Environment: Algal Toxins and Health; Carmichael, W.W., Ed.; Environmental Science Research; Springer: Boston, MA, USA, 1981; pp. 223–230. ISBN 978-1-4613-3267-1. [Google Scholar]
- Vardaka, E.; Kormas, K.A.; Katsiapi, M.; Genitsaris, S.; Moustaka-Gouni, M. Molecular Diversity of Bacteria in Commercially Available “Spirulina” Food Supplements. PeerJ 2016, 4, e1610. [Google Scholar] [CrossRef]
- Yang, Y.; Park, Y.; Cassada, D.A.; Snow, D.D.; Rogers, D.G.; Lee, J. In Vitro and in Vivo Safety Assessment of Edible Blue-Green Algae, Nostoc Commune Var. Sphaeroides Kützing and Spirulina Plantensis. Food Chem. Toxicol. 2011, 49, 1560–1564. [Google Scholar] [CrossRef]
- FDA Agency GRAS Notice No. GRN 000101. Fda.Gov. 2002. Available online: http://www.algbiotek.com/spirulina-sertifikalar/Spirulina-GRAS-grn_101.pdf (accessed on 20 April 2023).
- Marles, R.J.; Barrett, M.L.; Barnes, J.; Chavez, M.L.; Gardiner, P.; Ko, R.; Mahady, G.B.; Dog, T.L.; Sarma, N.D.; Giancaspro, G.I. United States Pharmacopeia Safety Evaluation of Spirulina. Crit. Rev. Food Sci. Nutr. 2011, 51, 593–604. [Google Scholar] [CrossRef]
- Ballot, A. Cyanobacteria and Cyanobacterial Toxins in Three Alkaline Rift Valley Lakes of Kenya-Lakes Bogoria, Nakuru and Elmenteita. J. Plankton Res. 2004, 26, 925–935. [Google Scholar] [CrossRef]
- Ballot, A.; Krienitz, L.; Kotut, K.; Wiegand, C.; Pflugmacher, S. Cyanobacteria and Cyanobacterial Toxins in the Alkaline Crater Lakes Sonachi and Simbi, Kenya. Harmful Algae 2005, 4, 139–150. [Google Scholar] [CrossRef]
- FAO Fisheries Division—Yearbook of Fishery and Aquaculture Statistics. Available online: https://www.fao.org/fishery/static/Yearbook/YB2019_USBcard/navigation/index_intro_e.htm (accessed on 20 April 2023).
- Soni, R.A.; Sudhakar, K.; Rana, R.S. Spirulina—From Growth to Nutritional Product: A Review. Trends Food. Sci. Technol. 2017, 69, 157–171. [Google Scholar] [CrossRef]
- Ministère de l’Agriculture et de l’Alimentation (France) Enquête Aquaculture 2019. 2021. Available online: https://agreste.agriculture.gouv.fr/agreste-web/disaron/Chd2105/detail/ (accessed on 20 April 2023).
- Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I.C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M.; et al. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci. 2021, 7, 1247. [Google Scholar] [CrossRef]
- Fox, R.D. Spirulina: Production & Potential; Edisud: St Rémy de Provence, France, 1996; ISBN 2-85744-853-X. [Google Scholar]
- Jourdan, J.-P.; Grow Your Own Spirulina. Geneva Switz. 2001. Available online: https://wiki.opensourceecology.org/images/c/c6/Spirulina.pdf (accessed on 20 April 2023).
- Birbeck, J.A.; Westrick, J.A.; O’Neill, G.M.; Spies, B.; Szlag, D.C. Comparative Analysis of Microcystin Prevalence in Michigan Lakes by Online Concentration LC/MS/MS and ELISA. Toxins 2019, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Carmichael, W.W. Use of a Colorimetric Protein Phosphatase Inhibition Assay and Enzyme Linked Immunosorbent Assay for the Study of Microcystins and Nodularins. Toxicon 1994, 32, 1495–1507. [Google Scholar] [CrossRef]
- Geis-Asteggiante, L.; Lehotay, S.J.; Fortis, L.L.; Paoli, G.; Wijey, C.; Heinzen, H. Development and Validation of a Rapid Method for Microcystins in Fish and Comparing LC-MS/MS Results with ELISA. Anal. BioanalChem. 2011, 401, 2617–2630. [Google Scholar] [CrossRef]
- Lawrence, J.F.; Niedzwiadek, B.; Menard, C.; Lau, B.P.; Lewis, D.; Kuper-Goodman, T.; Carbone, S.; Holmes, C. Comparison of Liquid Chromatography/Mass Spectrometry, ELISA, and Phosphatase Assay for the Determination of Microcystins in Blue-Green Algae Products. J. AOAC Int. 2001, 84, 1035–1044. [Google Scholar] [CrossRef]
- Bruno, M.; Fiori, M.; Mattei, D.; Melchiorre, S.; Messineo, V.; Volpi, F.; Bogialli, S.; Nazzari, M. ELISA and LC-MS/MS Methods for Determining Cyanobacterial Toxins in Blue-Green Algae Food Supplements. Nat. Prod. Res. 2006, 20, 827–834. [Google Scholar] [CrossRef]
- Costa, J.A.V.; de Morais, M.G.; Dalcanton, F.; Reichert, C.D.C.; Durante, A.J. Simultaneous Cultivation of Spirulina Platensis and the Toxigenic Cyanobacteria Microcystis Aeruginosa. Z. Nat. C 2006, 61, 105–110. [Google Scholar] [CrossRef]
- Domingos, P.; Rubim, T.K.; Molica, R.J.R.; Azevedo, S.; Carmichael, W.W. First Report of Microcystin Production by Picoplanktonic Cyanobacteria Isolated from a Northeast Brazilian Drinking Water Supply. Environ. Toxicol. 1999, 14, 31–35. [Google Scholar] [CrossRef]
- Gantar, M.; Sekar, R.; Richardson, L.L. Cyanotoxins from Black Band Disease of Corals and from Other Coral Reef Environments. Microb. Ecol. 2009, 58, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Izaguirre, G.; Jungblut, A.-D.; Neilan, B.A. Benthic Cyanobacteria (Oscillatoriaceae) That Produce Microcystin-LR, Isolated from Four Reservoirs in Southern California. Water Res. 2007, 41, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Z.A.; El-Sharouny, H.M.; Ali, W.S. Microcystin Production in Benthic Mats of Cyanobacteria in the Nile River and Irrigation Canals, Egypt. Toxicon 2006, 47, 584–590. [Google Scholar] [CrossRef]
- Furtado, A.L.F.F.; Calijuri, M.D.C.; Lorenzi, A.S.; Honda, R.Y.; Genuário, D.B.; Fiore, M.F. Morphological and Molecular Characterization of Cyanobacteria from a Brazilian Facultative Wastewater Stabilization Pond and Evaluation of Microcystin Production. Hydrobiologia 2009, 627, 195–209. [Google Scholar] [CrossRef]
- Myers, J.L.; Sekar, R.; Richardson, L.L. Molecular Detection and Ecological Significance of the Cyanobacterial Genera Geitlerinema and Leptolyngbya in Black Band Disease of Corals. Appl. Environ. Microbiol. 2007, 73, 5173–5182. [Google Scholar] [CrossRef]
- Pitois, F.; Thoraval, I.; Baurès, E.; Thomas, O. Geographical Patterns in Cyanobacteria Distribution: Climate Influence at Regional Scale. Toxins 2014, 6, 509–522. [Google Scholar] [CrossRef]
- Latour, D.; Salençon, M.-J.; Reyss, J.-L.; Giraudet, H. Sedimentary Imprint of Microcystis Aeruginosa (Cyanobacteria) Blooms in Grangent Reservoir (Loire, France). J. Phycol. 2007, 43, 417–425. [Google Scholar] [CrossRef]
- Briand, J.-F.; Jacquet, S.; Flinois, C.; Avois-Jacquet, C.; Maisonnette, C.; Leberre, B.; Humbert, J.-F. Variations in the Microcystin Production of Planktothrix Rubescens (Cyanobacteria) Assessed from a Four-Year Survey of Lac Du Bourget (France) and from Laboratory Experiments. Microb. Ecol. 2005, 50, 418–428. [Google Scholar] [CrossRef]
- Bormans, M.; Savar, V.; Legrand, B.; Mineaud, E.; Robert, E.; Lance, E.; Amzil, Z. Cyanobacteria and Cyanotoxins in Estuarine Water and Sediment. Aquat. Ecol. 2020, 54, 625–640. [Google Scholar] [CrossRef]
- Willame, R.; Jurczak, T.; Iffly, J.-F.; Kull, T.; Meriluoto, J.; Hoffmann, L. Distribution of Hepatotoxic Cyanobacterial Blooms in Belgium and Luxembourg. Hydrobiologia 2005, 551, 99–117. [Google Scholar] [CrossRef]
- Jacquet, S.; Briand, J.-F.; Leboulanger, C.; Avois-Jacquet, C.; Oberhaus, L.; Tassin, B.; Vinçon-Leite, B.; Paolini, G.; Druart, J.-C.; Anneville, O.; et al. The Proliferation of the Toxic Cyanobacterium Planktothrix Rubescens Following Restoration of the Largest Natural French Lake (Lac Du Bourget). Harmful Algae. 2005, 4, 651–672. [Google Scholar] [CrossRef]
- Mussagy, A.; Annadotter, H.; Cronberg, G. An Experimental Study of Toxin Production in Arthrospira Fusiformis (Cyanophyceae) Isolated from African Waters. Toxicon 2006, 48, 1027–1034. [Google Scholar] [CrossRef]
- Janssen, P.J.; Morin, N.; Mergeay, M.; Leroy, B.; Wattiez, R.; Vallaeys, T.; Waleron, K.; Waleron, M.; Wilmotte, A.; Quillardet, P.; et al. Genome Sequence of the Edible Cyanobacterium Arthrospira Sp. PCC 8005. J. Bacteriol. 2010, 192, 2465–2466. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, T.; Narikawa, R.; Okamoto, S.; Ehira, S.; Yoshimura, H.; Suzuki, I.; Masuda, T.; Mochimaru, M.; Takaichi, S.; Awai, K. Genomic Structure of an Economically Important Cyanobacterium, Arthrospira (Spirulina) Platensis NIES-39. DNA Res. 2010, 17, 85–103. [Google Scholar] [CrossRef]
- Cheevadhanarak, S.; Paithoonrangsarid, K.; Prommeenate, P.; Kaewngam, W.; Musigkain, A.; Tragoonrung, S.; Tabata, S.; Kaneko, T.; Chaijaruwanich, J.; Sangsrakru, D. Draft Genome Sequence of Arthrospira Platensis C1 (PCC9438). Stand. Genom. Sci. 2012, 6, 43–53. [Google Scholar] [CrossRef]
- Krienitz, L.; Dadheech, P.K.; Kotut, K. Mass Developments of a Small Sized Ecotype of Arthrospira Fusiformis in Lake Oloidien, Kenya, a New Feeding Ground for Lesser Flamingos in East Africa. 2013. Available online: http://repository.embuni.ac.ke/handle/123456789/225 (accessed on 20 April 2023).
- Melaram, R.; Newton, A.R.; Chafin, J. Microcystin Contamination and Toxicity: Implications for Agriculture and Public Health. Toxins 2022, 14, 350. [Google Scholar] [CrossRef]
- Turner, A.D.; Waack, J.; Lewis, A.; Edwards, C.; Lawton, L. Development and Single-Laboratory Validation of a UHPLC-MS/MS Method for Quantitation of Microcystins and Nodularin in Natural Water, Cyanobacteria, Shellfish and Algal Supplement Tablet Powders. J. Chromatogr. B 2018, 1074, 111–123. [Google Scholar] [CrossRef]
- John, D.M.; Whitton, B.A.; Brook, A.J.; York, P.V.; Johnson, L.R. The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae; Cambridge University Press: Cambridge, UK, 2002; ISBN 0-521-77051-3. [Google Scholar]
- Komarek, J.; Kaštovský, J.; Mares, J.; Johansen, J. Taxonomic Classification of Cyanoprokaryotes (Cyanobacterial Genera) 2014, Using a Polyphasic Approach. Preslia-Praha 2014, 86, 295–335. [Google Scholar]
- Komarek, J.; Anagnostidis, K. Süßwasserflora von Mitteleuropa, Bd. 19/3: Cyanoprokaryota; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-8274-0932-4. [Google Scholar]
- Komarek, J.; Anagnostidis, K. Süßwasserflora von Mitteleuropa, Bd. 19/2: Cyanoprokaryota; Spektrum Akademischer Verlag: Heidelberg, Germany, 2005; ISBN 978-3-8274-1914-9. [Google Scholar]
- Komarek, J.; Anagnostidis, K. Süßwasserflora von Mitteleuropa, Bd. 19/1: Cyanoprokaryota; Spektrum Akademischer Verlag: Heidelberg, Germany, 1999; ISBN 978-3-8274-2111-1. [Google Scholar]
- NF EN 15204; AFNOR. Qualité de l’eau: Norme Guide Pour Le Dénombrement Du Phytoplancton Par Microscopie Inversée (Méthode Utermöhl). Association Française De Normalisation: Paris, France, 2006. [Google Scholar]
- Utermöhl, H. Zur Vervollkommung der quantitativen phytoplankton-methodik. Mitt Int. Ver Limnol. 1958, 9, 38. [Google Scholar]
- Wickham, H. Data Analysis. In ggplot2: Elegant Graphics for Data Analysis; Wickham, H., Ed.; Use R! Springer International Publishing: Cham, Germany, 2016; pp. 189–201. ISBN 978-3-319-24277-4. [Google Scholar]
- Kahle, D.; Wickham, H. Ggmap: Spatial Visualization with Ggplot2. R J. 2013, 5, 144. [Google Scholar] [CrossRef]
ELISA | UHPLC-MS/MS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Farm ID | MC-LReq | MCs total 1 | MC LR | dMC LR | MC LA | MC RR | dMC RR | MC LF | MC YR | MCLW | MC LY |
F031 | 1.31 | 0.022 | 0.001 | ND | ND | ND | ND | 0.009 | ND | 0.012 | ND |
F055 | 1.25 | 0.127 | 0.008 | 0.012 | ND | 0.010 | 0.007 | 0.010 | 0.014 | 0.026 | 0.020 |
F075 | 1.22 | 0.227 | ND | 0.020 | ND | ND | ND | 0.007 | ND | 0.150 | 0.050 |
F031 | 1.20 | 0.170 | 0.015 | 0.018 | 0.016 | 0.005 | 0.025 | 0.025 | 0.007 | 0.048 | 0.020 |
F056 | 0.60 | 0.033 | ND | ND | 0.008 | ND | 0.009 | 0.009 | 0.004 | 0.011 | ND |
Toxins | Method 1 | Results | Market | References |
---|---|---|---|---|
MCs | ELISA | 0.21 ppm ± 0.163 [<0.15–1.31] (361/623 samples) | France | This study |
MCs | ELISA | 0.15 ppm ± 0.08 [0.06–0.32] (8/8 samples) | USA | [14] |
MCs | ELISA | 0.52 ppm ± 0.77 [0.0–2.12] (6/7 samples) | USA | [14] |
MCs | ELISA | 0.047 ppm MCs [0.028–0.078] (3/3 samples) | Taiwan | [16] |
MCs | ELISA | 0.1 ppm (1/1 sample); < 0.01 ppm (0/4 samples) | Germany | [17] |
MCs | PPIA | <0.25 ppm (0/4 samples) | USA | [18] |
MCs | UHPLC-MS/MS | [0.022–0.227 ppm] (5/5 samples). Detailed in Table 1. | France | This study |
MC-LR, MC-RR | MALDI-TOF | Not detected (0/12 samples) | Australia | [19] |
MC-LR, MC-RR, MC-YR | LC-MS/MS | 0.014 ppm ± 0.027 MC [0.002–0.163] (34/34 samples) | China | [20] |
MC-LR, RR, YR, LA | UHPLC-TOF | Not detected (0/10 samples)LD: 0.1 ppm (0.2 ppm for MC-RR) | Switzerland | [21] |
MC-LR, RR, YR, LW, LF, LA | LC-MS/MS | Not detected (0/5 samples)(LD 0.01–0.20 ppm depending on MC congener) | Germany | [17] |
MC-LR, RR, YR, LW, LF, LA, LY | LC-MS/MS | Not detected (0/6 samples). 1.2 ppb < LQ < 15 ppb depending on MC variants | Italia | [22] |
MC-LR, RR, FR, LY | LC-HRMS | MCs detected in 6 samples (6/17). No quantification available | India | [23] |
MC-LR, RR, YR, LW, LF, LA, LY | LDTD-APCI-HRMS | 0.25, 0.6 and 2.5 ppm total MCs DW; (3/11). | USA | [24] |
MC-LR, RR, LA, LF, LY, LW, YR | UHPLC-MS/MS | Not detected (0/19 samples). LD 22.5 ppb | Belgium | [25] |
MC-LR, MC-RR | HILIC-MS/MS | <0.015 ppm (0/6 samples) | Spain | [26] |
Year | MCs Analyses | Cyanobacteria Enumeration | |||||
---|---|---|---|---|---|---|---|
ELISA | UHPLC | ||||||
Dry S. | S. Culture | Farms | Dry S. | Dry S. | S. Culture | Farms | |
2013 | 13 | 13 | |||||
2014 | 5 | 5 | |||||
2015 | 9 | 9 | |||||
2016 | 8 | 8 | |||||
2017 | 57 (57) | 105 (105) | 16 (16) | 57 (57) | 100 (100) | 16 (16) | |
2018 | 153 (153) | 38 (38) | |||||
2019 | 233 (30) | 69 (30) | 232 (30) | 69 (30) | |||
2020 | 50 (48) | 27 (26) | 49 (47) | 26 (25) | |||
2021 | 95 (95) | 40 (40) | 5 (5) | 99 (99) | 2 (2) | 41 (41) | |
All | 623 (383) | 105 (105) | 109 (89) | 5 | 437 (233) | 102 (102) | 95 (75) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinchart, P.-E.; Leruste, A.; Pasqualini, V.; Mastroleo, F. Microcystins and Cyanobacterial Contaminants in the French Small-Scale Productions of Spirulina (Limnospira sp.). Toxins 2023, 15, 354. https://doi.org/10.3390/toxins15060354
Pinchart P-E, Leruste A, Pasqualini V, Mastroleo F. Microcystins and Cyanobacterial Contaminants in the French Small-Scale Productions of Spirulina (Limnospira sp.). Toxins. 2023; 15(6):354. https://doi.org/10.3390/toxins15060354
Chicago/Turabian StylePinchart, Pierre-Etienne, Amandine Leruste, Vanina Pasqualini, and Felice Mastroleo. 2023. "Microcystins and Cyanobacterial Contaminants in the French Small-Scale Productions of Spirulina (Limnospira sp.)" Toxins 15, no. 6: 354. https://doi.org/10.3390/toxins15060354
APA StylePinchart, P. -E., Leruste, A., Pasqualini, V., & Mastroleo, F. (2023). Microcystins and Cyanobacterial Contaminants in the French Small-Scale Productions of Spirulina (Limnospira sp.). Toxins, 15(6), 354. https://doi.org/10.3390/toxins15060354