Mycotoxin Determination and Occurrence in Pseudo-Cereals Intended for Food and Feed: A Review
Abstract
:1. Introduction
1.1. Pseudo-Cereals for Food and Feed
1.2. Major Mycotoxins in Pseudo-Cereals
2. Occurrence and Co-Occurrence of Mycotoxins in Pseudo-Cereal Samples for Food and Feed
3. Mycotoxin Determination
3.1. Extraction Methods
3.2. Analytical Determination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mir, N.A.; Riar, C.S.; Singh, S. Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends Food Sci. Technol. 2018, 75, 170–180. [Google Scholar] [CrossRef]
- Paucar-Menacho, L.M.; Simpalo-López, W.D.; Castillo-Martínez, W.E.; Esquivel-Paredes, L.J.; Martínez-Villaluenga, C. Reformulating Bread Using Sprouted Pseudo-cereal Grains to Enhance Its Nutritional Value and Sensorial Attributes. Foods 2022, 11, 1541. [Google Scholar] [CrossRef]
- Thakur, P.; Kumar, K.; Dhaliwal, H.S. Nutritional facts, bio-active components and processing aspects of pseudocereals: A comprehensive review. Food Biosci. 2021, 42, 101170. [Google Scholar] [CrossRef]
- Hinojosa, L.; González, J.A.; Barrios-Masias, F.H.; Fuentes, F.; Murphy, K.M. Quinoa abiotic stress responses: A review. Plants 2018, 7, 106. [Google Scholar] [CrossRef] [Green Version]
- Asher, A.; Galili, S.; Whitney, T.; Rubinovich, L. The potential of quinoa (Chenopodium quinoa) cultivation in Israel as a dual-purpose crop for grain production and livestock feed. Sci. Hortic. 2020, 272, 109534. [Google Scholar] [CrossRef]
- Haros, C.M.; Sanz-Penella, J.M. Food uses of whole pseudocereals. In Pseudocereals: Chemistry and Technology; Wiley-Blackwell: Hoboken, NJ, USA, 2017; pp. 163–192. [Google Scholar]
- Graziano, S.; Agrimonti, C.; Marmiroli, N.; Gullì, M. Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. Trends Food Sci. Technol. 2022, 125, 154–165. [Google Scholar] [CrossRef]
- Bochetto, A.; Merino, N.; Kaplan, M.; Guiñez, M.; Cerutti, S. Design of a combined microextraction and back-extraction technique for the analysis of mycotoxins in amaranth seeds. J. Food Compos. Anal. 2021, 98, 103818. [Google Scholar] [CrossRef]
- Ruiz, K.B.; Khakimov, B.; Engelsen, S.B.; Bak, S.; Biondi, S.; Jacobsen, S.E. Quinoa seed coats as an expanding and sustainable source of bioactive compounds: An investigation of genotypic diversity in saponin profiles. Ind. Crops Prod. 2017, 104, 156–163. [Google Scholar] [CrossRef]
- Bilalis, D.; Roussis, I.; Kakabouki, I.; Folina, A. Quinoa (Chenopodium quinoa Willd.) crop under Mediterranean conditions: A review. Cienc. Investig. Agrar. 2019, 46, 51–68. [Google Scholar] [CrossRef]
- Kakabouki, I.; Bilalis, D.; Karkanis, A.; Zervas, G.; Hela, D. Effects of fertilization and tillage system on growth and crude protein content of quinoa (Chenopodium quinoa willd.): An alternative forage crop. Emir. J. Food Agric. 2014, 26, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Angeli, V.; Silva, P.M.; Massuela, D.C.; Khan, M.W.; Hamar, A.; Khajehei, F.; Graeff-Hönninger, S.; Piatti, C. Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the “Golden Grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods 2020, 9, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebeid, H.M.; Kholif, A.E.; El-Bordeny, N.; Chrenkova, M.; Mlynekova, Z.; Hansen, H.H. Nutritive value of quinoa (Chenopodium quinoa) as a feed for ruminants: In sacco degradability and in vitro gas production. Environ. Sci. Pollut. Res. 2022, 29, 35241–35252. [Google Scholar] [CrossRef] [PubMed]
- Tan, M. Macro-and micromineral contents of different quinoa (Chenopodium quinoa Willd.) varieties used as forage by cattle. Turk. J. Agric. For. 2020, 44, 46–53. [Google Scholar] [CrossRef]
- Gül, M.; Tekce, E. Quinoa: A new feedstuff in animal nutrition. Yem Mag. 2016, 76, 29–35. [Google Scholar]
- Peiretti, P.G. Amaranth in animal nutrition: A review. Livest. Res. Rural. Dev. 2018, 30, 1–20. [Google Scholar]
- Manyelo, T.G.; Sebola, N.A.; van Rensburg, E.J.; Mabelebele, M. The probable use of Genus amaranthus as feed material for monogastric animals. Animals 2020, 10, 1504. [Google Scholar] [CrossRef]
- Sanderson, S.L. Pros and cons of commercial pet foods (including grain/grain free) for dogs and cats. Vet. Clin. Small Anim. Pract. 2021, 51, 529–550. [Google Scholar] [CrossRef]
- Laflamme, D.; Izquierdo, O.; Eirmann, L.; Binder, S. Myths and misperceptions about ingredients used in commercial pet foods. Vet. Clin. Small Anim. Pract. 2014, 44, 689–698. [Google Scholar] [CrossRef]
- Traughber, Z.T.; He, F.; Hoke, J.M.; Davenport, G.M.; Rodriguez-Zas, S.L.; Southey, B.R.; de Godoy, M.R. Ancient grains as novel dietary carbohydrate sources in canine diets. J. Anim. Sci. 2021, 99, skab080. [Google Scholar] [CrossRef]
- Pezzali, J.G.; Aldrich, C.G. Effect of ancient grains and grain-free carbohydrate sources on extrusion parameters and nutrient utilization by dogs. J. Anim. Sci. 2019, 97, 3758–3767. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; Huertas-Pérez, J.F.; García-Campaña, A.M.; Gámiz-Gracia, L. Simple methodology for the determination of mycotoxins in pseudocereals, spelt and rice. Food Control 2014, 36, 94–101. [Google Scholar] [CrossRef]
- Carballo, D.; Tolosa, J.; Ferrer, E.; Berrada, H. Dietary exposure assessment to mycotoxins through total diet studies. A review. Food Chem. Toxicol. 2019, 128, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Sacco, C.; Donato, R.; Zanella, B.; Pini, G.; Pettini, L.; Marino, M.F.; Rookmin, A.D.; Marvasi, M. Mycotoxins and flours: Effect of type of crop, organic production, packaging type on the recovery of fungal genus and mycotoxins. Int. J. Food Microbiol. 2020, 334, 108808. [Google Scholar] [CrossRef]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.; Rai, R.V.; Karim, A.A. Mycotoxins in food and feed: Present status and future concerns. Compr. Rev. Food Sci. Food Saf. 2010, 9, 57–81. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens—The IARC monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No. 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Brussels, Belgium, 2006. Available online: https://www.fsai.ie/uploadedFiles/Consol_Reg1881_2006.pdf (accessed on 29 December 2022).
- More, S.J.; Hardy, A.; Bampidis, V.; Benford, D.; Hougaard Bennekou, S.; Bragard, C.; Boesten, J.; Halldorsson, T.I.; Hernández-Jerez, A.F.; Jeger, M.J.; et al. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J. 2009, 17, 5634. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, R.; Crisci, A.; Venâncio, A.; Cortiñas Abrahantes, J.; Dorne, J.L.; Battilani, P.; Toscano, P. Occurrence and co-occurrence of mycotoxins in cereal-based feed and food. Microorganisms 2020, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Diaz, J.M.; Sulyok, M.; Jacobsen, S.E.; Jouppila, K.; Nathanail, A.V. Comparative study of mycotoxin occurrence in Andean and cereal grains cultivated in South America and North Europe. Food Control 2021, 130, 108260. [Google Scholar] [CrossRef]
- Kirinčič, S.; Škrjanc, B.; Kos, N.; Kozolc, B.; Pirnat, N.; Tavčar-Kalcher, G. Mycotoxins in cereals and cereal products in Slovenia–Official control of foods in the years 2008–2012. Food Control 2015, 50, 157–165. [Google Scholar] [CrossRef]
- Krysinska-Traczyk, E.; Perkowski, J.; Dutkiewicz, J. Levels of fungi and mycotoxins in the samples of grain and grain dust collected from five various cereal crops in eastern Poland. Ann. Agric. Environ. Med. 2007, 14, 159–167. [Google Scholar]
- Pappier, U.; Fernandez Pinto, V.; Larumbe, G.; Vaamonde, G. Effect of processing for saponin removal on fungal contamination of quinoa seeds (Chenopodium quinoa Willd.). Int. J. Food Microbiol. 2008, 125, 153–157. [Google Scholar] [CrossRef]
- Bresler, G.; Brizzio, S.B.; Vaamonde, G. Mycotoxin-producing potential of fungi isolated from amaranth seeds in Argentina. Int. J. Food Microbiol. 1995, 25, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Vásquez-Ocmín, P.G.; Marti, G.; Gadea, A.; Cabanac, G.; Vásquez-Briones, J.A.; Casavilca-Zambrano, S.; Ponts, N.; Jargeatj, P.; Haddada, M.; Bertani, S. Metabotyping of Andean pseudocereals and characterization of emerging mycotoxins. Food Chem. 2023, 407, 135134. [Google Scholar] [CrossRef]
- Ducos, C.; Pinson-Gadais, L.; Chereau, S.; Richard-Forget, F.; Vásquez-Ocmín, P.; Cerapio, J.P.; Casavilca-Zambrano, S.; Ruiz, E.; Pineau, P.; Bertani, S.; et al. Natural occurrence of mycotoxin-producing fusaria in market-bought peruvian cereals: A food safety threat for Andean populations. Toxins 2021, 13, 172. [Google Scholar] [CrossRef]
- Bresler, G.; Vaamonde, G.; Brizzio, S. Natural occurrence of zearalenone and toxicogenic fungi in amaranth grain. Int. J. Food Microbiol. 1991, 13, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Schollenberger, M.; Müller, H.M.; Rüfle, M.; Suchy, S.; Planck, S.; Drochner, W. Survey of Fusarium toxins in foodstuffs of plant origin marketed in Germany. Int. J. Food Microbiol. 2005, 97, 317–326. [Google Scholar] [CrossRef]
- Sugita-Konishi, Y.; Nakajima, M.; Tabata, S.; Ishikuro, E.; Tanaka, T.; Norizuki, H.; Itoh, Y.; Aoyama, K.; Fujita, K.; Kai, S.; et al. Occurrence of aflatoxins, ochratoxin A, and fumonisins in retail foods in Japan. J. Food Prot. 2006, 69, 1365–1370. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, S.; Nakajima, M.; Tabata, S.; Ishikuro, E.; Tanaka, T.; Norizuki, H.; Itoh, Y.; Aoyama, K.; Fujita, K.; Kai, S.; et al. Aflatoxin and ochratoxin A contamination of retail foods and intake of these mycotoxins in Japan. Food Addit. Contam. 2008, 25, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Veršilovskis, A.; Bartkevičs, V.; Miķelsone, V. Sterigmatocystin presence in typical Latvian grains. Food Chem. 2008, 109, 243–248. [Google Scholar] [CrossRef]
- Keriene, I.; Mankeviciene, A.; Cesnuleviciene, R.; Janaviciene, S. Mycotoxins in Lithuanian buckwheat grain grown under sustainable and organic production systems. Proceedings book. In Proceedings of the 3rd International Conference on Sustainable Agriculture and Environment (3rd ICSAE), Warsaw, Poland, 26–28 September 2016; ISBN 978-605-9831-95-6. [Google Scholar]
- Keriene, I.; Mankeviciene, A.; Bliznikas, S.; Cesnuleviciene, R.; Janaviciene, S.; Jablonskyte-Rasce, D.; Maiksteniene, S. The effect of buckwheat groats processing on the content of mycotoxins and phenolic compounds. CyTA-J. Food 2016, 14, 565–571. [Google Scholar] [CrossRef]
- Ren, G.; Hu, Y.; Zhang, J.; Zou, L.; Zhao, G. Determination of multi-class mycotoxins in tartary buckwheat by ultra-fast liquid chromatography coupled with triple quadrupole mass spectrometry. Toxins 2018, 10, 28. [Google Scholar] [CrossRef] [Green Version]
- Torović, L. Aflatoxins and ochratoxin A in flour: A survey of the Serbian retail market. Food Addit. Contam. Part B 2018, 11, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Bessaire, T.; Ernest, M.; Christinat, N.; Carrères, B.; Panchaud, A.; Badoud, F. High resolution mass spectrometry workflow for the analysis of food contaminants: Application to plant toxins, mycotoxins and phytoestrogens in plant-based ingredients. Food Addit. Contam. Part A 2021, 38, 978–996. [Google Scholar] [CrossRef] [PubMed]
- Bresler, G.; Vaamonde, G.; Degrossi, C.; Pinto, V.F. Amaranth grain as substrate for aflatoxin and zearalenone production at different water activity levels. Int. J. Food Microbiol. 1998, 42, 57–61. [Google Scholar] [CrossRef]
- Uhlig, S.; Torp, M.; Heier, B.T. Beauvericin and enniatins A, A1, B and B1 in Norwegian grain: A survey. Food Chem. 2006, 94, 193–201. [Google Scholar] [CrossRef]
- Uhlig, S.; Jestoi, M.; Parikka, P. Fusarium avenaceum—The North European situation. Int. J. Food Microbiol. 2007, 119, 17–24. [Google Scholar] [CrossRef]
- Lindblad, M.; Gidlund, A.; Sulyok, M.; Borjesson, T.; Krska, R.; Olsen, M.; Fredlund, E. Deoxynivalenol and other selected Fusarium toxins in Swedish wheat—Occurrence and correlation to specific Fusarium species. Int. J. Food Microbiol. 2013, 167, 284–291. [Google Scholar] [CrossRef]
- Tolosa, J.; Font, G.; Mañes, J.; Ferrer, E. Nuts and dried fruits: Natural occurrence of emerging Fusarium mycotoxins. Food Control 2013, 33, 215–220. [Google Scholar] [CrossRef]
- Herrera, M.; Bervis, N.; Carramiñana, J.J.; Juan, T.; Herrera, A.; Ariño, A.; Lorán, S. Occurrence and exposure assessment of aflatoxins and deoxynivalenol in cereal-based baby foods for infants. Toxins 2019, 11, 150. [Google Scholar] [CrossRef] [Green Version]
- Alshannaq, A.; Yu, J.H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shephard, G.S. Current status of mycotoxin analysis: A critical review. J. AOAC Int. 2016, 99, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Reiter, E.; Zentek, J.; Razzazi, E. Review on sample preparation strategies and methods used for the analysis of aflatoxins in food and feed. Mol. Nutr. Food Res. 2009, 53, 508–524. [Google Scholar] [CrossRef]
- Pereira, V.L.; Fernandes, J.O.; Cunha, S.C. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends Food Sci. Technol. 2014, 36, 96–136. [Google Scholar] [CrossRef]
- Cigić, I.K.; Prosen, H. An overview of conventional and emerging analytical methods for the determination of mycotoxins. Int. J. Mol. Sci. 2009, 10, 62–115. [Google Scholar] [CrossRef]
- Iqbal, S.Z. Mycotoxins in food, recent development in food analysis and future challenges; a review. Curr. Opin. Food Sci. 2021, 42, 237–247. [Google Scholar] [CrossRef]
- Bian, Y.; Zhang, Y.; Zhou, Y.; Wei, B.; Feng, X. Recent Insights into Sample Pretreatment Methods for Mycotoxins in Different Food Matrices: A Critical Review on Novel Materials. Toxins 2023, 15, 215. [Google Scholar] [CrossRef]
- Rahmani, A.; Jinap, S.; Soleimany, F. Qualitative and quantitative analysis of mycotoxins. Compr. Rev. Food Sci. Food Saf. 2009, 8, 202–251. [Google Scholar] [CrossRef]
- Zheng, M.Z.; Richard, J.L.; Binder, J. A review of rapid methods for the analysis of mycotoxins. Mycopathologia 2006, 161, 261. [Google Scholar] [CrossRef]
- Singh, J.; Mehta, A. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Sci. Nutr. 2020, 8, 2183–2204. [Google Scholar] [CrossRef] [Green Version]
- Malachová, A.; Stránská, M.; Václavíková, M.; Elliott, C.T.; Black, C.; Meneely, J.; Hajšlová, J.; Ezekiel, C.N.; Schuhmacher, R.; Krska, R. Advanced LC–MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Anal. Bioanal. Chem. 2018, 410, 801–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pseudocereal Sample | Detected Mycotoxins | Incidence (%) * | Mycotoxin Contents Media ± SD ** (Range) μg/kg | Reference |
---|---|---|---|---|
Amaranth | ZEA AFs OTA STG | 100 nd nd nd | (420.0–1980.0) nd nd nd | [38] |
Amaranth, quinoa, and buckwheat | TCs ZEA, α-ZOL, and β-ZOL | nd nd | nd nd | [39] |
Buckwheat flour and dried buckwheat noodles, among others | AFs OTA FBs | nd 60 nd | nd 0.51 (0.16–1.79) nd | [40] |
Buckwheat grain Buckwheat grain dust | DON OTA DON OTA | 33.3 50 100 100 | (74.0–87.0) (0.38–1.14) (10.0–283.0) (1.03–2.42) | [33] |
Buckwheat flour and dried buckwheat noodles, among others | AFs OTA | nd 80 | nd 0.51 (0.16–1.79) | [41] |
Quinoa | AFs CIT CPA OTA | nd nd nd nd | nd nd nd nd | [34] |
Buckwheat | STG | 17 20 | (0.5–25) (25–200) | [42] |
Quinoa and Amaranth | AFs, OTA, FBs, NIV, DON, FUS-X, T-2/HT-2, CIT, STG, and ZEA | nd | nd | [22] |
Buckwheat and buckwheat products | OTA DON ZEA AFs FBs T-2/HT-2 | 4 17 8 nd nd nd | 2.1 98.0 ± 40 (max 141.0) 13.0 ± 7 (max 18.0) nd nd nd | [32] |
Buckwheat grain | AFB1 DON OTA T-2 | 100 100 100 100 | (2.18–8.39) (300.0–580.0) traces (24.0–38.0) | [43] |
Buckwheat groats | AFB1 OTA T-2 | 100 100 100 | (2.3 ± 0.6) (0.7 ± 0.2) (4.1 ± 0.5) | [44] |
Tartary buckwheat seeds | AFB1 | 7 | 5.62 | [45] |
Buckwheat flour | OTA AFs | 38.5 nd | 0.40 ± 0.34 (0.15–0.96) nd | [46] |
Quinoa Amaranth (grain) Buckwheat | AFs FB1 + FB2 AFs FB1 + FB2 AFs FB1 + FB2 | nr nr nr nr nr nr | 4.4 ± 0.8 368.5 ± 2.5 1.60 ± 0.70 111.00 ± 0.0 4.68 ± 0.44 567.25 ± 138.14 | [24] |
Quinoa | AFB1 BEA DON ENNA ENNA1 ENNB ENNB1 Mycophenolic acid Tentoxin Tenuazonic acid | nd nd nd ***id ***id ***id ***id nd nd ***id | - - - nr nr nr nr - - nr | [47] |
Quinoa | AFB1 FB1 OTA PAT BEA | nd 32 nd nd 82 | nd traces nd nd 7.9 ± 0.85 | [36] |
Samples | Mycotoxins | Extraction Method | Analytical Method | Reference |
---|---|---|---|---|
Amaranth | ZEA, AFs, OTA, STG | SLE and clean-up | TLC | [38] |
Amaranth, quinoa, and buckwheat | TCs ZEA, α-ZOL, and β-ZOL | SLE and clean-up by SPE SLE and IAC | GC-MS HPLC-FLD | [39] |
Buckwheat flour and dried buckwheat noodles, corn, rice, peanuts, peanut butter, popcorn, cornflakes, and sesame oil | AFs OTA FBs | SLE and IAC SLE and IAC SLE and IAC | HPLC-FLD HPLC-MS | [40] |
Buckwheat grain and buckwheat grain dust | DON NIV OTA | SLE and SPE clean-up SLE and IAC | GC-MS GC-MS HPLC | [33] |
Corn, processed corn, buckwheat, dry buckwheat noodles, peanuts, rice, and sesame oil | AFs OTA | SLE and IAC | HPLC | [41] |
Wheat, buckwheat, barley, oats, and rye | STG | SLE and SPE clean-up | LC–MS/MS | [42] |
Buckwheat, quinoa, spelt, amaranth, and white rice | AFs, FBs, OTA, T-2, HT-2, STG, CIT, ZEA, NIV, DON, and FUS-X | QuEChERS | UHPLC-MS/MS | [22] |
Buckwheat and buckwheat products, wheat, maize, oat, rice, rye, barley, millet, triticale, and others | OTA DON ZEA AFs FBs T-2/HT-2 | SLE and IAC | HPLC-FLD HPLC-DAD HPLC-FLD LC-MS/MS LC-MS/MS GC-MS | [32] |
Buckwheat groats | AFB1 OTA T-2 | - | ELISA | [44] |
Tartary buckwheat seeds | AFs, FBs, OTA, ZEA, DON, and T-2/HT-2 | SLE | UFLC-QTrap-MS/MS | [45] |
Wheat, buckwheat, rye, oat, barley, rice, millet, and corn flour | OTA AFs | SLE and IAC | HPLC-FLD HPLC-FLD | [46] |
Quinoa, amaranth (grain), and buckwheat | Afs FB1 + FB2 | - | ELISA | [24] |
Pea protein, soy protein, red quinoa, and wheat flour | DON, AFs, ZEA, DON, FBs, ENNA, HT-2, OTA, PAT, and T-2 | QuEChERS | UHPLC-MS/MS | [47] |
Corn, wheat, amaranth, rice, barley, and oats | FBs, DON, and ZEA | SLE | HPLC-MS/MS | [37] |
Quinoa, kăniwa, barley, oat, and wheat | 101 mycotoxins | SLE | LC-MS/MS | [31] |
Quinoa | AFB1, FB1, OTA, PAT, and BEA | SLE | UHPLC−HRMS | [36] |
Amaranth | DON and ZEA | In-phase liquid–liquid microextraction based on the solidification of a floating organic drop followed by double solvent-assisted back-extraction (DLLME-SFO-SBE) | UHPLC-MS/MS | [8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vila-López, M.V.; Pallarés, N.; Ferrer, E.; Tolosa, J. Mycotoxin Determination and Occurrence in Pseudo-Cereals Intended for Food and Feed: A Review. Toxins 2023, 15, 379. https://doi.org/10.3390/toxins15060379
Vila-López MV, Pallarés N, Ferrer E, Tolosa J. Mycotoxin Determination and Occurrence in Pseudo-Cereals Intended for Food and Feed: A Review. Toxins. 2023; 15(6):379. https://doi.org/10.3390/toxins15060379
Chicago/Turabian StyleVila-López, María Vanessa, Noelia Pallarés, Emilia Ferrer, and Josefa Tolosa. 2023. "Mycotoxin Determination and Occurrence in Pseudo-Cereals Intended for Food and Feed: A Review" Toxins 15, no. 6: 379. https://doi.org/10.3390/toxins15060379
APA StyleVila-López, M. V., Pallarés, N., Ferrer, E., & Tolosa, J. (2023). Mycotoxin Determination and Occurrence in Pseudo-Cereals Intended for Food and Feed: A Review. Toxins, 15(6), 379. https://doi.org/10.3390/toxins15060379