Snake Antivenoms—Toward Better Understanding of the Administration Route
Abstract
:1. Overview
2. Preclinical Studies
2.1. Antivenom’s Pharmacokinetic Profile in Animal Studies
2.1.1. Antivenom’s Impact on Venoms of Elapids and Scorpions
2.1.2. Antivenom’s Impact on Venoms of Viperids
2.1.3. Role of Lymphatic System in Venom Neutralization
3. Clinical Studies
3.1. Antivenom’s Pharmacokinetic Profile in Human Studies
3.1.1. Pharmacokinetic Properties of i.v. Antivenoms
3.1.2. Pharmacokinetic Properties of i.m. Antivenoms
3.2. Clinical Outcome
3.2.1. Clinical Outcome after i.v. Antivenom Administration
3.2.2. Clinical Outcome after i.m. Antivenom Administration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harris, R.J.; Jenner, R.A. Evolutionary Ecology of Fish Venom: Adaptations and Consequences of Evolving a Venom System. Toxins 2019, 11, 60. [Google Scholar] [CrossRef] [Green Version]
- Isbister, G.K. Snakebite Doesn’t Cause Disseminated Intravascular Coagulation: Coagulopathy and Thrombotic Microangiopathy in Snake Envenoming. Semin. Thromb. Hemost. 2010, 36, 444–451. [Google Scholar] [CrossRef]
- Isbister, G.K.; Kiernan, M.C. Neurotoxic Marine Poisoning. Lancet Neurol. 2005, 4, 219–228. [Google Scholar] [CrossRef]
- Nekaris, K.A.I.; Campera, M.; Nijman, V.; Birot, H.; Rode-Margono, E.J.; Fry, B.G.; Weldon, A.; Wirdateti, W.; Imron, M.A. Slow Lorises Use Venom as a Weapon in Intraspecific Competition. Curr. Biol. 2020, 30, R1252–R1253. [Google Scholar] [CrossRef]
- Espino-Solis, G.P.; Riaño-Umbarila, L.; Becerril, B.; Possani, L.D. Antidotes against Venomous Animals: State of the Art and Prospectives. J. Proteom. 2009, 72, 183–199. [Google Scholar] [CrossRef]
- El-Aziz, T.M.A.; Soares, A.G.; Stockand, J.D. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins 2019, 11, 564. [Google Scholar] [CrossRef] [Green Version]
- Warrell, D.A. Snake Bite. Lancet 2010, 375, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Warrell, D.A. Venomous Bites, Stings, and Poisoning: An Update. Infect. Dis. Clin. N. Am. 2019, 33, 17–38. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite Envenoming. Nat. Rev. Dis. Prim. 2017, 3, 17063. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Snakebite Envenoming—A Strategy for Prevention and Control. Available online: https://www.who.int/publications/i/item/9789241515641 (accessed on 12 May 2023).
- Durban, J.; Juárez, P.; Angulo, Y.; Lomonte, B.; Flores-Diaz, M.; Alape-Girón, A.; Sasa, M.; Sanz, L.; Gutiérrez, J.M.; Dopazo, J.; et al. Profiling the Venom Gland Transcriptomes of Costa Rican Snakes by 454 Pyrosequencing. BMC Genom. 2011, 12, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanetti, G.; Duregotti, E.; Locatelli, C.A.; Giampreti, A.; Lonati, D.; Rossetto, O.; Pirazzini, M. Variability in Venom Composition of European Viper Subspecies Limits the Cross-Effectiveness of Antivenoms. Sci. Rep. 2018, 8, 9818. [Google Scholar] [CrossRef] [Green Version]
- Habib, A.G.; Brown, N.I. The Snakebite Problem and Antivenom Crisis from a Health-Economic Perspective. Toxicon 2018, 150, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, I.S.; Abubakar, S.B.; Habib, A.G.; Nasidi, A.; Durfa, N.; Yusuf, P.O.; Larnyang, S.; Garnvwa, J.; Sokomba, E.; Salako, L.; et al. Randomised Controlled Double-Blind Non-Inferiority Trial of Two Antivenoms for Saw-Scaled or Carpet Viper (Echis Ocellatus) Envenoming in Nigeria. PLoS Negl. Trop. Dis. 2010, 4, e767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theakston, R.D.G.; Warrell, D.A. Crisis in Snake Antivenom Supply for Africa. Lancet 2000, 356, 2104. [Google Scholar] [CrossRef]
- Williams, D.J.; Gutiérrez, J.M.; Calvete, J.J.; Wüster, W.; Ratanabanangkoon, K.; Paiva, O.; Brown, N.I.; Casewell, N.R.; Harrison, R.A.; Rowley, P.D.; et al. Ending the Drought: New Strategies for Improving the Flow of Affordable, Effective Antivenoms in Asia and Africa. J. Proteom. 2011, 74, 1735–1767. [Google Scholar] [CrossRef]
- Kurtović, T.; Brvar, M.; Grenc, D.; Balija, M.L.; Križaj, I.; Halassy, B. A Single Dose of ViperfavTM May Be Inadequate for Vipera Ammodytes Snake Bite: A Case Report and Pharmacokinetic Evaluation. Toxins 2016, 8, 244. [Google Scholar] [CrossRef] [Green Version]
- Jollivet, V.; Hamel, J.F.; De Haro, L.; Labadie, M.; Sapori, J.M.; Cordier, L.; Villa, A.; Nisse, P.; Puskarczyk, E.; Berthelon, L.; et al. European Viper Envenomation Recorded by French Poison Control Centers: A Clinical Assessment and Management Study. Toxicon 2015, 108, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Lukšić, B.; Bradarić, N.; Prgomet, S. Venomous Snakebites in Southern Croatia. Coll. Antropol. 2006, 30, 191–197. [Google Scholar] [PubMed]
- Williams, D.; Gutiérrez, J.M.; Harrison, R.; Warrell, D.A.; White, J.; Winkel, K.D.; Gopalakrishnakone, P. The Global Snake Bite Initiative: An Antidote for Snake Bite. Lancet 2010, 375, 89–91. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; León, G.; Lomonte, B.; Angulo, Y. Antivenoms for Snakebite Envenomings. Inflamm. Allergy-Drug Targets 2011, 10, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Calmette, A. The Treatment of Animals Poisoned with Snake Venom by the Injection of Antivenomous Serum. Br. Med. J. 1896, 2, 399–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- León, G.; Vargas, M.; Segura, Á.; Herrera, M.; Villalta, M.; Sánchez, A.; Solano, G.; Gómez, A.; Sánchez, M.; Estrada, R.; et al. Current Technology for the Industrial Manufacture of Snake Antivenoms. Toxicon 2018, 151, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Pucca, M.B.; Cerni, F.A.; Janke, R.; Bermúdez-Méndez, E.; Ledsgaard, L.; Barbosa, J.E.; Laustsen, A.H. History of Envenoming Therapy and Current Perspectives. Front. Immunol. 2019, 10, 1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, J.M.; Burnouf, T.; Harrison, R.A.; Calvete, J.J.; Kuch, U.; Warrell, D.A.; Williams, D.J. A Multicomponent Strategy to Improve the Availability of Antivenom for Treating Snakebite Envenoming. Bull. World Health Organ. 2014, 92, 526–532. [Google Scholar] [CrossRef]
- Laustsen, A.H.; Karatt-Vellatt, A.; Masters, E.W.; Arias, A.S.; Pus, U.; Knudsen, C.; Oscoz, S.; Slavny, P.; Griffiths, D.T.; Luther, A.M.; et al. In Vivo Neutralization of Dendrotoxin-Mediated Neurotoxicity of Black Mamba Venom by Oligoclonal Human IgG Antibodies. Nat. Commun. 2018, 9, 3928. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Tsai, C.-Y.; Hu, W.-P.; Chang, L.-S. DNA Aptamers against Taiwan Banded Krait α-Bungarotoxin Recognize Taiwan Cobra Cardiotoxins. Toxins 2016, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Karain, B.D.; Lee, M.K.H.; Hayes, W.K. C60 Fullerenes as a Novel Treatment for Poisoning and Envenomation: A Proof-of-Concept Study for Snakebite. J. Nanosci. Nanotechnol. 2016, 16, 7764–7771. [Google Scholar] [CrossRef]
- Baudou, F.G.; Fusco, L.; Giorgi, E.; Diaz, E.; Municoy, S.; Desimone, M.F.; Leiva, L.; De Marzi, M.C. Physicochemical and Biological Characterization of Nanovenoms, a New Tool Formed by Silica Nanoparticles and Crotalus Durissus Terrificus Venom. Colloids Surf. B Biointerfaces 2020, 193, 111128. [Google Scholar] [CrossRef] [PubMed]
- Laustsen, A.H. Recombinant Antivenoms. Ph.D. Thesis, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark, 2016. ISBN 9788793086616. [Google Scholar]
- Lewin, M.; Samuel, S.; Merkel, J.; Bickler, P. Varespladib (LY315920) Appears to Be a Potent, Broad-Spectrum, Inhibitor of Snake Venom Phospholipase A2 and a Possible Pre-Referral Treatment for Envenomation. Toxins 2016, 8, 248. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, C.; Laustsen, A.H. Recent Advances in Next Generation Snakebite Antivenoms. Trop. Med. Infect. Dis. 2018, 3, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins. In WHO Expert Committee on Biological Standardization: Sixty-Seventh Report; World Health Organization: Geneva, Switzerland, 2017; pp. 197–388. ISBN 978-92-4-121013-3. [Google Scholar]
- Mateljak Lukačević, S.; Kurtović, T.; Borić, J.; Halassy, B. Roughness of Production Conditions: Does It Really Affect Stability of IgG-Based Antivenoms? Toxins 2022, 14, 483. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; León, G.; Lomonte, B. Pharmacokinetic-Pharmacodynamic Relationships of Immunoglobulin Therapy for Envenomation. Clin. Pharmacokinet. 2003, 42, 721–741. [Google Scholar] [CrossRef] [PubMed]
- Nikapitiya, B.; Maduwage, K. Pharmacodynamics and Pharmacokinetics of Snake Antivenom. Sri. Lanka J. Med. 2017, 26, 54–65. [Google Scholar] [CrossRef]
- Scherrmann, J.M. Antibody Treatment of Toxin Poisoning Recent Advances. Clin. Toxicol. 1994, 32, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Isbister, G.K.; O’Leary, M.; Miller, M.; Brown, S.G.A.; Ramasamy, S.; James, R.; Schneider, J.S. A Comparison of Serum Antivenom Concentrations after Intravenous and Intramuscular Administration of Redback (Widow) Spider Antivenom. Br. J. Clin. Pharmacol. 2007, 65, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Ghalim, N.; El-Hafny, B.; Sebti, F.; Heikel, J.; Lazar, N.; Moustanir, R.; Benslimane, A. Scorpion Envenomation and Serotherapy in Morocco. Am. J. Trop. Med. Hyg. 2000, 62, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Isbister, G.K.; Brown, S.G.A.; Page, C.B.; McCoubrie, D.L.; Greene, S.L.; Buckley, N.A. Snakebite in Australia: A Practical Approach to Diagnosis and Treatment. Med. J. Aust. 2013, 199, 763–768. [Google Scholar] [CrossRef] [Green Version]
- Churchman, A.; O’Leary, M.A.; Buckley, N.A.; Page, C.B.; Tankel, A.; Gavaghan, C.; Holdgate, A.; Brown, S.G.A.; Isbister, G.K. Clinical Effects of Red-Bellied Black Snake (Pseudechis porphyriacus) Envenoming and Correlation with Venom Concentrations: Australian Snakebite Project (ASP-11). Med. J. Aust. 2010, 193, 696–700. [Google Scholar] [CrossRef]
- Krifi, M.N.; Amri, F.; Kharrat, H.; El Ayeb, M. Evaluation of Antivenom Therapy in Children Severely Envenomed by Androctonus Australis Garzonii (Aag) and Buthus Occitanus Tunetanus (Bot) Scorpions. Toxicon 1999, 37, 1627–1634. [Google Scholar] [CrossRef]
- Rivière, G.; Choumet, V.; Saliou, B.; Debray, M.; Bon, C. Absorption and Elimination of Viper Venom after Antivenom Administration. J. Pharmacol. Exp. Ther. 1998, 285, 490–495. [Google Scholar]
- Lalloo, D.G.; Theakston, R.D.G. Snake Antivenoms. J. Toxicol. Clin. Toxicol. 2003, 41, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.A.Y.; Silamut, K.; White, N.J.; Karbwang, J.; Looareesuwan, S.; Phillips, R.E.; Warrell, D.A. Pharmacokinetics of Three Commercial Antivenoms in Patients Envenomed by the Malayan Pit Viper, Calloselasma Rhodostoma, in Thailand. Am. J. Trop. Med. Hyg. 1990, 42, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Ariaratnam, C.A.; Meyer, W.P.; Perera, G.; Eddleston, M.; Kuleratne, S.A.M.; Attapattu, W.; Sheriff, R.; Richards, A.M.; Theakston, R.D.G.; Warrell, D.A. A New Monospecific Ovine Fab Fragment Antivenom for Treatment of Envenoming by the Sri Lankan Russell’s Viper (Daboia Russelii Russelii): A Preliminary Dose-Finding and Pharmacokinetic Study. Am. J. Trop. Med. Hyg. 1999, 61, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theakston, R.D.G.; Laing, G.D. Diagnosis of Snakebite and the Importance of Immunological Tests in Venom Research. Toxins 2014, 6, 1667–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, W.P.; Habib, A.G.; Onayade, A.A.; Yakubu, A.; Smith, D.C.; Nasidi, A.; Daudu, I.J.; Warrell, D.A.; Theakston, R.D.G. First Clinical Experiences with a New Ovine Fab Echis Ocellatus Snake Bite Antivenom in Nigeria: Randomized Comparative Trial with Institute Pasteur Serum (Ipser) Africa Antivenom. Am. J. Trop. Med. Hyg. 1997, 56, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Boyer, L.V.; Seifert, S.A.; Clark, R.F.; McNally, J.T.; Williams, S.R.; Nordt, S.P.; Walter, F.G.; Dart, R.C. Recurrent and Persistent Coagulopathy Following Pit Viper Envenomation. Arch. Intern. Med. 1999, 159, 706–710. [Google Scholar] [CrossRef] [Green Version]
- Boyer, L.V.; Seifert, S.A.; Cain, J.S. Recurrence Phenomena after Immunoglobulin Therapy for Snake Envenomations: Part 2. Guidelines for Clinical Management with Crotaline Fab Antivenom. Ann. Emerg. Med. 2001, 37, 196–201. [Google Scholar] [CrossRef]
- Lamb, T.; de Haro, L.; Lonati, D.; Brvar, M.; Eddleston, M. Antivenom for European Vipera Species Envenoming. Clin. Toxicol. 2017, 55, 557–568. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for South-East Asia. Guidelines for the Management of Snake-Bites; Warrell, D.A., Ed.; World Health Organization: New Delhi, India, 2010; ISBN 978-92-9022-377-4. [Google Scholar]
- Reid, H.A. Antivenom Reactions and Efficacy. Lancet 1980, 315, 1024–1025. [Google Scholar] [CrossRef]
- Gutiérrez, J.M. Improving Antivenom Availability and Accessibility: Science, Technology, and Beyond. Toxicon 2012, 60, 676–687. [Google Scholar] [CrossRef]
- Kalil, J.; Fan, H.W. Production and Utilization of Snake Antivenoms in South America. In Toxins and Drug Discovery; Gopalakrishnakone, P., Cruz, L.J., Luo, S., Eds.; Springer: São Paulo, Brazil, 2017; pp. 81–101. ISBN 9789400764521. [Google Scholar]
- Alirol, E.; Sharma, S.K.; Bawaskar, H.S.; Kuch, U.; Chappuis, F. Snake Bite in South Asia: A Review. PLoS Negl. Trop. Dis. 2010, 4, e603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nimorakiotakis, B.; Winkel, K.D. Spider Bite—The Redback Spider and Its Relatives. Aust. Fam. Physician 2004, 33, 153–157. [Google Scholar] [PubMed]
- Jalali, A.; Pipelzadeh, M.H.; Seyedian, R.; Rahmani, A.H.; Omidian, N. In Vivo Pharmacological Study on the Effectiveness of Available Polyclonal Antivenom against Hemiscorpius lepturus Venom. J. Venom. Anim. Toxins Incl. Trop. Dis. 2011, 17, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Isbister, G.K. Failure of Intramuscular Antivenom in Red-Back Spider Envenoming. Emerg. Med. 2002, 14, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Isbister, G.K.; Brown, S.G.A.; Miller, M.; Tankel, A.; Macdonald, E.; Stokes, B.; Ellis, R.; Nagree, Y.; Wilkes, G.J.; James, R.; et al. A Randomised Controlled Trial of Intramuscular vs. Intravenous Antivenom for Latrodectism—The RAVE Study. QJM An Int. J. Med. 2008, 101, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Ahmed, M.; Nadeem, A.; Mahajan, J.; Choudhary, A.; Pal, J. Emergency Treatment of a Snake Bite: Pearls from Literature. J. Emerg. Trauma. Shock 2008, 1, 97–105. [Google Scholar] [CrossRef]
- Paniagua, D.; Vergara, I.; Boyer, L.; Alagón, A. Role of Lymphatic System on Snake Venom Absorption. In Snake Venoms; Gopalakrishnakone, P., Inagaki, H., Mukherjee, A.K., Rahmy, T.R., Vogel, C.-W., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 1–19. ISBN 978-94-007-6648-8. [Google Scholar]
- Bula Com Informações Ao Paciente—Soro Antibotrópico (Pentavalente) e Antilaquético. Available online: http://www.funed.mg.gov.br/wp-content/uploads/2018/11/1.-Bula-de-soro-antibotrópico-pentavalente-e-antilaquético-para-o-Paciente.pdf (accessed on 11 May 2023).
- Bula Com Informações Ao Paciente—Soro Antielapídico (Bivalente). Available online: http://www.funed.mg.gov.br/wp-content/uploads/2018/11/1.-Bula-de-soro-antielapídico-bivalente-para-o-Paciente.pdf (accessed on 11 May 2023).
- Bula Com Informações Ao Paciente—Soro Anticrotálico. Available online: http://www.funed.mg.gov.br/wp-content/uploads/2020/04/Bula-do-soro-anticrotálico-para-o-paciente-2020.pdf (accessed on 11 May 2023).
- Viekvin—Viper Venom Antiserum (Equine). Available online: http://www.torlakinstitut.com/pdf/Viekvin-en.pdf (accessed on 11 May 2023).
- Vetal Serum—Ürünlerimiz. Available online: http://www.vetalserum.com.tr/en/urunler/polisera-snake-antiserum (accessed on 11 May 2023).
- Sera—Products of BB—NCIPD Ltd. Available online: https://bulbio.com/en/serums.html (accessed on 11 May 2023).
- Viper Venom Antitoxin. Available online: https://www.biodrug.sk/docs/en_viper_venom.pdf (accessed on 11 May 2023).
- Suero Antiofídico Polivalente Biol. Available online: https://www.biol.com.ar/uploads/filemanager/SueroAntiofificoPolivalenteBiol.pdf (accessed on 11 May 2023).
- van Helden, D.F.; Dosen, P.J.; O’Leary, M.A.; Isbister, G.K. Two Pathways for Venom Toxin Entry Consequent to Injection of an Australian Elapid Snake Venom. Sci. Rep. 2019, 9, 8595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Nicola, M.R.; Pontara, A.; Kass, G.E.N.; Kramer, N.I.; Avella, I.; Pampena, R.; Mercuri, S.R.; Dorne, J.L.C.M.; Paolino, G. Vipers of Major Clinical Relevance in Europe: Taxonomy, Venom Composition, Toxicology and Clinical Management of Human Bites. Toxicology 2021, 453, 152724. [Google Scholar] [CrossRef]
- Paniagua, D.; Jiménez, L.; Romero, C.; Vergara, I.; Calderón, A.; Benard, M.; Bernas, M.J.; Rilo, H.; De Roodt, A.; D’Suze, G.; et al. Lymphatic Route of Transport and Pharmacokinetics of Micrurus fulvius (Coral Snake) Venom in Sheep. Lymphology 2012, 45, 144–153. [Google Scholar]
- Paniagua, D.; Vergara, I.; Román, R.; Romero, C.; Benard-Valle, M.; Calderón, A.; Jiménez, L.; Bernas, M.J.; Witte, M.H.; Boyer, L.V.; et al. Antivenom Effect on Lymphatic Absorption and Pharmacokinetics of Coral Snake Venom Using a Large Animal Model. Clin. Toxicol. 2019, 57, 727–734. [Google Scholar] [CrossRef]
- Potet, J.; Beran, D.; Ray, N.; Alcoba, G.; Habib, A.G.; Iliyasu, G.; Waldmann, B.; Ralph, R.; Faiz, M.A.; Monteiro, W.M.; et al. Access to Antivenoms in the Developing World: A Multidisciplinary Analysis. Toxicon X 2021, 12, 100086. [Google Scholar] [CrossRef] [PubMed]
- Kakhi, M.; Delavadia, P.; Suarez-Sharp, S. Biopharmaceutic Considerations in Drug Product Design and In Vitro Drug Product Performance. In Shargel and Yu’s Applied Biopharmaceutics and Pharmacokinetics, 8th ed.; Ducharme, M.P., Shargel, L., Eds.; McGraw Hill: New York, NY, USA, 2022; pp. 183–243. ISBN 9781260142990. [Google Scholar]
- Hess, L.; Málek, J.; Kurzová, A.; Votava, M. The Effect of Site (Deltoid or Gluteus Muscle) of Intramuscular Administration of Anaesthetic Drugs on the Course of Immobilisation in Macaque Monkeys (Macaca Mulatta). Acta Vet. Brno 2012, 81, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Gad, S.C.; Chengelis, C.P. Safety Considerations for the Administration of Agents by the Parenteral Routes. In Acute Toxicology Testing; Academic Press: Cambridge, MA, USA, 1998; pp. 197–220. ISBN 978-0-12-272250-9. [Google Scholar]
- Polania Gutierrez, J.J.; Munakomi, S. Intramuscular Injection; StatPearls: Tampa, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK556121/ (accessed on 11 May 2023).
- Schou, J. Subcutaneous and Intramuscular Injection of Drugs. In Concepts in Biochemical Pharmacology; Ackerman, H.S., Brodie, B.B., Gillette, J.R., Eds.; Springer: Heidelberg, Germany, 1971; pp. 47–63. ISBN 978-3-642-65054-3. [Google Scholar]
- Persson, H. Clinical Toxicology of Snake Bite in Europe. In Handbook of Clinical Toxicology of Animal Venoms and Poisons, 1st ed.; White, J., Meier, J., Eds.; CRC Press: Boca Raton, FL, USA, 1995; pp. 413–433. ISBN 978-0-8493-4489-3. [Google Scholar]
- Claassen, V. Neglected Factors in Pharmacology and Neuroscience Research; Huston, J.P., Ed.; Elsevier: Amsterdam, The Netherlands, 1994; ISBN 0-444-81871-5. [Google Scholar]
- Chippaux, J.P.; Stock, R.P.; Massougbodji, A. Antivenom Safety and Tolerance for the Strategy of Snake Envenomation Management. In Snake Venoms; Springer: Dordrecht, The Netherlands, 2015; pp. 1–16. ISBN 9789400766488. [Google Scholar]
- World Health Organization. Regional Office for South-East Asia. Guidelines for the Clinical Management of Snake Bites in the South-East Asia Region; World Health Organization: New Delhi, India, 2005; pp. 1–77. Available online: https://apps.who.int/iris/handle/10665/205171 (accessed on 11 May 2023).
- Malasit, P.; Warrell, D.A.; Chanthavanich, P.; Viravan, C.; Mongkolsapaya, J.; Singhthong, B.; Supich, C. Prediction, Prevention, and Mechanism of Early (Anaphylactic) Antivenom Reactions in Victims of Snake Bites. Br. Med. J. (Clin. Res. Ed). 1986, 292, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Pugh, R.N.H.; Theakston, R.D.G. A Clinical Study of Viper Bite Poisoning. Ann. Trop. Med. Parasitol. 1987, 81, 135–149. [Google Scholar] [CrossRef]
- Pepin, S.; Lutsch, C.; Grandgeorge, M.; Scherrmann, J.M. Snake F(ab’)2 Antivenom from Hyperimmunized Horse: Pharmacokinetics Following Intravenous and Intramuscular Administrations in Rabbits. Pharm. Res. 1995, 12, 1470–1473. [Google Scholar] [CrossRef]
- Ismail, M.; Abd-Elsalam, M.A. Serotherapy of Scorpion Envenoming: Pharmacokinetics of Antivenoms and a Critical Assessment of Their Usefulness. Toxicon 1996, 34, 147. [Google Scholar] [CrossRef]
- Pépin-Covatta, S.; Lutsch, C.; Grandgeorge, M.; Lang, J.; Scherrmann, J.M. Immunoreactivity and Pharmacokinetics of Horse Anti-Scorpion Venom F(ab’)2-Scorpion Venom Interactions. Toxicol. Appl. Pharmacol. 1996, 141, 272–277. [Google Scholar] [CrossRef]
- Lukšić, B.; Karabuva, S.; Markić, J.; Polić, B.; Kovačević, T.; Městrović, J.; Križaj, I. Thrombocytopenic Purpura Following Envenomation by the Nose-Horned Viper (Vipera Ammodytes Ammodytes): Two Case Reports. Medicine 2018, 97, e13737. [Google Scholar] [CrossRef] [PubMed]
- Offerman, S.R.; Barry, J.D.; Richardson, W.H.; Tong, T.; Tanen, D.; Bush, S.P.; Clark, R.F. Subcutaneous Crotaline Fab Antivenom for the Treatment of Rattlesnake Envenomation in a Porcine Model. Clin. Toxicol. 2009, 47, 61–68. [Google Scholar] [CrossRef]
- Burgess, J.L.; Dart, R.C.; Egen, N.B.; Mayersohn, M. Effects of Constriction Bands on Rattlesnake Venom Absorption: A Pharmacokinetic Study. Ann. Emerg. Med. 1992, 21, 1086–1093. [Google Scholar] [CrossRef]
- Rodríguez, C.; Estrada, R.; Herrera, M.; Gómez, A.; Segura, A.; Vargas, M.; Villalta, M.; León, G. Bothrops Asper Envenoming in Cattle: Clinical Features and Management Using Equine-Derived Whole IgG Antivenom. Vet. J. 2016, 207, 160–163. [Google Scholar] [CrossRef]
- Audebert, F.; Urtizberea, M.; Sabouraud, A.; Scherrmann, J.M.; Bon, C. Pharmacokinetics of Vipera aspis Venom after Experimental Envenomation in Rabbits. J. Pharmacol. Exp. Ther. 1994, 268, 1512–1517. [Google Scholar]
- León, G.; Monge, M.; Rojas, E.; Lomonte, B.; Gutiérrez, J.M. Comparison between IgG and F(ab′)2 Polyvalent Antivenoms: Neutralization of Systemic Effects Induced by Bothrops Asper Venom in Mice, Extravasation to Muscle Tissue, and Potential for Induction of Adverse Reactions. Toxicon 2001, 39, 793–801. [Google Scholar] [CrossRef]
- Hart, A.J.; Hodgson, W.C.; O’leary, M.; Isbister, G.K. Pharmacokinetics and Pharmacodynamics of the Myotoxic Venom of Pseudechis australis (Mulga Snake) in the Anesthetised Rat. Clin. Toxicol. 2014, 52, 604–610. [Google Scholar] [CrossRef]
- Maduwage, K.P.; Scorgie, F.E.; Lincz, L.F.; O’Leary, M.A.; Isbister, G.K. Procoagulant Snake Venoms Have Differential Effects in Animal Plasmas: Implications for Antivenom Testing in Animal Models. Thromb. Res. 2016, 137, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Hodgson, W.C.; Tasoulis, T.; Isbister, G.K. Rodent Lethality Models Are Problematic for Evaluating Antivenoms for Human Envenoming. Front. Pharmacol. 2022, 13, 830384. [Google Scholar] [CrossRef] [PubMed]
- Jacome, D.; Melo, M.M.; Santos, M.M.B.; Heneine, L.G.D. Kinetics of Venom and Antivenom Serum and Clinical Parameters and Treatment Efficacy in Bothrops alternatus Envenomed Dogs. Vet. Hum. Toxicol. 2002, 44, 334–338. [Google Scholar] [PubMed]
- Barnes, J.M.; Trueta, J. Absorption of Bacteria, Toxins and Snake Venoms from the Tissues. Importance of the Lymphatic Circulation. Lancet 1941, 237, 623–626. [Google Scholar] [CrossRef]
- Laustsen, A.H.; María Gutiérrez, J.; Knudsen, C.; Johansen, K.H.; Bermúdez-Méndez, E.; Cerni, F.A.; Jürgensen, J.A.; Ledsgaard, L.; Martos-Esteban, A.; Øhlenschlæger, M.; et al. Pros and Cons of Different Therapeutic Antibody Formats for Recombinant Antivenom Development. Toxicon 2018, 146, 151–175. [Google Scholar] [CrossRef]
- Fernández, G.P.; Segura, Á.; Herrera, M.; Velasco, W.; Solano, G.; Gutiérrez, J.M.; León, G. Neutralization of Bothrops mattogrossensis Snake Venom from Bolivia: Experimental Evaluation of Llama and Donkey Antivenoms Produced by Caprylic Acid Precipitation. Toxicon 2010, 55, 642–645. [Google Scholar] [CrossRef]
- Ismail, M.; Abd-Elsalam, M.A.; Al-Ahaidib, M.S. Pharmacokinetics of 125I-Labelled Walterinnesia aegyptia Venom and Its Specific Antivenins: Flash Absorption and Distribution of the Venom and Its Toxin versus Slow Absorption and Distribution of IgG, F(ab’)2 and Fab of the Antivenin. Toxicon 1998, 36, 93–114. [Google Scholar] [CrossRef]
- Rojas, A.; Vargas, M.; Ramírez, N.; Estrada, R.; Segura, Á.; Herrera, M.; Villalta, M.; Gómez, A.; Gutiérrez, J.M.; León, G. Role of the Animal Model on the Pharmacokinetics of Equine-Derived Antivenoms. Toxicon 2013, 70, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Lobo, E.D.; Hansen, R.J.; Balthasar, J.P. Antibody Pharmacokinetics and Pharmacodynamics. J. Pharm. Sci. 2004, 93, 2645–2668. [Google Scholar] [CrossRef]
- Yap, M.K.K.; Tan, N.H.; Sim, S.M.; Fung, S.Y.; Tan, C.H. The Effect of a Polyvalent Antivenom on the Serum Venom Antigen Levels of Naja sputatrix (Javan Spitting Cobra) Venom in Experimentally Envenomed Rabbits. Basic Clin. Pharmacol. Toxicol. 2015, 117, 274–279. [Google Scholar] [CrossRef]
- Rivière, G.; Choumet, V.; Audebert, F.; Sabouraud, A.; Debray, M.; Scherrmann, J.M.; Bon, C. Effect of Antivenom on Venom Pharmacokinetics in Experimentally Envenomed Rabbits: Toward an Optimization of Antivenom Therapy. J. Pharmacol. Exp. Ther. 1997, 281, 1–8. [Google Scholar] [PubMed]
- Chaves, F.; Loría, G.D.; Salazar, A.; Gutiérrez, J.M. Intramuscular Administration of Antivenoms in Experimental Envenomation by Bothrops asper: Comparison between Fab and IgG. Toxicon 2003, 41, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Krifi, M.N.; Miled, K.; Abderrazek, M.; El Ayeb, M. Effects of Antivenom on Buthus Occitanus Tunetanus (Bot) Scorpion Venom Pharmacokinetics: Towards an Optimization of Antivenom Immunotherapy in a Rabbit Model. Toxicon 2001, 39, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Krifi, M.N.; Savin, S.; Debray, M.; Bon, C.; El Ayeb, M.; Choumet, V. Pharmacokinetic Studies of Scorpion Venom before and after Antivenom Immunotherapy. Toxicon 2005, 45, 187–198. [Google Scholar] [CrossRef]
- Calderón-Aranda, E.S.; Rivière, G.; Choumet, V.; Possani, L.D.; Bon, C. Pharmacokinetics of the Toxic Fraction of Centruroides limpidus limpidus Venom in Experimentally Envenomed Rabbits and Effects of Immunotherapy with Specific F(ab’)2. Toxicon 1999, 37, 771–782. [Google Scholar] [CrossRef]
- El Hafny, B.; Chgoury, F.; Adil, N.; Cohen, N.; Hassar, M. Intraspecific Variability and Pharmacokinetic Characteristics of Androctonus mauretanicus mauretanicus Scorpion Venom. Toxicon 2002, 40, 1609–1616. [Google Scholar] [CrossRef]
- Hammoudi-Triki, D.; Lefort, J.; Rougeot, C.; Robbe-Vincent, A.; Bon, C.; Laraba-Djebari, F.; Choumet, V. Toxicokinetic and Toxicodynamic Analyses of Androctonus australis hector Venom in Rats: Optimization of Antivenom Therapy. Toxicol. Appl. Pharmacol. 2007, 218, 205–214. [Google Scholar] [CrossRef]
- Gutierrez, J.M.; Rojas, G.; Perez, A.; Arguello, I.; Lomonte, B. Neutralization of Coral Snake Micrurus Nigrocinctus Venom by a Monovalent Antivenom. Braz. J. Med. Biol. Res. 1991, 24, 701–710. [Google Scholar]
- Ismail, M.; Fatani, A.J.Y.; Dabees, T.T. Experimental Treatment Protocols for Scorpion Envenomation: A Review of Common Therapies and an Effect of Kallikrein-Kinin Inhibitors. Toxicon 1992, 30, 1257–1279. [Google Scholar] [CrossRef] [PubMed]
- Santana, G.C.; Freire, A.C.T.; Ferreira, A.P.L.; Cháves-Olórtegui, C.; Diniz, C.R.; Freire-Maia, L. Pharmacokinetics of Tityus serrulatus Scorpion Venom Determined by Enzyme-Linked Immunosorbent Assay in the Rat. Toxicon 1996, 34, 1063–1066. [Google Scholar] [CrossRef] [PubMed]
- Amuy, E.; Alape-Girón, A.; Lomonte, B.; Thelestam, M.; Gutiérrez, J.M. Development of Immunoassays for Determination of Circulating Venom Antigens during Envenomations by Coral Snakes (Micrurus Species). Toxicon 1997, 35, 1605–1616. [Google Scholar] [CrossRef]
- Zerrouk, H.; Bougis, P.E.; Céard, B.; Benslimane, A.; Martin-Eauclaire, M.F. Analysis by High-Performance Liquid Chromatography of Androctonus mauretanicus mauretanicus (Black Scorpion) Venom. Toxicon 1991, 29, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Salmonson, T.; Danielson, B.; Wikstrom, B. The Pharmacokinetics of Recombinant Human Erythropoietin after Intravenous and Subcutaneous Administration to Healthy Subjects. Br. J. Clin. Pharmacol. 1990, 29, 709–713. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.H.; Sim, S.M.; Gnanathasan, C.A.; Fung, S.Y.; Tan, N.H. Pharmacokinetics of the Sri Lankan Hump-Nosed Pit Viper (Hypnale hypnale) Venom Following Intravenous and Intramuscular Injections of the Venom into Rabbits. Toxicon 2014, 79, 37–44. [Google Scholar] [CrossRef]
- Barral-Netto, M.; Schriefer, A.; Vinhas, V.; Almeida, A.R. Enzyme-Linked Immunosorbent Assay for the Detection of Bothrops jararaca Venom. Toxicon 1990, 28, 1053–1061. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Zheng, J.; Jiang, Z. Pharmacokinetics of Thrombin-like Enzyme from Venom of Agkistrodon Halys ussuriensis emelianov Determined by ELISA in the Rat. Toxicon 2001, 39, 1821–1826. [Google Scholar] [CrossRef]
- Neri-Castro, E.; Bénard-Valle, M.; Paniagua, D.; Boyer, L.V.; Possani, L.D.; López-Casillas, F.; Olvera, A.; Romero, C.; Zamudio, F.; Alagón, A. Neotropical Rattlesnake (Crotalus simus) Venom Pharmacokinetics in Lymph and Blood Using an Ovine Model. Toxins 2020, 12, 455. [Google Scholar] [CrossRef]
- Seifert, S.A.; Boyer, L.V. Recurrence Phenomena after Immunoglobulin Therapy for Snake Envenomations: Part 1. Pharmacokinetics and Pharmacodynamics of Immunoglobulin Antivenoms and Related Antibodies. Ann. Emerg. Med. 2001, 37, 189–195. [Google Scholar] [CrossRef]
- Sanhajariya, S.; Duffull, S.B.; Isbister, G.K. Pharmacokinetics of Snake Venom. Toxins 2018, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Slagboom, J.; Kool, J.; Harrison, R.A.; Casewell, N.R. Haemotoxic Snake Venoms: Their Functional Activity, Impact on Snakebite Victims and Pharmaceutical Promise. Br. J. Haematol. 2017, 177, 947–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bermúdez-Méndez, E.; Fuglsang-Madsen, A.; Føns, S.; Lomonte, B.; Gutiérrez, J.M.; Laustsen, A.H. Innovative Immunization Strategies for Antivenom Development. Toxins 2018, 10, 452. [Google Scholar] [CrossRef] [Green Version]
- Porter, C.J.H.; Edwards, G.A.; Charman, S.A. Lymphatic Transport of Proteins after s.c. Injection: Implications of Animal Model Selection. Adv. Drug Deliv. Rev. 2001, 50, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Si, H.; Yin, C.; Wang, W.; Davies, P.; Sanchez, E.; Suntravat, M.; Zawieja, D.; Cromer, W. Effect of the Snake Venom Component Crotamine on Lymphatic Endothelial Cell Responses and Lymph Transport. Microcirculation 2022, 30, e12775. [Google Scholar] [CrossRef]
- Warrell, D.A. Clinical Toxicology of Snakebite in Asia. In Handbook of: Clinical Toxicology of Animal Venoms and Poisons; CRC Press: Boca Raton, FL, USA, 2017; pp. 493–594. ISBN 9780203719442. [Google Scholar]
- Seifert, S.A. Pharmacokinetic Analysis of a Crotalid Fab Antivenom and Theoretical Considerations for the Prevention of Coagulopathic Recurrence. In Proceedings of the North American Congress of Clinical Toxicology, Orlando, FL, USA, 9–15 September 1998. [Google Scholar]
- Fidler, H.K.; Glasgow, R.D.; Carmichael, E.B. Pathologic Changes Produced by Subcutaneous Injection of Rattlesnake (Crotalus) Venom into Macaca mulatta Monkeys. Proc. Soc. Exp. Biol. Med. 1938, 38, 892–894. [Google Scholar] [CrossRef] [PubMed]
- Chippaux, J.P.; Massougbodji, A.; Stock, R.P.; Alagon, A.; Fassinou, E.; Ndamadjo, A.; Soglo, R.; Tamou, B.E.; Mama, A.B.; Nguemezi, A.; et al. Clinical Trial of an F(ab′)2 Polyvalent Equine Antivenom for African Snake Bites in Benin. Am. J. Trop. Med. Hyg. 2007, 77, 538–546. [Google Scholar] [CrossRef] [Green Version]
- Isbister, G.K.; Maduwage, K.; Saiao, A.; Buckley, N.A.; Jayamanne, S.F.; Seyed, S.; Mohamed, F.; Chathuranga, U.; Mendes, A.; Abeysinghe, C.; et al. Population Pharmacokinetics of an Indian F(ab’)2 Snake Antivenom in Patients with Russell’s Viper (Daboia russelii) Bites. PLoS Negl. Trop. Dis. 2015, 9, e0003873. [Google Scholar] [CrossRef]
- Maduwage, K.; Silva, A.; O’Leary, M.A.; Hodgson, W.C.; Isbister, G.K. Efficacy of Indian Polyvalent Snake Antivenoms against Sri Lankan Snake Venoms: Lethality Studies or Clinically Focussed in Vitro Studies. Sci. Rep. 2016, 6, 26778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ownby, C.L.; Reisbeck, S.L.; Russell, A. Levels of Therapeutic Antivenon and Venom in a Human Snakebite Victim. South. Med. J. 1996, 89, 803–806. [Google Scholar] [CrossRef]
- Nielsen, H.; Sørensen, H.; Faber, V.; Svehag, S. Circulating Immune Complexes, Complement Activation Kinetics and Serum Sickness Following Treatment with Heterologous Anti-snake Venom Globulin. Scand. J. Immunol. 1978, 7, 25–33. [Google Scholar] [CrossRef]
- Brvar, M.; Kurtović, T.; Grenc, D.; Lang Balija, M.; Križaj, I.; Halassy, B. Vipera ammodytes Bites Treated with Antivenom ViperaTAb: A Case Series with Pharmacokinetic Evaluation. Clin. Toxicol. 2017, 55, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Thein-Than, T.; Kyi-Thein, K.; Mg-Mg-Thwin, M. Plasma Clearance Time of Russell’s Viper (Vipera russelli) Antivenom in Human Snake Bite Victims. Trans. R. Soc. Trop. Med. Hyg. 1985, 79, 262–263. [Google Scholar] [CrossRef] [PubMed]
- Kurtović, T.; Karabuva, S.; Grenc, D.; Borak, M.D.; Križaj, I.; Lukšić, B.; Halassy, B.; Brvar, M. Intravenous Vipera berus Venom-Specific Fab Fragments and Intramuscular Vipera Ammodytes Venom-Specific F(ab’)2 Fragments in Vipera ammodytes-Envenomed Patients. Toxins 2021, 13, 279. [Google Scholar] [CrossRef] [PubMed]
- Ruha, A.M.; Curry, S.C.; Beuhler, M.; Katz, K.; Brooks, D.E.; Graeme, K.A.; Wallace, K.; Gerkin, R.; LoVecchio, F.; Wax, P.; et al. Initial Postmarketing Experience with Crotalidae Polyvalent Immune Fab for Treatment of Rattlesnake Envenomation. Ann. Emerg. Med. 2002, 39, 609–615. [Google Scholar] [CrossRef]
- Ariaratnam, C.A.; Sjöström, L.; Raziek, Z.; Abeyasinghe, S.; Kularatne, M.; Arachchi, R.W.K.K.; Sheriff, M.H.R.; Theakston, R.D.G.; Warrell, D.A. An Open, Randomized Comparative Trial of Two Antivenoms for the Treatment of Envenoming by Sri Lankan Russell’s Viper (Daboia russelii russelii). Trans. R. Soc. Trop. Med. Hyg. 2001, 95, 74–80. [Google Scholar] [CrossRef]
- Boels, D.; Hamel, J.F.; Le Roux, G.; Labadie, M.; Paret, N.; Delcourt, N.; Langrand, J.; Puskarczyk, E.; Nisse, P.; Sinno-Tellier, S.; et al. Snake Bites by European Vipers in Mainland France in 2017–2018: Comparison of Two Antivenoms Viperfav® and Viperatab®. Clin. Toxicol. 2020, 58, 1050–1057. [Google Scholar] [CrossRef]
- Bush, S.P.; Ruha, A.M.; Seifert, S.A.; Morgan, D.L.; Lewis, B.J.; Arnold, T.C.; Clark, R.F.; Meggs, W.J.; Toschlog, E.A.; Borron, S.W.; et al. Comparison of F(ab’)2 versus Fab Antivenom for Pit Viper Envenomation: A Prospective, Blinded, Multicenter, Randomized Clinical Trial. Clin. Toxicol. 2015, 53, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Boyer, L.V.; Chase, P.B.; Degan, J.A.; Figge, G.; Buelna-Romero, A.; Luchetti, C.; Alagón, A. Subacute Coagulopathy in a Randomized, Comparative Trial of Fab and F(ab’)2 Antivenoms. Toxicon 2013, 74, 101–108. [Google Scholar] [CrossRef]
- Smalligan, R.; Cole, J.; Brito, N.; Laing, G.D.; Mertz, B.L.; Manock, S.; Maudlin, J.; Quist, B.; Holland, G.; Nelson, S.; et al. Crotaline Snake Bite in the Ecuadorian Amazon: Randomised Double Blind Comparative Trial of Three South American Polyspecific Antivenoms. Br. Med. J. 2004, 329, 1129–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chippaux, J.P.; Lang, J.; Amadi-Eddine, S.; Fagot, P.; Le Mener, V. Short Report: Treatment of Snake Envenomations by a New Polyvalent Antivenom Composed of Highly Purified F(ab’)2: Results of a Clinical Trial in Northern Cameroon. Am. J. Trop. Med. Hyg. 1999, 61, 1017–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boels, D.; Hamel, J.F.; Deguigne, M.B.; Harry, P. European Viper Envenomings: Assessment of ViperfavTM and Other Symptomatic Treatments. Clin. Toxicol. 2012, 50, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Reid, H.A.; Chan, K.E.; Thean, P.C. Prolonged Coagulation Defect (Defibrination Syndrome) in Malayan Viper Bite. Lancet 1963, 1, 621–626. [Google Scholar] [CrossRef]
- Karabuva, S.; Vrkić, I.; Brizić, I.; Ivić, I.; Lukšić, B. Venomous Snakebites in Children in Southern Croatia. Toxicon 2016, 112, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Garkowski, A.; Czupryna, P.; Zajkowska, A.; Pancewicz, S.ł.; Moniuszko, A.; Kondrusik, M.; Grygorczuk, S.; GoŁebicki, P.; Letmanowski, M.; Zajkowska, J. Vipera Berus Bites in Eastern Poland—A Retrospective Analysis of 15 Case Studies. Ann. Agric. Environ. Med. 2012, 19, 793–797. [Google Scholar]
- Iliev, Y.T.; Tufkova, S.G.; Zagorov, M.Y.; Nikolova, S.M. Snake Venom Poisoning in the Plovdiv Region from 2004 to 2012. Folia Med. 2014, 56, 32–37. [Google Scholar] [CrossRef]
- Vázquez, H.; Chávez-Haro, A.; García-Ubbelohde, W.; Mancilla-Nava, R.; Paniagua-Solís, J.; Alagón, A.; Sevcik, C. Pharmacokinetics of a F(ab′)2 Scorpion Antivenom in Healthy Human Volunteers. Toxicon 2005, 46, 797–805. [Google Scholar] [CrossRef]
- Vázquez, H.; Chávez-Haro, A.; García-Ubbelohde, W.; Paniagua-Solís, J.; Alagón, A.; Sevcik, C. Pharmacokinetics of a F(ab′)2 Scorpion Antivenom Administered Intramuscularly in Healthy Human Volunteers. Int. Immunopharmacol. 2010, 10, 1318–1324. [Google Scholar] [CrossRef]
- Dart, R.C.; Bush, S.P.; Heard, K.; Arnold, T.C.; Sutter, M.; Campagne, D.; Holstege, C.P.; Seifert, S.A.; Lo, J.C.Y.; Quan, D.; et al. The Efficacy of Antivenin Latrodectus (Black Widow) Equine Immune F(ab′)2 Versus Placebo in the Treatment of Latrodectism: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Ann. Emerg. Med. 2019, 74, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.M.; Sprivulis, P.C.; Jelinek, G.A.; Banham, N.D.G.; Wood, S.V.; Wilkes, C.J.; Siegmund, A.; Roberts, B.L. A Double-Blind, Randomized Trial of Intravenous versus Intramuscular Antivenom for Red-Back Spider Envenoming. EMA-Emerg. Med. Australas. 2005, 17, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Osipov, A.; Utkin, Y. What Are the Neurotoxins in Hemotoxic Snake Venoms? Int. J. Mol. Sci. 2023, 24, 2919. [Google Scholar] [CrossRef]
- Sanz, L.; de Freitas-Lima, L.N.; Quesada-Bernat, S.; Graça-de-Souza, V.K.; Soares, A.M.; Calderón, L.d.A.; Calvete, J.J.; Caldeira, C.A.S. Comparative Venomics of Brazilian Coral Snakes: Micrurus frontalis, Micrurus spixii spixii, and Micrurus surinamensis. Toxicon 2019, 166, 39–45. [Google Scholar] [CrossRef]
- Maduwage, K.; Isbister, G.K. Current Treatment for Venom-Induced Consumption Coagulopathy Resulting from Snakebite. PLoS Negl. Trop. Dis. 2014, 8, e3220. [Google Scholar] [CrossRef] [Green Version]
- Karlson-Stiber, C.; Persson, H.; Heath, A.; Smith, D.; Al-Abdulla, I.H.; Sjöström, L. First Clinical Experiences with Specific Sheep Fab Fragments in Snake Bite. Report of a Multicentre Study of Vipera Berus Envenoming. J. Intern. Med. 1997, 241, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.C.; Reddi, K.R.; Laing, G.; Theakston, R.G.D.; Landon, J. An Affinity Purified Ovine Antivenom for the Treatment of Vipera berus Envenoming. Toxicon 1992, 30, 865–871. [Google Scholar] [CrossRef]
- Al-Abdulla, I.; Garnvwa, J.M.; Rawat, S.; Smith, D.S.; Landon, J.; Nasidi, A. Formulation of a Liquid Ovine Fab-Based Antivenom for the Treatment of Envenomation by the Nigerian Carpet Viper (Echis ocellatus). Toxicon 2003, 42, 399–404. [Google Scholar] [CrossRef]
- Dart, R.C.; Seifert, S.A.; Boyer, L.V.; Clark, R.F.; Hall, E.; McKinney, P.; McNally, J.; Kitchens, C.S.; Curry, S.C.; Bogdan, G.M.; et al. A Randomized Multicenter Trial of Crotalinae Polyvalent Immune Fab (Ovine) Antivenom for the Treatment for Crotaline Snakebite in the United States. Arch. Intern. Med. 2001, 161, 2030–2036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, J.L.C.; Fan, H.W.; França, F.O.S.; Jorge, M.T.; Leite, R.P.; Nishioka, S.A.; Avila, A.; Sano-Martins, I.S.; Tomy, S.C.; Santoro, M.L.; et al. Randomized Comparative Trial of Three Antivenoms in the Treatment of Envenoming by Lance-Headed Vipers (Bothrops jararaca) in São Paulo, Brazil. QJM 1993, 86, 315–325. [Google Scholar] [CrossRef]
- Win-Aung. Intramuscular Antivenom Administration as an Effective First-Aid Measure in Management of Snakebites. In Proceedings of the Management of Snakebite and Research—Report and Working Papers of a Seminar, Yangon, Myanmar, 11–12 December 2001; pp. 29–33. [Google Scholar]
- Tibballs, J.; Padula, A.M.; Winkel, K.D.; Jackson, H.D. Delayed Antivenom for Life-Threatening Tiger Snake Bite: Lessons Learnt. Anaesth. Intensive Care 2020, 48, 399–403. [Google Scholar] [CrossRef]
- Kurtović, T.; Lang Balija, M.; Ayvazyan, N.; Halassy, B. Paraspecificity of Vipera a. Ammodytes-Specific Antivenom towards Montivipera raddei and Macrovipera lebetina obtusa Venoms. Toxicon 2014, 78, 103–112. [Google Scholar] [CrossRef]
- de Haro, L.; Glaizal, M.; Tichadou, L.; Blanc-Brisset, I.; Hayek-Lanthois, M. Asp Viper (Vipera aspis) Envenomation: Experience of the Marseille Poison Centre from 1996 to 2008. Toxins 2009, 1, 100–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, S.K.; Trinca, J.C. Survey of 2144 Cases of Red-Back Spider Bites. Australia and New Zealand, 1963-1976. Med. J. Aust. 1978, 2, 620–623. [Google Scholar] [CrossRef] [PubMed]
- Kalyan Kumar, B.; Nanda, S.S.; Venkateshwarlu, P.; Kiran Kumar, Y.; Jadhav, R.T. Antisnake Venom Serum (Asvs). Int. J. Pharm. Biomed. Res. 2010, 1, 76–89. [Google Scholar]
Venomous Species | Route | Type of Antivenom | Animal Model | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Rabbit | Sheep | Mouse | Porcine | Cattle | Horse | Rat | Dog | |||
Snakes | i.v. | F(ab’)2 | [43,87,88,106,107] | [74] | [95] | |||||
Fab | [43,107] | [91] | ||||||||
IgG | [88], | [95] | [93,104] | [104] | [99] | |||||
i.m. | F(ab’)2 | [87,88,107] | [95] | |||||||
Fab | [43] | [108] | ||||||||
IgG | [88] | [95,108] | ||||||||
s.c. | Fab | [91] | ||||||||
Scorpions | i.v. | F(ab’)2 | [89,103,109,110,111,112] | [113] | ||||||
Fab | [103] | [113] | ||||||||
IgG | [103] | |||||||||
i.m. | F(ab’)2 | [89,109,110,112] | [113] | |||||||
Fab | [103] | [113] |
Venomous Species | Route | Type of Antivenom | References |
---|---|---|---|
Snakes | i.v. | Fab | [46,48,49,124,138,140,141,142,143,144,145] |
F(ab’)2 | [17,18,45,48,133,134,139,142,143,144,145,146,147,148] | ||
IgG | [14,45,137,146,149] | ||
i.m. | F(ab’)2 | [19,90,140,150] | |
IgG | [149,151,152] | ||
Scorpions | i.v. | F(ab’)2 | [42,153] |
i.m. | F(ab’)2 | [39,42,154] | |
Spiders | i.v. | IgG/F(ab’)2 | [38,59,60,155,156] |
i.m. | IgG/F(ab’)2 | [38,59,60,156] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamulin, E.; Mateljak Lukačević, S.; Halassy, B.; Kurtović, T. Snake Antivenoms—Toward Better Understanding of the Administration Route. Toxins 2023, 15, 398. https://doi.org/10.3390/toxins15060398
Gamulin E, Mateljak Lukačević S, Halassy B, Kurtović T. Snake Antivenoms—Toward Better Understanding of the Administration Route. Toxins. 2023; 15(6):398. https://doi.org/10.3390/toxins15060398
Chicago/Turabian StyleGamulin, Erika, Sanja Mateljak Lukačević, Beata Halassy, and Tihana Kurtović. 2023. "Snake Antivenoms—Toward Better Understanding of the Administration Route" Toxins 15, no. 6: 398. https://doi.org/10.3390/toxins15060398
APA StyleGamulin, E., Mateljak Lukačević, S., Halassy, B., & Kurtović, T. (2023). Snake Antivenoms—Toward Better Understanding of the Administration Route. Toxins, 15(6), 398. https://doi.org/10.3390/toxins15060398