Comparative Study of Ochratoxin A Exposure through the Intake of Cereal Products in Two Climatic Moroccan Regions
Abstract
:1. Introduction
2. Results
2.1. Analytical Results
2.2. Deterministic Approach
2.3. Probabilistic Approach
3. Discussion
4. Conclusions
5. Materials and Methods
- ₋
- EWI: the estimated weekly intake associated with the consumption of the three foods (i: 1: bread, 2: pasta, 3: semolina) in ng/kg of body weight/week (ng/kg b.w./week);
- ₋
- Ci: the observed mean of OTA concentration for each of the foods i in µg/Kg;
- ₋
- Qtei: a percentile or average of the average quantity of food consumed per week per individual in g; and
- ₋
- B.W.: the mean body weight of an individual in kg (70 kg).
- ₋
- A total of 1000 draws are made with replacement (replications) from all of the results obtained on different foods. At each of the replications, the mean of the concentrations is calculated. Thus, 1000 averages for each of the three elements are obtained;
- ₋
- The consumption table, which is made up of 474 rows (individuals) and 4 columns, and considers the weight of the individuals, means that the weekly consumption of bread, pasta and semolina was replicated 1000 times, each time carrying out 474 draws with replacement of each row of the table. A total table of 474,000 rows is obtained;
- ₋
- For each of the lines, the weekly exposure to OTA is calculated by summing the products of the weekly quantity of the food by its average concentration of OTA, then dividing this sum by the weight. The average of the OTA concentrations is chosen from among the 1000 values already calculated, with respect to the replication number (1 to 1000).
5.1. Contamination Data
- ₋
- A low hypothesis (Lower Bound: LB): the undetected concentrations (ND) are replaced by 0 and the unquantified ones (NQ) have been substituted by the detection limit (LOD).
- ₋
- A high hypothesis (Upper Bound: UB): the ND are replaced by the detection limit (LOD) and the NQs by the qualification limit (LOQ).
5.2. Consumption Data
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awuchi, C.G.; Ondari, E.N.; Nwozo, S.; Odongo, G.A.; Eseoghene, I.J.; Twinomuhwezi, H.; Ogbonna, C.U.; Upadhyay, A.K.; Adeleye, A.O.; Okpala, C.O.R. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins 2022, 14, 167. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, F.; Zhou, X.; Liu, M.; Zang, H.; Liu, X.; Shan, A.; Feng, X. Alleviation of Oral Exposure to Aflatoxin B1-Induced Renal Dysfunction, Oxidative Stress, and Cell Apoptosis in Mice Kidney by Curcumin. Antioxidants 2022, 11, 1082. [Google Scholar] [CrossRef] [PubMed]
- Amézqueta, S.; Schorr-Galindo, S.; Murillo-Arbizu, M.; González-Peñas, E.; López de Cerain, A.; Guiraud, J. OTA-producing fungi in foodstuffs. Food Control. 2012, 26, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.; Marín, S.; Sanchis, V.; Ramos, A.J. Screening of mycotoxin multicontamination in medicinal and aromatic herbs sampled in Spain. J. Sci. Food Agric. 2009, 89, 1802–1807. [Google Scholar] [CrossRef]
- van der Merwe, K.J.; Steyn, P.S.; Fourie, L.; Scott, D.B.; Theron, J.J. Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature 1965, 205, 1112–1113. [Google Scholar] [CrossRef] [PubMed]
- Serra, R.; Abrunhosa, L.; Kozakiewicz, Z.; Venâncio, A. Black Aspergillus species as ochratoxin A producers in Portuguese wine grapes. Int. J. Food Microbiol. 2003, 88, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Kortei, N.K.; Oman Ayiku, P.; Nsor-Atindana, J.; Owusu Ansah, L.; Wiafe-Kwagyan, M.; Kyei-Baffour, V.; Kottoh, I.D.; Odamtten, G.T. Toxicogenic fungal profile, Ochratoxin A exposure and cancer risk characterization through maize (Zea mays) consumed by different age populations in the Volta region of Ghana. Toxicon 2023, 226, 107085. [Google Scholar] [CrossRef]
- Abdallah, M.F.; Krska, R.; Sulyok, M. Occurrence of Ochratoxins, Fumonisin B2, Aflatoxins (B1 and B2), and Other Secondary Fungal Metabolites in Dried Date Palm Fruits from Egypt: A Mini-Survey. J. Food Sci. 2018, 83, 559–564. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to ochratoxin A in food. EFSA J. 2006, 365, 1–56. [Google Scholar]
- Stoev, S.D. New Evidences about the Carcinogenic Effects of Ochratoxin A and Possible Prevention by Target Feed Additives. Toxins 2022, 14, 380. [Google Scholar] [CrossRef]
- Krogh, P. Causal associations of mycotoxins nephropathy. Acta Pathol.Microbiol. Scand. 1978, 269, 28. [Google Scholar]
- Jadot, I.; Declèves, A.-E.; Nortier, J.; Caron, N. An Integrated View of Aristolochic Acid Nephropathy: Update of the Literature. Int. J. Mol. Sci. 2017, 18, 297. [Google Scholar] [CrossRef] [Green Version]
- Schlatter, C.; Studer-Rohr, J.; Rásonyi, T. Carcinogenicity and kinetic aspects of ochratoxin A. Food Addit. Contam. 1996, 13, 43–44. [Google Scholar] [PubMed]
- IARC International Agency for Research on Cancer. IARC Monograph on the Evaluation of Carcinogenic Risk to Humans. Some Naturally Occurring Substances: Food Items and Constituent Heterocyclic Aromatic Amines and Mycotoxins; International Agency for Research on Cancer: Lyon, France, 1993. [Google Scholar]
- JECFA Joint FAO/WHO Expert Committee on Food Additives. Safety Evaluation of Certain Mycotoxins in Food: 56th Meeting of the Food Additives Series N°47; Joint FAO/WHO Expert Committee on Food Additives: Geneva, Switzerland, 2001. [Google Scholar]
- Schrenk, D.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.; Nebbia, C.S.; Nielsen, E.; et al. Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, e06113. [Google Scholar] [CrossRef]
- Iavicoli, I.; Brera, C.; Carelli, G.; Caputi, R.; Marinaccio, A.; Miraglia, M. External and internal dose in subjects occupationally exposed to ochratoxin A. Int. Arch. Occup. Environ. Health 2002, 75, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Malir, J.; Toman, J. Ochratoxin A: 50 Years of Research. Toxins 2016, 8, 191. [Google Scholar] [CrossRef] [Green Version]
- Longobardi, C.; Ferrara, G.; Andretta, E.; Montagnaro, S.; Damiano, S.; Ciarcia, R. Ochratoxin A and Kidney Oxidative Stress: The Role of Nutraceuticals in Veterinary Medicine—A Review. Toxins 2022, 14, 398. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, S.; Lyu, B.; Qiu, N.; Li, J.; Zhao, Y.; Wu, Y. Dietary exposure to fumonisins and ochratoxins in the Chinese general population during 2007–2020: Results from three consecutive total diet studies. Food Chem. Toxicol. 2022, 159, 112768. [Google Scholar] [CrossRef]
- Foerster, C.; Monsalve, L.; Ríos-Gajardo, G. Mycotoxin Exposure in Children through Breakfast Cereal Consumption in Chile. Toxins 2022, 14, 324. [Google Scholar] [CrossRef]
- Do, T.H.; Tran, S.C.; Le, C.D.; Nguyen, H.-B.T.; Le, P.-T.T.; Le, H.-H.T.; Le, T.D.; Thai-Nguyen, H.-T. Dietary exposure and health risk characterization of aflatoxin B1, ochratoxin A, fumonisin B1, and zearalenone in food from different provinces in Northern Vietnam. Food Control. 2020, 112, 107108. [Google Scholar] [CrossRef]
- Al Ayoubi, M.; Salman, M.; Gambacorta, L.; El Darra, N.; Solfrizzo, M. Assessment of Dietary Exposure to Ochratoxin A in Lebanese Students and Its Urinary Biomarker Analysis. Toxins 2021, 13, 795. [Google Scholar] [CrossRef] [PubMed]
- Zaied, C.; Bouaziz, C.; Azizi, I.; Bensassi, F.; Chour, A.; Bacha, H.; Abid, S. Presence of ochratoxin A in Tunisian blood nephropathy patients. Exposure level to OTA. Exp. Toxicol. Pathol. 2011, 63, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Zinedine, A. Ochratoxin A in Moroccan foods: Occurrence and legislation. Toxins 2010, 2, 1121–1133. [Google Scholar] [CrossRef] [PubMed]
- Zinedine, A.; Soriano, J.M.; Juan, C.; Mojemmi, B.; Moltó, J.C.; Bouklouze, A.; Cherrah, Y.; Idrissi, L.; El Aouad, R.; Mañes, J. Incidence of ochratoxin A in rice and dried fruits form Rabat and Salé area, Morocco. Food Addit. Contam. 2007, 24, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Juan, C.; Zinedine, A.; Idrissi, L.; Mañes, J. Ochratoxin A in rice on the Moroccan retail market. Int. J. Food Microbiol. 2008, 126, 83–85. [Google Scholar] [CrossRef]
- Zinedine, A.; Blesa, J.; Mahnine, N.; El Abidi, A.; Montesano, D.; Mañes, J. Pressurized liquid extraction coupled to liquid chromatography for the analysis of ochratoxin A in breakfast and infants cereals from Morocco. Food Control. 2010, 21, 132–135. [Google Scholar] [CrossRef]
- Zinedine, A.; Juan, C.; Idrissi, L.; Mañes, J. Occurrence of ochratoxin A in bread consumed in Morocco. Microchem. J. 2007, 87, 154–158. [Google Scholar] [CrossRef]
- Zinedine, A.; Fernández-Franzón, M.; Mañes, J.; Manyes, L. Multi-mycotoxin contamination of couscous semolina commercialized in Morocco. Food Chem. 2017, 214, 440–446. [Google Scholar] [CrossRef]
- Zinedine, A.; Brera, C.; Elakhdari, S.; Catano, C.; Debegnach, F.; Angelini, S.; De Santis, B.; Faid, M.; Benlemlih, M.; Minardi, V.; et al. Natural occurrence of mycotoxins in cereals and spices commercialized in Morocco. Food Control. 2006, 17, 868–874. [Google Scholar] [CrossRef]
- Zinedine, A.; Mañes, J. Occurrence and legislation of mycotoxins in food and feed from Morocco. Food Control. 2009, 20, 334–344. [Google Scholar] [CrossRef]
- Allali, F. Evolution des pratiques alimentaires au Maroc. Int. J. Med. Surg 2017, 4, 70–73. [Google Scholar]
- BO 2022. Arrêté Conjoint N°1643-16 Du 30 Mai 2016, Abrogé et Remplacé Par l’annexe à l’arrêté Conjoint N°2410-22 Du 17 Safar 1444 (14 Septembre 2022). Bulletin Officiel N°7136 du 20/10/2022. 2022; p. 1573. Available online: https://www.onssa.gov.ma/wp-content/uploads/2022/10/ARR.1643-16.FR_.c2.pdf (accessed on 3 July 2023).
- European Commission. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Official Journal of the European Union L 119/103 of 5.5.2023. 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R0915 (accessed on 3 July 2023).
- European Commission. Commission regulation (EU) 2022/1370 of 5 August 2022 mending Regulation (EC) No 1881/2006 as regards maximum levels of ochratoxin A in certain foodstuffs. Off. J. Eur. Union 2022, L 206/11, 5–24. [Google Scholar]
- Haut Commissariat au Plan. Enquête Nationale sur la Consommation et des Dépenses des Ménages. Available online: https://www.hcp.ma/Enquete-nationale-sur-la-consommation-et-les-depenses-des-menages_a95.html (accessed on 3 July 2023).
- Food and Agriculture Organization. Perspectives de L’alimentation: Analyse des Marchés Mondiaux. Available online: https://www.fao.org/3/al989f/al989f.pdf (accessed on 3 July 2023).
- Tabarani, A.; Zinedine, A.; Bouchriti, N.; Abdennebi, E.H. Exposure assessment to ochratoxin A through the intake of three cereal derivatives from the Moroccan market. Food Res. Int. 2020, 137, 109464. [Google Scholar] [CrossRef] [PubMed]
- Mannaa, M.; Kim, K.D. Influence of Temperature and Water Activity on Deleterious Fungi and Mycotoxin Production during Grain Storage. Mycobiology 2017, 45, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Zingales, V.; Taroncher, M.; Martino, P.A.; Ruiz, M.-J.; Caloni, F. Climate Change and Effects on Molds and Mycotoxins. Toxins 2022, 14, 445. [Google Scholar] [CrossRef]
- Cervini, C.; Verheecke-Vaessen, C.; Ferrara, M.; García-Cela, E.; Magistà, D.; Medina, A.; Gallo, A.; Magan, N.; Perrone, G. Interacting climate change factors (CO2 and temperature cycles) effects on growth, secondary metabolite gene expression and phenotypic ochratoxin A production by Aspergillus carbonarius strains on a grape-based matrix. Fungal Biol. 2021, 125, 115–122. [Google Scholar] [CrossRef]
- Liu, C.; Van der Fels-Klerx, H.J. Quantitative Modeling of Climate Change Impacts on Mycotoxins in Cereals: A Review. Toxins 2021, 13, 276. [Google Scholar] [CrossRef]
- Duarte, S.C.; Bento, J.M.V.; Pena, A.; Lino, C.M. Ochratoxin A exposure assessment of the inhabitants of Lisbon during winter 2007/2008 through bread and urine analysis. Food Addit. Contam. Part A 2009, 26, 1411–1420. [Google Scholar] [CrossRef]
- Miraglia, M.; Brera, C. Assessment of dietary intake of ochratoxin A by the population of EU member states. Rep. Tasks Sci. Coop. Rep. 2002, 3, 77–78. [Google Scholar]
- González-Osnaya, L.; Soriano, J.M.; Moltó, J.C.; Mañes, J. Dietary intake of ochratoxin A from conventional and organic bread. Int. J. Food Microbiol. 2007, 118, 87–91. [Google Scholar] [CrossRef]
- Kuiper-Goodman, T.; Hilts, C.; Billiard, S.M.; Kiparissis, Y.; Richard, I.D.K.; Hayward, S. Health risk assessment of ochratoxin A for all age-sex strata in a market economy. Food Addit. Contam. Part A 2010, 27, 212–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raad, F.; Nasreddine, L.; Hilan, C.; Bartosik, M.; Parent-Massin, D. Dietary exposure to aflatoxins, ochratoxin A and deoxynivalenol from a total diet study in an adult urban Lebanese population. Food Chem. Toxicol. 2014, 73, 35–43. [Google Scholar] [CrossRef] [PubMed]
- ANSES. Étude de L’alimentation Totale Française 2 (EAT 2) Tome 1—Contaminants inorganiques, Minéraux, Polluants Organiques Persistants, Mycotoxines et Phyto-Estrogènes. Anses, Agence Natl. sécurité Sanit. L’alimentation, l’environnement du Trav. 2011, 2006-SA-03, 346. [Google Scholar]
- Thompson, K.M.; Graham, J.D. Going beyond the single number: Using probabilistic risk assessment to improve risk management. Hum. Ecol. Risk Assess. Int. J. 1996, 2, 1008–1034. [Google Scholar] [CrossRef]
- EFSA. Opinion of the Scientific Committee on a request from EFSA related to A Harmonised Approach for Risk Assessment of Substances Which are both Genotoxic and Carcinogenic. EFSA J. 2005, 3, 282. [Google Scholar] [CrossRef] [Green Version]
- Barlow, S.; Renwick, A.G.; Kleiner, J.; Bridges, J.W.; Busk, L.; Dybing, E.; Edler, L.; Eisenbrand, G.; Fink-Gremmels, J.; Knaap, A.; et al. Risk assessment of substances that are both genotoxic and carcinogenic. Food Chem. Toxicol. 2006, 44, 1636–1650. [Google Scholar] [CrossRef] [Green Version]
- Llorens Castelló, P.; Juan-García, A.; Cortés, J.C.M.; Mañes Vinuesa, J.; Juan García, C. Application of an In Vitro Digestion Model for Wheat and Red Beetroot Bread to Assess the Bioaccessibility of Aflatoxin B1, Ochratoxin A and Zearalenone and Betalains. Toxins 2022, 14, 540. [Google Scholar] [CrossRef]
- Parmar, B.; Miller, P.; Burt, R. Stepwise Approaches for Estimating the Intakes of Chemicals in Food. Regul. Toxicol. Pharmacol. 1997, 26, 44–51. [Google Scholar] [CrossRef]
- Exposure Assessment. Environmental Protection Agency. Guidelines for Exposure Assessment. Risk Assess. Forum 1992, 57, 22888–22938. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=15263 (accessed on 3 July 2023).
- FAO/WHO. Dietary Exposure Assessment of Chemicals in Food: Report of a Joint FAO/WHO Consultation; World Health Organization: Annapolis, MD, USA, 2005; pp. 1–88. Available online: https://apps.who.int/iris/handle/10665/44027 (accessed on 3 July 2023).
- JECFA. Evaluation de Certains Additifs Alimentaires et Contaminants: Quarante-Quatrième Rapport du Comité Mixte FAO/OMS d’ Experts des Additifs Alimentaires; Organisation mondiale de la Santé: Geneva, Switzerland, 1995; p. 58 p. [Google Scholar]
- Haighton, L.A.; Lynch, B.S.; Magnuson, B.A.; Nestmann, E.R. A reassessment of risk associated with dietary intake of ochratoxin A based on a lifetime exposure model. Crit. Rev. Toxicol. 2012, 42, 147–168. [Google Scholar] [CrossRef]
- Rached, E.; Hard, G.C.; Blumbach, K.; Weber, K.; Draheim, R.; Lutz, W.K.; Özden, S.; Steger, U.; Dekant, W.; Mally, A. Ochratoxin A: 13-Week Oral Toxicity and Cell Proliferation in Male F344/N Rats. Toxicol. Sci. 2007, 97, 288–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GEMS/FOOD. GEMS/Food-EURO Second Workshop on Reliable Evaluation of Low-Level Contamination of Food Report on a Workshop in the Frame of GEMS / Food-EURO Kulmbach. 1999. Available online: https://www.semanticscholar.org/paper/GEMS-Food-EURO-Second-Workshop-on-Reliable-of-of-on/7d5162794a407ce3361458649750a63b6bda3381 (accessed on 3 July 2023).
Sampling Area | Cereal Product | Sample Size | Minimum | Mean UB 1 | Maximum |
---|---|---|---|---|---|
Littoral | |||||
Bread | 44 | 0.02 | 1.32 ± 0.53 | 7.2 | |
Semolina | 32 | 0.02 | 0.64 ± 0.34 | 3 | |
Pasta | 32 | 0.02 | 0.18 ± 0.12 | 1.1 | |
0.82 ± 0.06 2,3 | |||||
Continental | |||||
Bread | 46 | 0.02 | 0.05 ± 0.03 | 0.5 | |
Semolina | 45 | 0.02 | 0.61 ± 0.80 | 14.13 | |
Pasta | 27 | 0.02 | 0.56 ± 0.26 | 2.1 | |
0.36 ± 0.01 2,3 |
Sampling Area | Cereal Derivative | P25 | P50 | Mean | P75 | P95 |
---|---|---|---|---|---|---|
Bread | 37.71 | 45.26 | 52.33 | 56.57 | 103.7 | |
Littoral | Semolina | 1.40 | 3.20 | 3.95 | 6.40 | 8.69 |
Pasta | 0.26 | 0.51 | 0.70 | 0.90 | 1.93 | |
Total EWI | 39.37 | 48.97 | 56.98 | 63.87 | 114.3 | |
Bread | 1.43 | 1.71 | 1.98 | 2.14 | 3.93 | |
Continental | Semolina | 1.33 | 3.05 | 3.76 | 6.10 | 8.28 |
Pasta | 0.80 | 1.60 | 2.18 | 2.80 | 6.00 | |
Total EWI | 3.56 | 6.36 | 7.92 | 11.04 | 18.21 | |
p-value 1 | 0.0013 | 0.009 | 0.019 | 0.017 | 0.027 |
Exposure | CI(95%) | Median |
---|---|---|
Mean | [35.45–72.48] | 51.88 |
P50 | [32.60–67.38] | 48.22 |
P75 | [42.58–86.38] | 61.81 |
P95 | [66.18–137.79] | 97.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabarani, A.; Zinedine, A.; Rocha, J.M.; Sanaa, M.; Abdennebi, E.H. Comparative Study of Ochratoxin A Exposure through the Intake of Cereal Products in Two Climatic Moroccan Regions. Toxins 2023, 15, 452. https://doi.org/10.3390/toxins15070452
Tabarani A, Zinedine A, Rocha JM, Sanaa M, Abdennebi EH. Comparative Study of Ochratoxin A Exposure through the Intake of Cereal Products in Two Climatic Moroccan Regions. Toxins. 2023; 15(7):452. https://doi.org/10.3390/toxins15070452
Chicago/Turabian StyleTabarani, Ahmed, Abdellah Zinedine, João Miguel Rocha, Moez Sanaa, and El Hassane Abdennebi. 2023. "Comparative Study of Ochratoxin A Exposure through the Intake of Cereal Products in Two Climatic Moroccan Regions" Toxins 15, no. 7: 452. https://doi.org/10.3390/toxins15070452
APA StyleTabarani, A., Zinedine, A., Rocha, J. M., Sanaa, M., & Abdennebi, E. H. (2023). Comparative Study of Ochratoxin A Exposure through the Intake of Cereal Products in Two Climatic Moroccan Regions. Toxins, 15(7), 452. https://doi.org/10.3390/toxins15070452