In Vitro Mutagenic and Genotoxic Assessment of Anatoxin-a Alone and in Combination with Cylindrospermopsin
Abstract
:1. Introduction
2. Results
2.1. Ames Test
2.2. Micronucleus Test
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemicals
5.2. Cells and Culture Conditions
5.3. Test Solutions
5.4. Ames Test
5.5. Micronucleus Test
5.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buratti, F.M.; Manganelli, M.; Vichi, S.; Stefanelli, M.; Scardala, S.; Testai, E.; Funari, E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017, 91, 1049–1130. [Google Scholar] [CrossRef] [PubMed]
- Testai, E. Cyanobacterial toxins. In Toxic Cyanobacteria in Water a Guide to Their Public Health Consequences, Monitoring and Management, 2nd ed.; Chorus, I., Welker, M., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 72–94. [Google Scholar]
- Ríos, V.; Moreno, I.; Prieto, A.I.; Puerto, M.; Gutiérrez-Praena, D.; Soria-Díaz, M.E.; Cameán, A.M. Analysis of MC-LR and MC-RR in tissue from freshwater fish (tinca tinca) and crayfish (Procambarus clarkia) in tench ponds (Cáceres, Spain) by liquid chromatography-mass spectrometry (LC-MS). Food Chem. Toxicol. 2013, 57, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Guillén, R.; Moreno, I.; Prieto-Ortega, A.I.; Soria-Díaz, M.E.; Vasconcelos, V.; Cameán, A.M. CYN determination in tissues from freshwater fish by LC-MS/MS: Validation and application in tissues from subchronically exposed tilapia (Oreochromis niloticus). Talanta 2015, 131, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Testai, E.; Buratti, F.M.; Funari, E.; Manganelli, M.; Vichi, S.; Arnich, N.; Biré, R.; Fessard, V.; Sialehaamoa, A. Review and analysis of occurrence, exposure and toxicity of cyanobacteria toxins in food. EFSA Support. Publ. 2016, 13, 309. [Google Scholar] [CrossRef]
- Diez-Quijada, L.; Puerto, M.; Gutierrez-Praena, D.; Llana-Ruiz-Cabello, M.; Jos, A.; Camean, A.M. Microcystin-RR: Occurrence, content in water and food and toxicological studies. A review. Environ. Res. 2019, 168, 467–489. [Google Scholar] [CrossRef]
- Codd, G.A.; Testai, E.; Funari, E.; Svirčev, Z. Cyanobacteria, Cyanotoxins, and Human Health. In Water Treatment for Purification from Cyanobacteria and Cyanotoxins, 1st ed.; Hiskia, E., Triantis, T.M., Antoniou, M.G., Kaloudis, T., Dionysiou, D.D., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2020; pp. 37–68. [Google Scholar]
- Colas, S.; Marie, B.; Lance, E.; Quiblier, C.; Tricoire-Leignel, H.; Mattei, C. Anatoxin-a: Overview on a harmful cyanobacterial neurotoxin from the environmental scale to the molecular target. Environ. Res. 2021, 193, 110590. [Google Scholar] [CrossRef]
- Plata-Calzado, C.; Prieto, A.I.; Cameán, A.M.; Jos, A. Toxic effects produced by anatoxin-a under laboratory conditions: A review. Toxins 2022, 14, 861. [Google Scholar] [CrossRef]
- Testai, E.; Scardala, S.; Vichi, S.; Buratti, F.M.; Funari, E. Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Crit. Rev. Toxicol. 2016, 46, 385–419. [Google Scholar] [CrossRef]
- Christensen, V.G.; Khan, E. Freshwater neurotoxins and concerns for human, animal, and ecosystem health: A review of anatoxin-a and saxitoxin. Sci. Total Environ. 2020, 736, 19515. [Google Scholar] [CrossRef]
- Swanson, K.L.; Allen, C.N.; Aronstam, R.S.; Rapoport, H.; Albuquerque, E.X. Molecular mechanisms of the potent and stereospecific nicotinic receptor agonist (+)-anatoxin-a. Mol. Pharmacol. 1986, 29, 250–257. [Google Scholar]
- Thomas, P.; Stephens, M.; Wilkie, G.; Amar, M.; Lunt, G.G.; Whiting, P.; Gallagher, T.; Pereira, E.; Alkondon, M.; Albuquerque, E.X.; et al. (+)-Anatoxin-a is a potent agonist at neuronal nicotinic acetylcholine receptors. J. Neurochem. 1993, 60, 2308–2311. [Google Scholar] [CrossRef] [PubMed]
- Fawell, J.K.; Mitchell, R.E.; Hill, R.E.; Everett, D.J. The toxicity of cyanobacterial toxins in the mouse: II anatoxin-a. Hum. Exp. Toxicol. 1999, 18, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Lakshmana Rao, P.V.; Bhattacharya, R.; Gupta, N.; Parida, M.M.; Bhaskar, A.S.; Dubey, R. Involvement of caspase and reactive oxygen species in cyanobacterial toxin anatoxin-a-induced cytotoxicity and apoptosis in rat thymocytes and Vero cells. Arch. Toxicol. 2002, 76, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Teneva, I.; Mladenov, R.; Popov, N.; Dzhambazov, B. Cytotoxicity and apoptotic effects of microcystin-LR and anatoxin-a in mouse lymphocytes. Folia Biol. 2005, 51, 62–67. [Google Scholar]
- Rymuszka, A.; Adaszek, Ł. Pro- and anti-inflammatory cytokine expression in carp blood and head kidney leukocytes exposed to cyanotoxin stress—An in vitro study. Fish Shellfish Immunol. 2012, 33, 382–388. [Google Scholar] [CrossRef]
- Takser, L.; Benachour, N.; Husk, B.; Cabana, H.; Gris, D. Cyanotoxins at low doses induce apoptosis and inflammatory effects in murine brain cells: Potential implications for neurodegenerative diseases. Toxicol. Rep. 2016, 3, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Astrachan, N.B.; Archer, B.G.; Hilbelink, D.R. Evaluation of the subacute toxicity and teratogenicity of anatoxin-a. Toxicon 1980, 18, 684–688. [Google Scholar] [CrossRef]
- Rogers, E.H.; Hunter, E.S.; Moser, V.C.; Phillips, P.M.; Herkovits, J.; Muñoz, L.; Hall, L.L.; Chernoff, N. Potential developmental toxicity of anatoxin-a, a cyanobacterial toxin. J. Appl. Toxicol. 2005, 25, 527–534. [Google Scholar] [CrossRef]
- Yavasoglu, A.; Karaaslan, M.A.; Uyanikgil, Y.; Sayim, F.; Ates, U.; Yavasoglu, N.U. Toxic effects of anatoxin-a on testes and sperm counts of male mice. Exp. Toxicol. Pathol. 2008, 60, 391–396. [Google Scholar] [CrossRef]
- Sirén, A.L.; Feuerstein, G. Cardiovascular effects of anatoxin-A in the conscious rat. Toxicol. Appl. Pharmacol. 1990, 102, 91–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeyemo, O.M.; Sirén, A.L. Cardio-respiratory changes and mortality in the conscious rat induced by (+)- and (+/-)-anatoxin-a. Toxicon 1992, 30, 899–905. [Google Scholar] [CrossRef] [Green Version]
- Sieroslawska, A. Assessment of the mutagenic potential of cyanobacterial extracts and pure cyanotoxins. Toxicon 2013, 74, 76–82. [Google Scholar] [CrossRef]
- Sieroslawska, A.; Rymuszka, A. Evaluation of genotoxic potential of neurotoxin anatoxin-a with the use of umuC test. Neuro Endocrinol. Lett. 2010, 31, 16–20. [Google Scholar]
- Sierosławska, A.; Rymuszka, A. Experimental immunology Assessment of the potential genotoxic and proapoptotic impact of selected cyanotoxins on fish leukocytes. Cent. Eur. J. Immunol. 2013, 38, 190–195. [Google Scholar] [CrossRef] [Green Version]
- EFSA, S.C. Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment. EFSA J. 2011, 9, 2379. [Google Scholar] [CrossRef]
- Pitois, F.; Fastner, J.; Pagotto, C.; Dechesne, M. Multi-Toxin ocurrences in ten French water resource reservoirs. Toxins 2018, 10, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, M.D.A.; Kudela, R.M.; Hayashi, K.; Tatters, A.O.; Caron, D.A.; Theroux, S.; Oehrle, S.; Roethler, M.; Dnonovan, A.; Loftin, K.; et al. Multiple co-occurring and persistently detected cyanotoxins and associated cyanobacteria in adjacent California lakes. Toxicon 2021, 192, 1–14. [Google Scholar] [CrossRef]
- Fastner, J.; Teikari, J.; Hoffmann, A.; Köhler, A.; Hoppe, S.; Dittmann, E.; Welker, M. Cyanotoxins associated with macrophytes in Berlin (Germany) water bodies—Ocurrence and risk assessment. Sci. Total Environ. 2023, 858, 159433. [Google Scholar] [CrossRef] [PubMed]
- Chia, M.A.; Kramer, B.J.; Jankowiak, J.G.; Bittencourt-Oliveira, M.D.C.; Gobler, C.J. The individual and combined effects of the cyanotoxins, anatoxin-a and microcystin-LR, on the growth, toxin production, and nitrogen fixation of prokaryotic and eukaryotic algae. Toxins 2019, 11, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pichardo, S.; Cameán, A.M.; Jos, A. In vitro toxicological assessment of cylindrospermopsin: A review. Toxins 2017, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Terao, K.; Ohmori, S.; Igarashi, K.; Ohtani, I.; Watanabe, M.; Harada, K.; Ito, E.; Watanabe, M. Electron microscopic studies on experimental poisoning in mice induced by cylindrospermopsin isolated from blue-green alga Umezakia natans. Toxicon 1994, 32, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Froscio, S.M.; Humpage, A.R.; Burcham, P.C.; Falconer, I.R. Cylindrospermopsin-induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environ. Toxicol. Int. J. 2003, 18, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Guillén, R.; Prieto, A.I.; Moreno, I.; Ríos, V.; Vasconcelos, V.M.; Cameán, A.M. Effects of depuration on oxidative biomarkers in tilapia (Oreochromis niloticus) after subchornic exposure to cyanobacterium producing cylindrospermopsin. Aquat. Toxicol. 2014, 149, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Poniedziałek, B.; Rzymski, P.; Karczewski, J. The role of the enzymatic antioxidant system in cylindrospermopsin-induced toxicity in human lymphocytes. Toxicol. In Vitro 2015, 29, 926–932. [Google Scholar] [CrossRef]
- Sieroslawska, A.; Rymuszka, A. Cylindrospermopsin induces oxidative stress and genotoxic effects in the fish CLC cell line. J. Appl. Toxicol. 2015, 35, 426–433. [Google Scholar] [CrossRef]
- Runnegar, M.T.; Kong, S.M.; Zhong, Y.Z.; Lu, S.C. Inhibition of reduced glutathione synthesis by cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes. Biochem. Pharmacol. 1995, 49, 219–225. [Google Scholar] [CrossRef]
- Žegura, B.; Gajski, G.; Štraser, A.; Garaj-Vrhovac, V. Cylindrospermopsin induced DNA damage and alteration in the expression of genes involved in the response to DNA damage, apoptosis and oxidative stress. Toxicon 2011, 58, 471–479. [Google Scholar] [CrossRef]
- Puerto, M.; Prieto, A.I.; Maisanaba, S.; Gutiérrez-Praena, D.; Mellado-García, P.; Jos, Á.; Cameán, A.M. Mutagenic and genotoxic potential of pure Cylindrospermopsin by a battery of in vitro tests. Food Chem. Toxicol. 2018, 121, 413–422. [Google Scholar] [CrossRef]
- Yilmaz, S.; Ülger, T.G.; Göktas, B.; Öztürk, S.; Öztas, D.; Karatas, Ö.; Beyzi, E. Cyanotoxin genotoxicity: A review. Toxin Rev. 2021, 41, 699–712. [Google Scholar] [CrossRef]
- Diez-Quijada, L.; Prieto, A.I.; Puerto, M.; Jos, Á.; Cameán, A.M. In Vitro Mutagenic and Genotoxic Assessment of a Mixture of the Cyanotoxins Microcystin-LR and Cylindrospermopsin. Toxins 2019, 11, 318. [Google Scholar] [CrossRef] [Green Version]
- OECD Guidelines for the Testing of Chemicals, Bacterial Reverse Mutation Test. Available online: https://doi.org/10.1787/9789264071247-en (accessed on 10 May 2023).
- OECD Guidelines for the Testing of Chemicals, In Vitro Mammalian Cell Micronucleus Test. Available online: https://doi.org/10.1787/9789264264861-en (accessed on 10 May 2023).
- Anderson, D.J.; Puttfarcken, P.S.; Jabobs, I.; Faltynek, C. Assessment of nicotinic acetylcholine receptor-mediated release of [3H]-norepinephrine from rat brain slices using a new 96-well format assay. Neuropharmacology 2000, 39, 2663–2672. [Google Scholar] [CrossRef] [PubMed]
- Campos, F.; Durán, R.; Vidal, L.; Faro, L.R.; Alfonso, M. In vivo effects of the anatoxin-a on striatal dopamine release. Neurochem. Res. 2006, 31, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Maron, D.M.; Ames, B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 1983, 183, 173–215. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.V.; DeMarini, D.M.; Stankowski, L.F.; Escobar, P.A., Jr.; Zeiger, E.; Howe, J.; Elespuru, R.; Cross, K.P. Are all bacterial strains required by OECD mutagenicity test guideline TG471 needed? Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 848, 503081. [Google Scholar] [CrossRef] [PubMed]
- Mortelmans, K.; Zeiger, E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. 2000, 455, 29–60. [Google Scholar] [CrossRef] [PubMed]
- Rymuszka, A. Cytotoxic activity of the neurotoxin anatoxin-a on fish leukocytes in vitro and in vivo studies. Acta Vet. Brno 2012, 81, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Shen, L.; Ye, X.; Zhou, D.; He, Y.; Li, Y.; Ding, Y.; Zhu, W.; Ding, J.; Zhang, H. Neurotoxic anatoxin-a can also exert immunotoxicity by the induction of apoptosis on Carassius auratus lymphocytes in vitro when exposed to environmentally relevant concentrations. Front. Physiol. 2020, 11, 316. [Google Scholar] [CrossRef]
- Hercog, K.; Maisanaba, S.; Filipič, M.; Jos, A.; Cameán, A.M.; Žegura, B. Genotoxic potential of the binary mixture of cyanotoxins microcystin-LR and cylindrospermopsin. Chemosphere 2017, 189, 319–329. [Google Scholar] [CrossRef]
- Abramsson-Zetterberg, L.; Sundh, U.B.; Mattsson, R. Cyanobacterial extracts and microcystin-LR are inactive in the micronucleus assay in vivo and in vitro. Mutat. Res. 2010, 699, 5–10. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Cyanobacterial Toxins: Anatoxin-a and Analogues; Background Document for Development of WHO Guidelines for Drinking-Water Quality and Guidelines for safe Recreational Water Environments; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Dias, E.; Louro, H.; Pinto, M.; Santos, T.; Antunes, S.; Pereira, P.; Silva, M.J. Genotoxicity of microcystin-LR in vitro and in vivo experimental models. BioMed. Res. Int. 2014, 2014, 949521. [Google Scholar] [CrossRef]
- Žegura, B.; Štraser, A.; Filipic, M. Genotoxicity and potential carcinogenicity of cyanobacterial toxins—A review. Mutat. Res. 2011, 727, 16–41. [Google Scholar] [CrossRef] [PubMed]
- Fessard, V.; Bernard, C. Cell alterations but no DNA strand breaks induced in vitro by cylindrospermopsin in CHO K1 cells. Environ. Toxicol. 2003, 18, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Bain, P.; Burcham, P.; Falconer, I.; Fointaine, F.; Froscio, S.; Humpage, A.; Neumann, C.; Patel, B.; Shaw, G.; Wickramasinghe, W. Cylindrospermopsin Mechanisms of Toxicity and Genotoxicity; Research Report; CRC for Water Quality and Treatment: Boca Raton, FL, USA, 2008; Volume 31, ISBN 18766 16873. [Google Scholar]
- Liu, W.; Wang, L.; Zheng, C.; Liu, L.; Wang, J.; Li, D.; Tan, Y.; Zhao, X.; He, L.; Shu, W. Microcystin-LR increases genotoxicity induced by aflatoxin B1 through oxidative stress and DNA base excision repair genes in human hepatic cell lines. Environ. Pollut. 2018, 233, 455–463. [Google Scholar] [CrossRef]
- Munoz, M.; Cirés, S.; de Pedro, Z.M.; Colina, J.Á.; Velásquez-Figueroa, Y.; Carmona-Jiménez, J.; Caro-Borrero, A.; Salazar, A.; Santa María Fuster, M.C.; Contreras, D.; et al. Overview of toxic cyanobacteria and cyanotoxins in Ibero-American freshwaters: Challenges for risk management and opportunities for removal by advanced technologies. Sci. Total Environ. 2021, 761, 143197. [Google Scholar] [CrossRef] [PubMed]
- Kulabhusan, P.K.; Campbell, K. Recent trends in the detection of freshwater cyanotoxins with a critical note on their occurrence in Asia. Trends Environ. Anal. Chem. 2021, 32, e00150. [Google Scholar] [CrossRef]
- Osswald, J.; Rellán, S.; Gago, A.; Vasconcelos, V. Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. Environ. Int. 2007, 33, 1070–1089. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, G.; Chen, Y.; Jia, N.; Li, R. Four decades of progress in cylindrospermopsin research: The ins and outs of a potent cyanotoxin. J. Hazard. Mater. 2021, 406, 124653. [Google Scholar] [CrossRef]
Concentration (µg/mL) | TA98 | TA100 | TA102 | TA1535 | TA1537 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−S9 | MI | +S9 | MI | −S9 | MI | +S9 | MI | −S9 | MI | +S9 | MI | −S9 | MI | +S9 | MI | −S9 | MI | +S9 | MI | ||
ATX-a | Negative control | 24 ± 6 | - | 29 ± 4 | - | 86 ± 13 | - | 96 ± 5 | - | 179 ± 49 | - | 269 ± 48 | - | 15 ± 3 | - | 14 ± 1 | - | 13 ± 3 | - | 12 ± 2 | - |
0.125 | 23 ± 7 | 1.0 | 31 ± 3 | 1.1 | 75 ± 16 | 0.9 | 84 ± 5 | 0.9 | 220 ± 17 * | 1.2 | 214 ± 36 ** | 0.8 | 16 ± 4 | 1.0 | 10 ± 3 | 0.7 | 12 ± 6 | 0.9 | 12 ± 3 | 1.1 | |
0.25 | 14 ± 4 | 0.6 | 29 ± 3 | 1.0 | 85 ± 3 | 1.0 | 88 ± 12 | 0.9 | 180 ± 63 | 1.0 | 212 ± 12 ** | 0.8 | 16 ± 2 | 1.0 | 13 ± 2 | 1.0 | 11 ± 1 | 0.8 | 10 ± 4 | 0.9 | |
0.5 | 25 ± 6 | 1.1 | 32 ± 2 | 1.1 | 86 ± 7 | 1.0 | 79 ± 12 | 0.8 | 313 ± 18 **** | 1.8 | 233 ± 31 | 0.9 | 16 ± 4 | 1.0 | 13 ± 4 | 1.0 | 7 ± 1 | 0.5 | 14 ± 2 | 1.2 | |
1 | 28 ± 3 | 1.2 | 30 ± 6 | 1.0 | 83 ± 3 | 1.0 | 72 ± 15 ** | 0.8 | 255 ± 8 **** | 1.4 | 231 ± 27 | 0.9 | 23 ± 4 | 1.5 | 13 ± 3 | 1.0 | 8 ± 2 | 0.6 | 13 ± 1 | 1.1 | |
2 | 25 ± 11 | 1.1 | 30 ± 8 | 1.0 | 74 ± 15 | 0.9 | 91 ± 16 | 0.9 | 292 ± 38 **** | 1.6 | 255 ± 43 | 0.9 | 9 ± 5 | 0.6 | 15 ± 5 | 1.1 | 11 ± 1 | 0.8 | 17 ± 4 | 1.5 | |
4 | 26 ± 4 | 1.1 | 32 ± 9 | 1.1 | 87 ± 20 | 1.0 | 88 ± 8 | 0.9 | 265 ± 23 **** | 1.5 | 280 ± 20 | 1.0 | 19 ± 2 | 1.3 | 10 ± 2 | 0.7 | 13 ± 2 | 1.0 | 8 ± 5 | 0.7 | |
20 | 26 ± 6 | 1.1 | 19 ± 7 | 0.7 | 91 ± 4 | 1.1 | 87 ± 14 | 0.9 | 251 ± 35 **** | 1.4 | 267 ± 17 | 1.0 | 12 ± 4 | 0.8 | 15 ± 1 | 1.1 | 12 ± 2 | 0.9 | 10 ± 2 | 0.8 | |
Positive control | 712 ± 52 **** | 30.1 | 627 ± 176 **** | 21.4 | 404 ± 20 **** | 4.7 | 420 ± 35 **** | 4.4 | 599 ± 23 **** | 3.4 | 711 ± 35 **** | 2.6 | 991 ± 183 **** | 64.6 | 173 ± 45 **** | 12.7 | 179 ± 126 **** | 13.7 | 149 ± 14 **** | 12.8 | |
DMSO | 18 ± 6 | 0.7 | 37 ± 4 | 1.3 | 86 ± 13 | 1.0 | 90 ± 11 | 0.9 | 255 ± 20 **** | 1.4 | 176 ± 62 **** | 0.7 | 22 ± 5 | 1.4 | 15 ± 5 | 1.1 | 8 ± 4 | 0.6 | 7 ± 4 | 0.6 |
Concentration (µg/mL) | TA98 | TA100 | TA102 | TA1535 | TA1537 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−S9 | MI | +S9 | MI | −S9 | MI | +S9 | MI | −S9 | MI | +S9 | MI | −S9 | MI | +S9 | MI | −S9 | MI | +S9 | MI | ||
ATX-a + CYN | Negative control | 20 ± 3 | - | 25 ± 2 | - | 56 ± 12 | - | 46 ± 4 | - | 261 ± 44 | - | 383 ± 41 | - | 11 ± 3 | - | 9 ± 5 | - | 10 ± 2 | - | 12 ± 4 | - |
0.125 | 21 ± 7 | 1.0 | 30 ± 14 | 1.2 | 62 ± 9 | 1.1 | 55 ± 11 | 1.2 | 230 ± 21 | 0.9 | 433 ± 8 | 1.1 | 6 ± 4 | 0.5 | 16 ± 4 * | 1.7 | 9 ± 3 | 1.0 | 11 ± 4 | 1.0 | |
0.25 | 18 ± 2 | 0.9 | 21 ± 9 | 0.9 | 58 ± 6 | 1.0 | 44 ± 3 | 0.9 | 279 ± 15 | 1.1 | 321 ± 23 | 0.8 | 12 ± 6 | 1.2 | 11 ± 2 | 1.2 | 8 ± 2 | 0.8 | 11 ± 6 | 0.9 | |
0.5 | 37 ± 3 | 1.8 | 20 ± 3 | 0.8 | 47 ± 11 | 0.8 | 56 ± 17 | 1.2 | 265 ± 38 | 1.0 | 519 ± 106 ** | 1.4 | 13 ± 6 | 1.2 | 12 ± 3 | 1.3 | 9 ± 2 | 1.0 | 11 ± 3 | 0.9 | |
1 | 12 ± 3 | 0.6 | 19 ± 5 | 0.8 | 56 ± 12 | 1.0 | 50 ± 4 | 1.1 | 146 ± 24 **** | 0.6 | 339 ± 6 | 0.9 | 13 ± 4 | 1.2 | 11 ± 4 | 1.2 | 7 ± 3 | 0.8 | 13 ± 4 | 1.1 | |
2 | 16 ± 3 | 0.8 | 15 ± 7 | 0.6 | 53 ± 3 | 1.0 | 56 ± 10 | 1.2 | 277 ± 58 | 1.1 | 395 ± 61 | 1.0 | 13 ± 3 | 1.3 | 9 ± 2 | 0.9 | 5 ± 3 | 0.5 | 9 ± 4 | 0.8 | |
Positive control | 555 ± 55 **** | 27.3 | 1803 ± 751 **** | 73.1 | 493 ± 94 **** | 8.9 | 459 ± 88 **** | 9.9 | 629 ± 20 **** | 2.4 | 897 ± 176 **** | 2.3 | 425 ± 20 **** | 39.9 | 49 ± 12 **** | 5.2 | 225 ± 55 **** | 23.3 | 134 ± 17 **** | 11.5 | |
DMSO | 19 ± 3 | 1.0 | 20 ± 3 | 0.8 | 49 ± 10 | 0.9 | 44 ± 9 | 0.9 | 272 ± 25 | 1.0 | 459 ± 24 | 1.2 | 8 ± 3 | 0.7 | 9 ± 3 | 1.0 | 7 ± 1 | 0.7 | 10 ± 5 | 0.8 |
Experimental Group | Absence of S9 | Presence of S9 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Exposure Time (h) | Concentrations (µg/mL) | BNMN (%) ± SD | CBPI ± SD | Exposure Time (h) | Concentrations (µg/mL) | BNMN (%) ± SD | CBPI ± SD | Exposure Time (h) | Concentrations (µg/mL) | BNMN (%) ± SD | CBPI ± SD | |
Negative control | 4 | - | 1.1 ± 0.3 | 1.9 ± 0.1 | 24 | 0.6 ± 0.2 | 1.5 ± 0.0 | 4 | - | 1.2 ± 0.3 | 1.7 ± 0.0 | |
Positive control | 4 | Mitomycin C 0.0625 | 3.7 ± 0.7 **** | 1.9 ± 0.1 | 24 | Mitomycin C 0.0625 | 4.7 ± 1.1 **** | 1.6 ± 0.0 | 4 | Cyclophosphamide 8 | 4.0 ± 0.6 * | 1.7 ± 0.0 |
Colchicine 0.0125 | 4.5 ± 0.9 **** | 2.2 ± 0.1 **** | Colchicine 0.0125 | 3.1 ± 0.4 **** | 1.7 ± 0.1 ** | |||||||
ATX-a | 4 | 1.25 | 2.1 ± 0.4 | 1.9 ± 0.1 | 24 | 1.25 | 0.8 ± 0.3 | 1.5 ± 0.0 | 4 | 1.25 | 1.7 ± 0.2 | 1.8 ± 0.0 |
2.5 | 2.0 ± 0.3 | 2.0 ± 0.1 ** | 2.5 | 0.8 ± 0.2 | 1.5 ± 0.0 | 2.5 | 0.8 ± 0.2 | 1.7 ± 0.1 | ||||
5 | 2.3 ± 0.4 | 1.9 ± 0.1 | 5 | 0.9 ± 0.2 | 1.5 ± 0.0 | 5 | 0.6 ± 0.3 | 1.5 ± 0.1 * | ||||
10 | 2.4 ± 0.4 * | 1.9 ± 0.1 | 10 | 1.6 ± 0.4 ** | 1.5 ± 0.0 | 10 | 0.8 ± 0.5 | 1.6 ± 0.1 | ||||
20 | 2.7 ± 0.4 ** | 1.9 ± 0.1 | 20 | 1.9 ± 0.5 ** | 1.5 ± 0.0 | 20 | 1.2 ± 0.5 | 1.7 ± 0.1 |
Experimental Group | Absence of S9 | Presence of S9 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Exposure Time (h) | Concentrations (µg/mL) | BNMN (%) ± SD | CBPI ± SD | Exposure Time (h) | Concentrations (µg/mL) | BNMN (%) ± SD | CBPI ± SD | Exposure Time (h) | Concentrations (µg/mL) | BNMN (%) ± SD | CBPI ± SD | |
Negative control | 4 | - | 1.4 ± 0.2 | 1.8 ± 0.1 | 24 | - | 0.5 ± 0.6 | 1.6 ± 0.0 | 4 | - | 0.5 ± 0.3 | 1.6 ± 0.1 |
Positive control | 4 | Mitomycin C 0.0625 | 3.7 ± 0.7 *** | 1.8 ± 0.0 | 24 | Mitomycin C 0.0625 | 1.7 ± 0.4 ** | 1.6 ± 0.1 | 4 | Cyclophosphamide 8 | 1.2 ± 0.3 * | 1.6 ± 0.0 |
Colchicine 0.0125 | 3.0 ± 0.3 * | 1.9 ± 0.0 * | Colchicine 0.0125 | 1.6 ± 0.7 ** | 1.8 ± 0.1 | |||||||
ATX-a/CYN | 4 | 0.084 | 1.4 ± 0.5 | 1.8 ± 0.0 | 24 | 0.084 | 0.8 ± 0.5 | 1.5 ± 0.1 | 4 | 0.125 | 0.6 ± 0.3 | 1.7 ± 0.1 |
0.168 | 1.4 ± 0.3 | 1.7 ± 0.0 | 0.168 | 0.2 ± 0.2 | 1.5 ± 0.1 | 0.25 | 1.1 ± 0.3 | 1.6 ± 0.0 | ||||
0.337 | 1.4 ± 0.2 | 1.7 ± 0.1 | 0.337 | 0.6 ± 0.5 | 1.5 ± 0.1 | 0.5 | 1.3 ± 0.6 * | 1.6 ± 0.0 | ||||
0.675 | 1.6 ± 0.4 | 1.7 ± 0.0 | 0.675 | 1.3 ± 0.4 | 1.6 ± 0.0 | 1 | 1.2 ± 0.3 * | 1.6 ± 0.0 | ||||
1.35 | 2.9 ± 0.7 * | 1.8 ± 0.1 | 1.35 | - | - | 2 | 1.6 ± 0.9 ** | 1.6 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plata-Calzado, C.; Diez-Quijada, L.; Medrano-Padial, C.; Prieto, A.I.; Cameán, A.M.; Jos, A. In Vitro Mutagenic and Genotoxic Assessment of Anatoxin-a Alone and in Combination with Cylindrospermopsin. Toxins 2023, 15, 458. https://doi.org/10.3390/toxins15070458
Plata-Calzado C, Diez-Quijada L, Medrano-Padial C, Prieto AI, Cameán AM, Jos A. In Vitro Mutagenic and Genotoxic Assessment of Anatoxin-a Alone and in Combination with Cylindrospermopsin. Toxins. 2023; 15(7):458. https://doi.org/10.3390/toxins15070458
Chicago/Turabian StylePlata-Calzado, Cristina, Leticia Diez-Quijada, Concepción Medrano-Padial, Ana I. Prieto, Ana M. Cameán, and Angeles Jos. 2023. "In Vitro Mutagenic and Genotoxic Assessment of Anatoxin-a Alone and in Combination with Cylindrospermopsin" Toxins 15, no. 7: 458. https://doi.org/10.3390/toxins15070458
APA StylePlata-Calzado, C., Diez-Quijada, L., Medrano-Padial, C., Prieto, A. I., Cameán, A. M., & Jos, A. (2023). In Vitro Mutagenic and Genotoxic Assessment of Anatoxin-a Alone and in Combination with Cylindrospermopsin. Toxins, 15(7), 458. https://doi.org/10.3390/toxins15070458