Foodborne Diseases Due to Underestimated Hazard of Joint Mycotoxin Exposure at Low Levels and Possible Risk Assessment
Abstract
:1. Introduction
2. Underestimated Hazard of Joint Mycotoxin Exposure and Possible Foodborne Ailments
2.1. The Cause and Modes of Joint Mycotoxin Exposure of Animals/Humans
2.2. Foodborne Ailments and Underestimated Hazard from Joint Mycotoxin Exposure
3. Appropriate Hygiene Control, Risk Assessment, and Possible Hazard for Animals and Humans
4. Compromised Food Safety due to Underestimated Hazard of Multiple Mycotoxin Exposure
5. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vlachou, M.; Pexara, A.; Solomakos, N.; Govaris, A. Ochratoxin A in Slaughtered Pigs and Pork Products. Toxins 2022, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.S.; Cunha, S.C.; Fernandes, J.O. Prevalent mycotoxins in animal feed: Occurrence and analytical methods. Toxins 2019, 11, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marc, R.A. Implications of Mycotoxins in Food Safety, Book chapter 1. In Mycotoxins and Food Safety—Recent Advances; IntechOpen: London, UK, 2022; pp. 1–146. Available online: https://www.intechopen.com/books/11023 (accessed on 5 March 2022).
- Gashaw, M. Review on Mycotoxins in Feeds: Implications to Livestock and human health. J. Agric. Res. Dev. 2015, 5, 137–144. [Google Scholar]
- Kan, C.A.; Meijer, G.A.L. The risk of contamination of food with toxic substances present in animal feed. Anim. Feed. Sci. Technol. 2007, 133, 84–108. [Google Scholar] [CrossRef]
- Liu, S.J.; Wu, Y.N.; Chan, L. Application of metabonomics approach in food safety research-a review. Food Rev. Int. 2020, 36, 547–558. [Google Scholar] [CrossRef]
- Stoev, S.D. Foodborne mycotoxicoses, risk assessment and underestimated hazard of masked mycotoxins and joint mycotoxin effects or interaction. Environ. Toxicol. Pharmacol. 2015, 9, 794–809. [Google Scholar] [CrossRef]
- Stoev, S.D.; Vitanov, S.; Anguelov, G.; Petkova-Bocharova, T.; Creppy, E.E. Experimental mycotoxic nephropathy in pigs provoked by a mouldy diet containing ochratoxin A and penicillic acid. Vet. Res. Commun. 2001, 25, 205–223. [Google Scholar] [CrossRef]
- Stoev, S.D.; Stefanov, M.; Denev, S.; Radic, B.; Domijan, A.-M.; Peraica, M. Experimental mycotoxicosis in chickens induced by ochratoxin A and penicillic acid and intervention by natural plant extracts. Vet. Res. Commun. 2004, 28, 727–746. [Google Scholar] [CrossRef]
- Pulina, G.; Battacone, G.; Brambilla, G.; Cheli, F.; Danieli, P.P.; Masoero, F.; Pietri, A.; Ronchi, B. An update on the safety of foods of animal origin and feeds. Ital. J. Anim. Sci. 2014, 13, 845–856. [Google Scholar] [CrossRef] [Green Version]
- Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current situation of mycotoxin contamination and co-occurrence in animal feed—Focus on Europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef] [Green Version]
- Schatzmayr, G.; Streit, E. Global occurrence of mycotoxins in the food and feed chain: Facts and figures. World Mycotoxin J. 2013, 6, 213–222. [Google Scholar] [CrossRef]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin contamination in the EU feed supply chain: A focus on cereal byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.-C.; Madec, S.; Coton, E.; Hymery, N. Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in vitro Combined Toxicological Effects. Toxins 2016, 8, 94. [Google Scholar] [CrossRef]
- El-Sayed, R.A.; Jebur, A.B.; Kang, W.; El-Demerdash, F.M. An overview on the major mycotoxins in food products: Characteristics, toxicity, and analysis. J. Future Foods 2022, 2, 91–102. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, J.; Sun, X.; Yangzom, C.; Shang, P. Mitochondrial calcium uniporter involved in foodborne mycotoxininduced hepatotoxicity. Ecotoxicol. Environ. Saf. 2022, 237, 113535. [Google Scholar] [CrossRef]
- Meizhen, Y.U.; Ping, L.I.U. Discussion on emergency management of food safety from the perspective of foodborne diseases caused by mycotoxins. Food Sci. Technol. 2023, 43. [Google Scholar] [CrossRef]
- CAST (Council for Agricultural Science and Technology). Mycotoxins: Economic and Health Risk. Task Force Report 116; Library of Congress Cataloging-in-Publication Data: Ames, IO, USA, 1989; pp. 1–91.
- Stoev, S.D.; Denev, S. Porcine/Chicken or Human Nephropathy as the Result of Joint Mycotoxins Interaction. Special issue “Recent Advances in Ochratoxins Research”. Toxins 2013, 5, 1503–1530. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Groopman, J.D.; Pestka, J.J. Public Health Impacts of Foodborne Mycotoxins. Annu. Rev. Food Sci. Technol. 2014, 5, 351–372. [Google Scholar] [CrossRef] [Green Version]
- Köppen, R.; Koch, M.; Siegel, D.; Merkel, S.; Maul, R.; Nehls, I. Determination of Mycotoxins in Foods: Current State of Analytical Methods and Limitations. Appl. Microbiol. Biotechnol. 2010, 86, 1595–1612. [Google Scholar] [CrossRef]
- Louro, H.; Heinälä, M.; Bessems, J.; Buekers, J.; Vermeire, T.; Woutersen, M.; Van Engelen, J.; Borges, T.; Rousselle, C.; Ougier, E.; et al. International Journal of Hygiene and Human Biomonitoring in Health Risk Assessment in Europe: Current Practices and Recommendations for the Future. Int. J. Hyg. Environ. Health 2019, 222, 727–737. [Google Scholar] [CrossRef]
- Viegas, S.; Viegas, C.; Oppliger, A. Occupational Exposure to Mycotoxins: Current Knowledge and Prospects. Ann. Work Expo. Health 2018, 62, 923–941. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D.; Dutton, M.; Njobeh, P.; Mosonik, J.; Steenkamp, P. Mycotoxic nephropathy in Bulgarian pigs and chickens: Complex aetiology and similarity to Balkan Enedemic Nephropathy. Food Addit. Contam. A 2010, 27, 72–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoev, S.D.; Denev, S.; Dutton, M.F.; Njobeh, P.B.; Mosonik, J.S.; Steenkamp, P.; Petkov, I. Complex etiology and pathology of mycotoxic nephropathy in South African pigs. Mycotoxin Res. 2010, 26, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D. Balkan Endemic Nephropathy—Still continuing enigma, risk assessment and underestimated hazard of joint mycotoxin exposure of animals or humans. Chem. Biol. Interact. 2017, 261, 63–79. [Google Scholar] [CrossRef] [PubMed]
- Peraica, M.; Radic, B.; Lucic, A.; Pavlovic, M. Toxic effects of mycotoxins in humans. Bull. World Health Organ. 1999, 77, 754–766. [Google Scholar]
- Stoev, S. Food Safety and some foodborne mycotoxicosis. In Proceedings of the Vet. Africa 2007 Congress, Johannesburg, South Africa, 27–28 July 2007. [Google Scholar]
- Gelderblom, W.C.A.; Jaskiewicz, K.; Marasas, W.F.O.; Theil, P.G.; Horak, R.M.; Vleggaar, R.; Kriek, N.P.J. Fumonisins -novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl. Environ. Microb. 1988, 54, 1806–1811. [Google Scholar] [CrossRef]
- Bezuidenhout, S.C.; Gelderblom, W.C.A.; Gorst-Allman, C.P.; Horak, R.M.; Marasas, W.F.O.; Spiteller, G.; Vleggaar, R. Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. J. Chem. Soc. Chem. Comm. 1988, 11, 743–745. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Smedsgaard, J.; Samson, R.A.; Larsen, T.O.; Thrane, U. Fumonisin B2 Production by Aspergillus niger. J. Agric. Food Chem. 2007, 55, 9727–9732. [Google Scholar] [CrossRef]
- Marasas, W.F.O.; Kellerman, J.S.; Pienaar, J.G.; Naude, T.W. Leukoencephalomalacia: A mycotoxicosis of Equidae caused by Fusarium moniliforme Sheldon. Onderstepoort J. Vet. Res. 1976, 43, 113–122. [Google Scholar]
- Conkova, E.; Laciakova, A.; Kovac, G.; Seidel, H. Fusarial toxins and their role in animal diseases. Vet. J. 2003, 165, 214–220. [Google Scholar] [CrossRef]
- Marasas, W.F.O. Discovery and occurrence of the fumonisins: A historical perspective. Environ. Health Persp. 2001, 109, 239–243. [Google Scholar]
- Ramasamy, S.; Wang, E.; Hennig, B.; Merrill, A.H. Fumonisin B1 alters shingolipid metabolism and disrupts the barrier function of endothelial cells in culture. Toxicol. Appl. Pharmacol. 1995, 133, 343–348. [Google Scholar] [CrossRef]
- Haschek, W.M.; Rousseaux, C.G.; Wallig, M.A. Fundamentals of Toxicologic Pathology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 1–691. [Google Scholar]
- Alshannaq, A.; Yu, J.-H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [Green Version]
- Stoev, S.D. Food safety and increasing hazard of mycotoxin occurrence in foods and feeds. Crit. Rev. Food Sci. 2013, 53, 887–901. [Google Scholar] [CrossRef]
- Alvito, P.; Assunção, R.M.; Bajard, L.; Martins, C.; Mengelers, M.J.B.; Mol, H.; Namorado, S.; van den Brand, A.D.; Vasco, E.; Viegas, S.; et al. Current Advances, Research Needs and Gaps in Mycotoxins Biomonitoring under the HBM4EU—Lessons Learned and Future Trends. Toxins 2022, 14, 826. [Google Scholar] [CrossRef]
- Shibamato, T.; Bjeldanes, L.F. Fungal toxins occurring in foods. In Introduction to Food Toxicology; Academic Press Inc.: London, UK, 1993; pp. 97–116. [Google Scholar]
- Shier, W.T. Estrogenic mycotoxins. Rev. Med. Vet. 1998, 149, 599–604. [Google Scholar]
- Friends, D.W.; Trenholm, H.L.; Thompson, B.K.; Hartin, K.E.; Fiser, P.S.; Asem, E.K.; Tsang, B.K. The reroductive efficiency of gilts fed very low levels of Zearalenone. Can. J. Anim. Sci. 1999, 70, 635–645. [Google Scholar] [CrossRef]
- Gajęcki, M. Zearalenone—Undesirable substances in feed. Pol. J. Vet. Sci. 2002, 5, 117–122. [Google Scholar]
- Zinedine, A.; Soriano, J.M.; Moltó, J.C.; Mañes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef]
- Fink-Gremmels, J.; Malekinejad, H. Clinical effects and biochemical mechanisms associated with exposure to the mycoestrogen zearalenone. Anim. Feed Sci. Technol. 2007, 137, 326–341. [Google Scholar] [CrossRef]
- Neme, K.; Mohammed, A.T. Mycotoxin occurrence in grains and the role of postharvest management as mitigation strategies: A review. Food Control 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Adeyeye, S.A. Aflatoxigenic fungi and mycotoxins in food: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Zhang, K. Mycotoxins and food safety-prevention and control: Expectation and reality. J. AOAC Int. 2019, 102, 1641. [Google Scholar] [CrossRef] [PubMed]
- Awuchi, C.G.; Ondari, E.N.; Nwozo, S.; Odongo, G.A.; Eseoghene, I.J.; Twinomuhwezi, H.; Ogbonna, C.U.; Upadhyay, A.K.; Adeleye, A.O.; Okpala, C.O.R. Mycotoxins’ toxicological mechanisms involving humans, livestock and their associated health concerns: A review. Toxins 2022, 14, 167. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program. Carcinogenesis bioassay of zearalenone (CAS No. 17924-92-4) in F344/N rats and B6C3F1 mice (feed study). Natl. Toxicol. Program Tech. Rep. Ser. 1982, 235, 1–155. Available online: http://www.ncbi.nlm.nih.gov/pubmed/12778201 (accessed on 23 May 2023).
- Pfohl-Leszkowicz, A.; Chekir-Ghedira, L.; Bacha, H. Genotoxicity of zearalenone, an estrogenic mycotoxin: DNA adduct formation in female mouse tissues. Carcinogenesis 1995, 16, 2315–2320. Available online: http://www.ncbi.nlm.nih.gov/pubmed/7586128 (accessed on 23 May 2023). [CrossRef]
- Chaytor, A.C.; See, M.T.; Hansen, J.A.; de Souza, A.L.P.; Middleton, T.F.; Kim, S.W. Effects of chronic exposure of diets with reduced concentrations of aflatoxin and deoxynivalenol on growth and immune status of pigs. J. Anim. Sci. 2011, 89, 124–135. [Google Scholar] [CrossRef]
- Wu, L.; Liao, P.; He, L.; Ren, W.; Yin, J.; Duan, J.; Li, T. Growth performance, serum biochemical profile, jejunal morphology, and the expression of nutrients transporter genes in deoxynivalenol (DON)-challenged growing pigs. BMC Vet. Res. 2015, 11, 144. [Google Scholar] [CrossRef] [Green Version]
- Maresca, M. From the gut to the brain: Journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins 2013, 5, 784–820. [Google Scholar] [CrossRef]
- Eriksen, G.S.; Pettersson, H. Toxicological evaluation of trichothecenes in animal feed. Anim. Feed Sci. Technol. 2004, 114, 205–239. [Google Scholar] [CrossRef]
- Kamle, M.; Mahato, D.K.; Gupta, A.; Pandhi, S.; Sharma, B.; Dhawan, K.; Vasundhara; Mishra, S.; Kumar, M.; Tripathi, A.D.; et al. Deoxynivalenol: An Overview on Occurrence, Chemistry, Biosynthesis, Health Effects and Its Detection, Management, and Control Strategies in Food and Feed. Microbiol. Res. 2022, 13, 292–314. [Google Scholar] [CrossRef]
- Richard, J.L. Some major mycotoxins and their mycotoxicosis—An overview. Int. J. Food Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef]
- Akande, K.E.; Abubakar, M.M.; Adegbola, T.A.; Bogoro, S.E. Nutritional and health implications of mycotoxins in animal feeds: A review. Pak. J. Nutr. 2006, 5, 398–403. [Google Scholar] [CrossRef] [Green Version]
- Lutsky, I.I.; Mor, N. Alimentary toxic aleukia (septic angina, endemic panmyelotoxicosis, alimentary hemorrhagic aleukia): T-2 toxin-induced intoxication of cats. Am. J. Pathol. 1981, 104, 189–191. [Google Scholar]
- Pleadin, J.; Frece, J.; Markov, K. Chapter Eight Mycotoxins in food and feed. In Advances in Food and Nutrition Research; Toldrá, F., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 297–345. [Google Scholar]
- Betina, V. Biological effects of mycotoxins. In Mycotoxins: Chemical, Biological and Environmental Aspects; Betina, V., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1989; Volume 9, pp. 42–58. [Google Scholar]
- International Program of Chemical Safety (IPCS). Selected Mycotoxins: Ochratoxins, Trichothecenes, Ergot; IPCS Environmental Health Criteria No. 105.; WHO: Geneva, Switzerland, 1990.
- Bennett, J.W.; Bentley, R. Pride and prejudice: The story of ergot. Perspect. Biol. Med. 1999, 42, 333–355. [Google Scholar] [CrossRef]
- Schneider, D.J.; Miles, C.; Garthwaite, I.; van Halderen, A.; Wessels, J.C.; Lategan, H.J. First report of ergot-alkaloid toxicity in South Africa. Onderstepoort J. Vet. Res. 1996, 63, 97–108. [Google Scholar]
- Schneider, D.J.; Marasas, W.F.; Dale Kuys, J.C.; Kriek, N.P.; Van Schalkwyk, G.C. A field outbreak of suspected stachybotryotoxicosis in sheep. J. S. Afr. Vet. Assoc. 1979, 50, 73–81. [Google Scholar]
- Lefebvre, H.P.; Le Bars, J.; Legrand, C.; Le Bars, P.; Dossin, O.; Toutain, P.L.; Braun, J.P. Three cases of equine stachybotryotoxicosis. Rev. Med. Vet. 1994, 145, 267–269. [Google Scholar]
- Allcroft, R.; Carnaghan, R.B.A. Groundnut toxicity. Aspergillus flavus toxin (aflatoxin) in animal products: Preliminary communication. Vet. Rec. 1962, 74, 863–864. [Google Scholar]
- McMillan, A.; Renaud, J.B.; Burgess, K.M.N.; Orimadegun, A.E.; Akinyinka, O.O.; Allen, S.J.; Miller, J.D.; Reid, G.; Sumarah, M.W. Aflatoxin exposure in Nigerian children with severe acute malnutrition. Food Chem. Toxicol. 2018, 111, 356–362. [Google Scholar] [CrossRef]
- Jamil, M.; Khatoon, A.; Saleemi, M.K.; Aleem, M.T.; Bhatti, S.A.; Abidin, Z.U.; Imran, M.; Naseem, M.N.; Nawaz, M.Y.; Tahir, M.W.; et al. Mycotoxins prevalence in poultry industry and its preventive strategies. In Animal Health Perspectives; Abbas, R.Z., Khan, A., Liu, P., Saleemi, M.K., Eds.; Unique Scientific Publishers: Faisalabad, Pakistan, 2022; Volume 2, pp. 190–200. [Google Scholar] [CrossRef]
- Misihairabgwi, J.M.; Ezekiel, C.N.; Sulyok, M.; Shephard, G.S.; Krska, R. Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007-2016). Crit. Rev. Food Sci. Nutr. 2019, 59, 43–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Agency for Research on Cancer (IARC). Mycotoxins and Human Health; IARC Press: Lyon, France, 2012; Volume 158, pp. 87–104. [Google Scholar]
- Abdulrazzaq, Y.M.; Osman, N.; Ibrahim, A. Fetal exposure to aflatoxins in the United Arab Emirates. Ann. Trop. Paediatr. 2002, 22, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Krogh, P.; Hald, B.; Pederson, J. Occurrence of ochratoxin A and citrinin in cereals associated with mycotoxic porcine nephropathy. Acta Path. Mcrobiol. Scand. Sect. B 1973, 81, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D.; Hald, B.; Mantle, P. Porcine nephropathy in Bulgaria: A progressive syndrome of complex of uncertain (mycotoxin) etiology. Vet. Rec. 1998, 142, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D.; Grozeva, N.; Hald, B. Ultrastructural and toxicological investigations in spontaneous cases of porcine nephropathy in Bulgaria. Vet. Arhiv 1998, 68, 39–49. [Google Scholar]
- Krogh, P. Mycotoxic porcine nephropathy: A possible model for Balkan endemic nephropathy. In Proceedings of the Second International Symposium on Endemic Nephropathy, Sofia, Bulgaria; 1972; pp. 266–270. [Google Scholar]
- Stoev, S.D. The Role of Ochratoxin A as a Possible Cause of Balkan Endemic Nephropathy and its Risk Evaluation. Vet. Hum. Toxicol. 1998, 40, 352–360. [Google Scholar]
- Stoev, S.D. Complex Etiology, Prophylaxis and Hygiene Control in Mycotoxic Nephropathies in Farm Animals and Humans. Int. J. Mol. Sci. 2008, 9, 578–605. [Google Scholar] [CrossRef] [Green Version]
- Stoev, S.D.; Paskalev, M.; MacDonald, S.; Mantle, P.G. Experimental one year ochratoxin A toxicosis in pigs. Exp. Toxicol. Pathol. 2002, 53, 481–487. [Google Scholar] [CrossRef]
- Stoev, S.D.; Djuvinov, D.; Mirtcheva, T.; Pavlov, D.; Mantle, P. Studies on some feed additives giving partial protection against ochratoxin A toxicity in chicks. Toxicol. Lett. 2002, 135, 33–50. [Google Scholar] [CrossRef]
- Stoev, S.D. Studies on some feed additives and materials giving partial protection against the suppressive effect of ochratoxin A on egg production of laying hens. Res. Vet. Sci. 2010, 88, 486–491. [Google Scholar] [CrossRef]
- Miljkovic, A.; Mantle, P. Chromatographic Fractionation of Penicillium polonicum Fermentation Metabolites in Search of the Nephrotoxin(s) for Rats. Life 2022, 12, 747. [Google Scholar] [CrossRef]
- Stoev, S.D.; Stoeva, J.; Anguelov, G.; Hald, B.; Creppy, E.E.; Radic, B. Haematological, biochemical and toxicological investigations in spontaneous cases with different frequency of porcine nephropathy in Bulgaria. J. Vet. Med. Ser. A 1998, 45, 229–236. [Google Scholar] [CrossRef]
- Duarte, S.C.; Lino, C.M.; Pena, A. Ochratoxin A in feed of food-producing animals: An undesirable mycotoxin with health and performance effects. Vet. Microbiol. 2011, 154, 1–13. [Google Scholar] [CrossRef]
- Assunção, R.; Alvito, P.; Kleiveland, C.R.; Lea, T.E. Characterization of in vitro effects of patulin on intestinal epithelial and immune cells. Toxicol. Lett. 2016, 250–251, 47–56. [Google Scholar] [CrossRef]
- Sohrabi, H.; Arbabzadeh, O.; Khaaki, P.; Khataee, A.; Majidi, M.R.; Orooji, Y. Patulin and Trichothecene: Characteristics, occurrence, toxic effects and detection capabilities via clinical, analytical and nanostructured electrochemical sensing/biosensing assays in foodstuffs. Crit. Rev. Food Sci. Nutr. 2022, 62, 5540–5568. [Google Scholar] [CrossRef]
- Pal, S.; Singh, N.; Ansari, K.M. Toxicological effects of patulin mycotoxin on the mammalian system: An overview. Toxicol. Res. 2017, 6, 764–771. [Google Scholar] [CrossRef] [Green Version]
- Robert, H.; Payros, D.; Pinton, P.; Théodorou, V.; Mercier-Bonin, M.; Oswald, I.P. Impact of mycotoxins on the intestine: Are mucus and microbiota new targets? J. Toxicol. Environ. Health B Crit. Rev. 2017, 20, 249–275. [Google Scholar] [CrossRef]
- Akbari, P.; Braber, S.; Varasteh, S.; Alizadeh, A.; Garssen, J.; Fink-Gremmels, J. The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins. Arch. Toxicol. 2017, 91, 1007–1029. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Nie, J.; Li, Z.; Li, H.; Wu, Y.; Zhang, J. Research progress on contamination, toxicity, biosynthesis and influencing factors of mycotoxins in fruits. Shipin Kexue 2018, 9, 294–304. [Google Scholar]
- Ramalingam, S.; Bahuguna, A.; Kim, M. The effects of mycotoxin patulin on cells and cellular components. Trends Food Sci. Technol. 2019, 83, 99–113. [Google Scholar] [CrossRef]
- Saleh, I.; Goktepe, I. The characteristics, occurrence, and toxicological effects of patulin. Food Chem. Toxicol. 2019, 129, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.P. Immunotoxicity of mycotoxins. J. Dairy Sci. 1993, 76, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D. Studies on carcinogenic and toxic effects of ochratoxin A in chicks. Special issue “Ochratoxins”. Toxins 2010, 2, 649–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoev, S.D. Long term preliminary studies on toxic and carcinogenic effect of individual or simultaneous exposure to ochratoxin A and penicillic acid in mice. Toxicon 2020, 184, 192–201. [Google Scholar] [CrossRef]
- Stoev, S.D. Follow up long term preliminary studies on carcinogenic and toxic effects of ochratoxin A in rats and the putative protection of phenylalanine. Toxicon 2021, 190, 41–49. [Google Scholar] [CrossRef]
- Stoev, S.D. New Evidences about the Carcinogenic Effects of Ochratoxin A and Possible Prevention by Target Feed Additives. Toxins 2022, 14, 380. [Google Scholar] [CrossRef]
- Stoev, S.D. Studies on teratogenic effect of ochratoxin A given via mouldy diet in mice in various sensitive periods of the pregnancy and the putative protection of phenylalanine. Toxicon 2022, 210, 32–38. [Google Scholar] [CrossRef]
- Pfohl-Leszkowicz, A.; Manderville, R. An update on direct genotoxicity as a molecular mechanism of ochratoxin A carcinogenicity. Chem. Res. Toxicol. 2012, 25, 252–262. [Google Scholar] [CrossRef]
- Claeys, L.; Romano, C.; De Ruyck, K.; Wilson, H.; Fervers, B.; Korenjak, M.; Zavadil, J.; Gunter, M.J.; De Saeger, S.; De Boevre, M.; et al. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1449–1464. [Google Scholar] [CrossRef]
- Marasas, W.F.O.; Jaskiewics, K.; Venter, F.S.; van Schalkwyk, D.J. Fusarium moniliforme contamination of maize in oesophageal cancer areas in Transkei. S. Afr. Med. J. 1988, 74, 110–114. [Google Scholar]
- Gelderblom, W.; Marasas, W.; Farber, E. The cancer initiating potential of the fumonisin B mycotoxins. Carcinogenesis 1992, 13, 433–437. [Google Scholar] [CrossRef]
- Hou, L.; Yuan, X.; Le, G.; Lin, Z.; Gan, F.; Li, H.; Huang, K. Fumonisin B1 induces nephrotoxicity via autophagy mediated by mTORC1 instead of mTORC2 in human renal tubule epithelial cells. Food Chem. Toxicol. 2021, 149, 112037. [Google Scholar] [CrossRef]
- Howard, P.; Warbritton, A.; Voss, K.; Lorenzen, R.; Thurman, J.; Kovach, R.; Bucci, T. Compensatory regeneration as a mechanism for renal tubule carcinogenesis of fumonisin B1 in F344/N/Nctr BR rat. Environ. Health Persp. 2001, 109, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Bensassi, F.; Gallerne, C.; Sharaf el Dein, O.; Hajlaoui, M.R.; Lemaire, C.; Bacha, H. In vitro investigation of toxicological interactions between the fusariotoxins deoxynivalenol and zearalenone. Toxicon 2014, 84, 1–6. [Google Scholar] [CrossRef]
- De Ruyck, K.; De Boevre, M.; Huybrechts, I.; De Saeger, S. Dietary mycotoxins, co-exposure, and carcinogenesis in humans: Short review. Mutat. Res. Rev. Mutat. Res. 2015, 766, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Grenier, B.; Oswald, I. Mycotoxin co-contamination of food and feed: Meta-analysis of publications describing toxicological interactions. World Mycotoxin J. 2011, 4, 285–313. [Google Scholar] [CrossRef]
- Speijers, G.J.A.; Speijers, M.H.M. Combined toxic effects of mycotoxins. Toxicol. Lett. 2004, 153, 91–98. [Google Scholar] [CrossRef]
- Suzuki, S.; Satoh, T.; Yamazaki, M. The pharmacokinetics of ochratoxin A in rats. Jpn. J. Pharmacol. 1977, 27, 735–744. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.N.; Bastia, B.; Telang, A.; Singh, K.P.; Singh, R.; Jain, A.K. Combined toxicity of endosulfan and ochratoxin-A in rats: Histopathological changes. J. Histol. Histopathol. 2015, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Kanisawa, M.; Suzuki, S. Induction of renal and hepatic tumors in mice by ochratoxin A, a mycotoxin. Gann 1978, 69, 599–600. [Google Scholar]
- Roth, A.; Chakor, K.; Creppy, E.E.; Kane, A.; Roschenthaler, R.; Dirheimer, G. Evidence for an enterohepatic circulation of ochratoxin A in mice. Toxicology 1988, 48, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Hgindu, A.; Johnson, B.A.; Kenya, P.R. An outbreak of acute hepatitis by aflatoxin poisoning in Kenya. Lancet 1982, 319, 1346–1348. [Google Scholar]
- Dirheimer, G. Recent advances in the genotoxicity of mycotoxins. Rev. Med. Vet. 1998, 149, 605–616. [Google Scholar]
- Coulombe, R.A.; Guarisco, J.A.; Klein, P.J.; Hall, J.O. Chemoprevention of aflatoxicosis in poultry by dietary butylated hydroxytoluene. Anim. Feed Sci. Technol. 2005, 121, 217–225. [Google Scholar] [CrossRef]
- Marrez, D.; Ayesh, A. Mycotoxins: The threat to food safety. Egypt. J. Chem. 2022, 65, 353–372. [Google Scholar] [CrossRef]
- Stoev, S.D.; Gundasheva, D.; Zarkov, I.; Mircheva, T.; Zapryanova, D.; Denev, S.; Mitev, Y.; Daskalov, H.; Dutton, M.; Mwanza, M.; et al. Experimental mycotoxic nephropathy in pigs provoked by a mouldy diet containing ochratoxin A and fumonisin B1. Exp. Toxicol. Pathol. 2012, 64, 733–741. [Google Scholar] [CrossRef]
- Stoev, S.D.; Anguelov, G.; Ivanov, I.; Pavlov, D. Influence of ochratoxin A and an extract of artichoke on the vaccinal immunity and health in broiler chicks. Exp. Toxicol. Pathol. 2000, 52, 43–55. [Google Scholar] [CrossRef]
- Stoev, S.D.; Goundasheva, D.; Mirtcheva, T.; Mantle, P.G. Susceptibility to secondary bacterial infections in growing pigs as an early response in ochratoxicosis. Exp. Toxicol. Pathol. 2000, 52, 287–296. [Google Scholar] [CrossRef]
- Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Novotna, E.; Ochratoxin, A. Developmental and reproductive toxicity—An overview. Birth Defects Res. B Dev. Reprod. Toxicol. 2013, 98, 493–502. [Google Scholar] [CrossRef]
- Herman, D.; Mantle, P. Immunohistochemical Analysis of Rat Renal Tumours Caused by Ochratoxin A. Toxins 2017, 9, 384. [Google Scholar] [CrossRef] [Green Version]
- Marchese, S.; Polo, A.; Ariano, A.; Velotto, S.; Costantini, S.; Severino, L. Aflatoxin B1 and M1: Biological properties and their involvement in cancer development. Toxins 2018, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Verbrugghe, E.; Vandenbroucke, V.; Dhaenens, M.; Shearer, N.; Goossens, J.; De Saeger, S.; Eeckhout, M.; D’Herde, K.; Thompson, A.; Deforce, D.; et al. T-2 toxin induced Salmonella typhimurium intoxication results in decreased Salmonella numbers in the cecum contents of pigs, despite marked effects on Salmonella-host cell interactions. Vet. Res. 2012, 43, 22. [Google Scholar] [CrossRef] [Green Version]
- Antonissen, G.; Martel, A.; Pasmans, F.; Ducatelle, R.; Verbrugghe, E.; Vandenbroucke, V.; Li, S.; Haesebrouck, F.; Van Immerseel, F.; Croubels, S. The Impact of Fusarium Mycotoxins on Human and Animal Host Susceptibility to Infectious Diseases. Toxins 2014, 6, 430–452. [Google Scholar] [CrossRef] [Green Version]
- Tai, J.H.; Pestka, J.J. Impaired murine resistance to Salmonella typhimurium following oral exposure to the trichothecene T-2 toxin. Food Chem. Toxicol. 1988, 26, 691–698. [Google Scholar] [CrossRef]
- Ziprin, R.I.; Holt, P.S.; Mortensen, R. T-2 toxin effects on the serum amyloid P-component (SAP) response of Listeria monocytogenes and Salmonella typhimurium infected mice. Toxicol. Lett. 1987, 39, 177–184. [Google Scholar] [CrossRef]
- Cooray, R.; Jonsson, P. Modulation of resistance to mastitis pathogens by pre-treatment of mice with T-2 toxin. Food Chem. Toxicol. 1990, 28, 687–692. [Google Scholar] [CrossRef]
- Elissalde, M.H.; Ziprin, R.L.; Huff, W.E.; Kubena, L.F.; Harvey, R.B. Effect of ochratoxin A on Salmonella-challenged broiler chicks. Poult. Sci. 1994, 73, 1241–1248. [Google Scholar] [CrossRef]
- Fukata, T.; Sasai, K.; Baba, E.; Arakawa, A. Effect of ochratoxin A on Salmonella typhimurium-challenged layer chickens. Avian Dis. 1996, 40, 924–926. [Google Scholar] [CrossRef]
- Gupta, S.; Jindal, N.; Khokhar, R.S.; Asrani, R.K.; Ledoux, D.R.; Rottinghaus, G.E. Individual and combined effects of ochratoxin A and Salmonella enterica serovar Gallinarum infection on pathological changes in broiler chickens. Avian Pathol. 2008, 37, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Jindal, N.; Shukla, C.L.; Pal, Y.; Ledoux, D.R.; Rottinghaus, G.E. Effect of ochratoxin A on Escherichia coli-challenged broiler chicks. Avian Dis. 2003, 47, 415–424. [Google Scholar] [CrossRef]
- Huff, W.E.; Ruff, M.D. Eimeria acervulina and Eimeria tenella infections in ochratoxin A-compromised broiler chickens. Poult. Sci. 1982, 61, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D.; Koynarsky, V.; Mantle, P.G. Clinicomorphological studies in chicks fed ochratoxin A while simultaneously developing coccidiosis. Vet. Res. Commun. 2002, 26, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Koynarski, V.; Stoev, S.; Grozeva, N.; Mirtcheva, T.; Daskalov, H.; Mitev, J.; Mantle, P. Experimental coccidiosis provoked by Eimeria acervulina in chicks simultaneously fed on ochratoxin A contaminated diet. Res. Vet. Sci. 2007, 82, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Koynarski, V.; Stoev, S.; Grozeva, N.; Mirtcheva, T. Experimental coccidiosis provoked by Eimeria adenoeides in turkey poults given ochratoxin A. Vet. Arhiv. 2007, 77, 113–128. [Google Scholar]
- Halloy, D.J.; Gustin, P.G.; Bouhet, S.; Oswald, I.P. Oral exposure to culture material extract containing fumonisins predisposes swine to the development of pneumonitis caused by Pasteurella multocida. Toxicology 2005, 213, 34–44. [Google Scholar] [CrossRef]
- Ramos, C.M.; Martinez, E.M.; Carrasco, A.C.; Puente, J.H.L.; Quezada, F.; Perez, J.T.; Oswald, I.P.; Elvira, S.M. Experimental trial of the effect of fumonisin B1 and the PRRS virus in swine. J. Anim. Vet. Adv. 2010, 9, 1301–1310. [Google Scholar]
- Pósa, R.; Donkó, T.; Bogner, P.; Kovács, M.; Repa, I.; Magyar, T. Interaction of Bordetella bronchiseptica, Pasteurella multocida and fumonisin B1 in the porcine respiratory tract followed up by computed tomography. Can. J. Vet. Res. 2011, 75, 176–183. [Google Scholar]
- Pósa, R.; Magyar, T.; Stoev, S.D.; Glávits, R.; Donkó, T.; Repa, I.; Kovács, M. Use of Computed Tomography and Histopathologic Review for Lung Lesions Produced by the Interaction Between Mycoplasma hyopneumoniae and Fumonisin Mycotoxins in Pigs. Vet. Pathol. 2013, 50, 971–979. [Google Scholar] [CrossRef] [Green Version]
- Taranu, I.; Marin, D.E.; Bouhet, S.; Pascale, F.; Bailly, J.D.; Miller, D.J.; Pinton, P.; Oswald, I.P. Mycotoxin fumonisin B1 alters the cytokine profile and decreases the vaccinal antibody titer in pigs. Toxicol. Sci. 2005, 84, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, P.; Burns, R.B. Immunosuppressive effects of ochratoxin A in young turkeys. Avian Pathol. 1985, 14, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Karamalakova, Y.; Nikolova, G.; Adhikari, M.; Stoev, S.D.; Agarwal, P.; Gadjeva, V.; Zhelev, Z. Oxidative-protective effects of Tinospora cordifolia extract on plasma and spleen cells after experimental ochratoxicosis. Comp. Clin. Path. 2018, 27, 1487–1495. [Google Scholar] [CrossRef]
- Benkerroum, N. Chronic and acute toxicities of aflatoxins: Mechanisms of action. Int. J. Environ. Res. Public Health 2020, 17, 423. [Google Scholar] [CrossRef] [Green Version]
- EC Directive 2002/32/EC of the European Parliament and of the Council on undesirable substances in animal feed, 7 May 2002, pp. 1–27. Off. J. Eur. Union L 2002, 140, 10–21. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2002L0032:20061020:EN:PDF (accessed on 23 May 2023).
- EC Directive 2003/100/EC of Amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council on Undesirable Substances in Animal Feed. 31 October 2003. Off. J. Eur. Union L 2003, 285, 33–37. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ%3AL%3A2003%3A285%3A0033%3A0037%3AEN%3APDF (accessed on 23 May 2023).
- EC Recomendation 2006/576/EC on the Presence of Deoxynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding, 17 August 2006; pp 1–3. Off. J. Eur. Union L 2006, 229, 7–9. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:229:0007:0009:EN:PDF (accessed on 23 May 2023).
- EC Recomendations 2013/165/EU on the presence of T-2 and HT-2 toxin in cereals and cereal products, 27 March 2013; pp. 1–4. Off. J. Eur. Union L 2013, 91, 12–15.
- EC Regulation No 2023/915 of 25 April 2023 Setting Maximum Levels for Certain Contaminants in Foodstuffs and Repealing Regulation (EC) No 1881/2006 of 19 December 2006. Off. J. Eur. Union L 2006, 119, 103–157. Available online: https://eur-lex.europa.eu/eli/reg/2023/915/oj (accessed on 5 May 2023).
- GB 2761-2017; Limit of Mycotoxin in Food of China National Food Safety Standard. United States Department of Agriculture (USDA): Washington, DC, USA, 2017.
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Scientific Opinion on the Risks for Human and Animal Health Related to the Presence of Modified Forms of Certain Mycotoxins in Food and Feed. EFSA J. 2014, 12, 3916. [Google Scholar]
- Gruber-Dorninger, C.; Novak, B.; Nagl, V.; Berthiller, F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. J. Agric. Food Chem. 2017, 65, 7052–7070. [Google Scholar] [CrossRef]
- Ekwomadu, T.I.; Akinola, S.A.; Mwanza, M. Fusarium Mycotoxins, Their Metabolites (Free, Emerging, and Masked), Food Safety Concerns, and Health Impacts. Int. J. Environ. Res. Public Health 2021, 18, 11741. [Google Scholar] [CrossRef]
- Alvito, P.; Barcelo, J.; De Meester, J.; Rito, E.; Suman, M. Mitigation of Mycotoxins during Food Processing: Sharing Experience among Europe and South East Asia. Sci. Technol. Cereal. Oils Foods 2021, 29, 59–70. [Google Scholar]
- Wu, F.; Khlangwiset, P. Health economic impacts and cost-effectiveness of aflatoxin-reduction strategies in Africa: Case studies in biocontrol and post-harvest interventions. Food Addit. Contam. A 2010, 27, 496–509. [Google Scholar] [CrossRef]
- Schoeters, G.; Rosa, L.; Kolossa, M.; Barouki, R.; Tarroja, E.; Uhl, M.; Klanova, J.; Melymuk, L.; Horvat, M.; Bocca, B.; et al. HBM4EU-Scoping Documents for 2021 for the First and Second Second Round HBM4EU Priority Substances Deliverable Report D4.9. 2021. Available online: https://www.hbm4eu.eu/wp-content/uploads/2021/03/HBM4EU_D4.9_Scoping_Documents_HBM4EU_priority_substances_v1.0.pdf (accessed on 24 November 2020).
- EC Regulation No 178/2002 of the European Parliament and of the Council Laying Down the General Principles and Requirements of Food Law, Establishing the European Food Safety Authority and Laying Down Procedures in Matters of Food Safety. 28 January 2002; pp. 1–40. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32002R0178 (accessed on 23 May 2023).
- FAO. Manual on the application of the HACCP System in Mycotoxin Prevention and control. In Proceedings of the Joint FAO/WHO Food Standards Programme; FAO: Rome, Italy, 2002; pp. 1–118. Available online: https://www.fao.org/3/y1390e/y1390e.pdf (accessed on 23 May 2023).
- Dowell, F.E.; Dorner, J.W.; Cole, R.J.; Davidson, J.I. Aflatoxin reduction by screening farmers stock peanuts. Peanut Sci. 1990, 17, 6–8. [Google Scholar] [CrossRef]
- Doko, M.; Rapior, S.; Visconti, A.; Schjoth, J.E. Incidence of levels of fumonisin contamination in maize by genotypes grown in Europe and Africa. J. Agric. Food Chem. 1995, 43, 429–434. [Google Scholar] [CrossRef]
- Bata, A.; Rafai, P.; Kovacs, S. Investigation and a new evaluation method of the resistance of maize hybrids grown in Hungary to Fusarium moulds. Phytopathology 2021, 149, 107–111. [Google Scholar] [CrossRef]
- Wagacha, J.M.; Muthomi, J.W. Mycotoxin problem in Africa: Current status, implications to food safety and health and possible management strategies. Int. J. Food Microbiol. 2008, 124, 1–12. [Google Scholar] [CrossRef]
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Müller, J.; Vanlauwe, B.; Bandyopadhyay, R. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application—A review. Food Control 2017, 76, 127–138. [Google Scholar] [CrossRef]
- Van Egmond, H.P.; Jonker, M.A. Worldwide Regulations for Mycotoxins in Food and Feed in 2003; Food and Agriculture Organization of the United Nations: New York, NY, USA, 2004. [Google Scholar]
- FAO. Nairobi+10 Report of the Second Joint FAO/WHO/UNEP International Conference on Mycotoxins. Bangkok, Thailand, 28 September–2 October 1987; FAO: Rome, Italy, 1988. [Google Scholar]
- FAO. Food and Nutrition Paper N 64, Worlwide Regulations for Mycotoxins; FAO: Rome, Italy, 1997. [Google Scholar]
- Scudamore, K.A.; Banks, J.N. The fate of mycotoxins during cereal processing. In Meeting the Mycotoxin Menace; Barug, D., van Egmond, H., López-García, R., van Osenbruggen, T., Visconti, A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2004; pp. 165–181. [Google Scholar]
- Paterson, R.R.M.; Venâncio, A.; Lima, N.; Guilloux-Bénatier, M.; Rousseaux, S. Predominant mycotoxins, mycotoxigenic fungi and climate change related to wine. Food Res. Int. 2018, 103, 478–491. [Google Scholar] [CrossRef] [Green Version]
- Raters, M.; Matissek, R. Study on distribution of mycotoxins in cocoa beans. Mycotoxin Res. 2005, 21, 182–186. [Google Scholar] [CrossRef]
- Filippo, R.; Gallo, A.; Terenzio, B. Emerging mycotoxins in the food chain. Med. J. Nutr. Metab. 2020, 13, 1–21. [Google Scholar]
- Zapaśnik, A.; Bryła, M.; Waśkiewicz, A.; Ksieniewicz-Woźniak, E.; Podolska, G. Ochratoxin A and 20R-Ochratoxin A in Selected Foodstuffs and Dietary Risk Assessment. Molecules 2022, 27, 188. [Google Scholar] [CrossRef]
- Kuzdraliński, A.; Solarska, E.; Muszyńska, M. Deoxynivalenol and zearalenone occurence in beers analysed by an enzyme-linked immunosorbent assay method. Food Control 2013, 29, 22–24. [Google Scholar] [CrossRef]
- Völkel, I. The carry-over of mycotoxins in products of animal origin with special regard to its implications for the European Food Safety Legislation. Food Sci. Nutr. 2011, 2, 852–867. [Google Scholar] [CrossRef] [Green Version]
- Pizzolato Montanha, F.; Anater, A.; Burchard, J.F.; Luciano, F.B.; Meca, G.; Manyes, L.; Pimpão, C.T. Mycotoxins in dry-cured meats: A review. Food Chem. Toxicol. 2018, 111, 494–502. [Google Scholar] [CrossRef]
- Iqbal, S.Z.; Nisar, S.; Asi, M.R.; Jinap, S. Natural incidence of aflatoxins, ochratoxin A and zearalenone in chicken meat and eggs. Food Control 2014, 43, 98–103. [Google Scholar] [CrossRef]
- van Egmond, H.P. Current situation on regulations for mycotoxins: Overview of tolerances and status of standard methods of sampling and analysis. Food Addit. Contam. 1989, 6, 139–188. [Google Scholar] [CrossRef]
- Boutrif, E.; Canet, C. Mycotoxin prevention and control: FAO programes. Rev. Med. Vet. 1998, 149, 681–694. [Google Scholar]
- Rosner, H. Mycotoxin Regulations: An Update. Rev. Med. Vet. 1998, 149, 679–680. [Google Scholar]
- Scudamore, K.A.; Nawaz, S.; Hetmanski, M.T. Mycotoxins in ingredients of animal feeding stuffs: II. Determination of mycotoxins in maize and maize products. Food Addit. Contam. 1998, 15, 30–55. [Google Scholar]
- Scudamore, K.A.; Hetmanski, M.T.; Chan, H.K.; Collins, S. Occurrence of mycotoxins in raw ingredients used for animal feeding stuffs in the United Kingdom in 1992. Food Addit. Contam. 1997, 14, 157–173. [Google Scholar] [CrossRef]
- Goertz, A.; Zuehlke, S.; Spiteller, M.; Steiner, U.; Dehne, H.W.; Waalwijk, C.; Vries, I.; Oerke, E.C. Fusarium species and mycotoxin profiles on commercial maize hybrids in Germany. Eur. J. Plant Pathol. 2010, 128, 101–111. [Google Scholar] [CrossRef]
- Rafai, P.; Bata, Á.; Jakab, L.; Ványi, A. Evaluation of mycotoxin-contaminated cereals for their use in animal feeds in Hungary. Food Addit. Contam. 2000, 17, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Camargos, S.M.; Machinski, M.; Soares, L.M.V. Co-occurrence of fumonisins and aflatoxins in freshly harvested Brazilian maize. Trop. Sci. 2001, 41, 182–184. [Google Scholar]
- Griessler, K.; Rodrigues, I.; Handl, J.; Hofstetter, U. Occurrence of mycotoxins in Southern Europe. World Mycotoxin J. 2010, 3, 301–309. [Google Scholar] [CrossRef]
- Almeida, I.; Martins, H.M.; Santos, S.; Costa, J.M.; Bernardo, F. Co-occurrence of mycotoxins in swine feed produced in Portugal. Mycotoxin Res. 2011, 27, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Monbaliu, S.; van Poucke, C.; Detavernier, C.L.; Dumoulin, F.d.R.; van De Velde, M.; Schoeters, E.; van Dyck, S.; Averkieva, O.; van Peteghem, C.; de Saeger, S. Occurrence of mycotoxins in feed as analyzed by a multi-mycotoxin LC-MS/MS method. J. Agric. Food Chem. 2010, 58, 66–71. [Google Scholar] [CrossRef]
- Labuda, R.; Parich, A.; Berthiller, F.; Tančinová, D. Incidence of trichothecenes and zearalenone in poultry feed mixtures from Slovakia. Int. J. Food Microbiol. 2005, 105, 19–25. [Google Scholar] [CrossRef]
- Labuda, R.; Parich, A.; Vekiru, E.; Tancinová, D. Incidence of Fumonisins, Moniliformin and Fusarium species in Poultry Feed from Slovakia. Ann. Agric. Environ. Med. 2005, 12, 81–86. [Google Scholar]
- Driehuis, F.; Spanjer, M.C.; Scholten, J.M.; te Giffel, M.C. Occurrence of Mycotoxins in Feedstuffs of Dairy Cows and Estimation of Total Dietary Intakes. J. Dairy Sci. 2008, 91, 4261–4271. [Google Scholar] [CrossRef]
- Ibáñez-Vea, M.; González-Peñas, E.; Lizarraga, E.; López de Cerain, A. Co-occurrence of aflatoxins, ochratoxin A and zearalenone in barley from a northern region of Spain. Food Chem. 2012, 132, 35–42. [Google Scholar] [CrossRef]
- Ibáñez-Vea, M.; Lizarraga, E.; González-Peñas, E.; López de Cerain, A. Co-occurrence of type-A and type-B trichothecenes in barley from a northern region of Spain. Food Control 2012, 25, 81–88. [Google Scholar] [CrossRef]
- Ibáñez-Vea, M.; González-Peñas, E.; Lizarraga, E.; López de Cerain, A. Co-occurrence of mycotoxins in Spanish barley: A statistical overview. Food Control 2012, 28, 295–298. [Google Scholar] [CrossRef]
- Galtier, P. Biological fate of mycotoxins in animals. Rev. Med. Vet. 1998, 149, 549–554. [Google Scholar]
- Dailey, R.E.; Reese, R.E.; Brouwer, E.A. Metabolism of 14C-zearalenone in laying hens. J. Agric. Food Chem. 1980, 28, 286–291. [Google Scholar] [CrossRef]
Mycotoxins | Cereals or Cereal Products | Maximum Level or Guidance Value mg/kg (ppm) |
---|---|---|
AFB1 | -Complete feedingstuffs for cattle, sheep, and goats with exception of the following: | 0.02 |
| 0.005 | |
| 0.01 | |
-Complete feedingstuffs for pigs and poultry (except young animals) | 0.02 | |
-Complimentary feedingstuffs for cattle, sheep, and goats (except dairy animals, calves, and lambs) | 0.02 | |
OTA | -Cereals and cereal products | 0.25 |
-Complimentary and complete feedstuffs with exception of the following: | 5 | |
| 0.05 | |
| 0.1 | |
DON | -Cereals and cereal products without maize by-products | 8 |
-Maize by-products | 12 | |
-Complimentary and complete feedstuffs with exception of the following: | 5 | |
| 0.9 | |
| 2 | |
ZEA | -Cereals and cereal products without maize by-products | 2 |
-Maize by-products | 3 | |
-Complimentary and complete feedstuffs for calves, dairy cattle, sheep (including lamb), and goats (including kids) | 0.5 | |
-Complimentary and complete feedstuffs for piglets, gilts (young sows) | 0.1 | |
-Complete and complimentary feedstuffs for sows and fattening pigs | 0.25 | |
Fumonisins FB1 + FB2 | Maize and maize by-products | 60 |
-Complimentary and complete feedstuffs for pigs, horses, rabbits, pets | 5 | |
-Complimentary and complete feedstuffs for poultry, calves, lambs, kids | 20 | |
-Complimentary and complete feedstuffs for adult ruminants and mink | 50 | |
-Complimentary and complete feedstuffs for fish | 10 | |
T-2 + HT-2 | -Unprocessed barley (e.g., malting barley) and maize | 0.2 |
-Unprocessed wheat, rye, and other cereals | 0.1 | |
-Unprocessed oats (with husk) | 1 | |
-Oat milling products (husks) for feed and compound feed | 2 | |
-Other cereal products for feed and compound feed | 0.5 | |
-Compound feed, with the exception of feed for cats | 0.25 | |
Rye ergot | -All feedingstuffs containing unground cereals | 1000 |
Mycotoxins | Food Products | Maximum Level or Guidance Value (EU) mg/kg (ppm) | Maximum Level or Guidance Value (USA) mg/kg (ppm) |
---|---|---|---|
AFB1 | -Groundnuts and oilseeds subjected to physical treatment before placing on the market for the final consumer or use as an ingredient in food with exception of that for refined vegetable oil production | 0.008 | |
-Groundnuts and oilseeds used as only ingredient or processed products from groundnuts and oilseeds, placed on the market for the final consumer or used as an ingredient in food with the exception of crude vegetable oils and refined vegetable oils | 0.002 | ||
-Tree nuts to be subjected to physical treatment before placing on the market for the final consumer or used as an ingredient in food | 0.005 | ||
-Tree nuts used as only ingredient or processed products from tree nuts, placed on the market for the final consumer or used as an ingredient in food | 0.002 | ||
-Almonds, pistachios, and apricot kernels subjected to physical treatment before placing on the market for the final consumer or used as an ingredient in food | 0.012 | ||
-Almonds, pistachios, and apricot kernels placed on the market for the final consumer or used as an ingredient in food | 0.008 | ||
-Hazelnuts and Brazil nuts subjected to physical treatment before placing on the market for the final consumer or used as an ingredient in food | 0.008 | ||
-Hazelnuts and Brazil nuts placed on the market for the final consumer or used as an ingredient in food | 0.005 | ||
-Dried fruit subjected to physical treatment before placing on the market for the final consumer or used as ingredient in foodstuffs | 0.005 | ||
-Dried fruits used as only ingredient or processed products from dried fruits, placed on the market for the final consumer or used as an ingredient in food | 0.002 | ||
-All cereals and processed cereal products excluding: | 0.002 | ||
| 0.005 | ||
| 0.0001 | ||
-Infant/infant formula/supplementary food, nutritional supplements for pregnant and lactating mothers, formula food for special medical purposes, supplementary food supplements, sports nutrition | 0.0005 | ||
-Wheat and its products, barley and its products, other cereals, legumes, and its products, other cooked nuts and seeds (except peanuts), soy sauce, vinegar, brewing sauces | 0.005 | ||
-Rice A, brown rice, rice, vegetable oil (except peanut oil and corn oil) | 0.01 | ||
-Corn and its products, peanut and its products | 0.02 | ||
AFM1 | -Raw milk, heat-treated milk, and milk-based products | 0.00005 | |
-Dietary foods for special medical purposes and infant milk | 0.000025 | ||
-Milk and dairy products, infant formula/complementary food, nutritional supplements for pregnant and lactating mothers, formula food for special medical purposes, supplementary food supplements, sports nutrition | 0.0005 | ||
AFs sum of B1, B2, G1 and G2 | -All cereals and processed cereal products excluding: | 0.004 | |
| 0.01 | ||
-Dried fruit subjected to physical treatment before placing on the market for the final consumer or used as ingredient in foodstuffs | 0.01 | ||
-Dried fruits used as only ingredient or processed products from dried fruits, placed on the market for the final consumer or used as an ingredient in food | 0.004 | ||
-Groundnuts and oilseeds subjected to physical treatment before placing on the market for the final consumer or use as an ingredient in food, with exception of that for refined vegetable oil production | 0.015 | ||
-Groundnuts and oilseeds used as only ingredient or processed products from groundnuts and oilseeds, placed on the market for the final consumer or used as an ingredient in food with the exception of crude vegetable oils and refined vegetable oils | 0.004 | ||
-Tree nuts to be subjected to physical treatment before placing on the market for the final consumer or used as an ingredient in food | 0.01 | ||
-Tree nuts used as only ingredient or processed products from tree nuts, placed on the market for the final consumer or used as an ingredient in food | 0.004 | ||
-Almonds, pistachios, and apricot kernels subjected to physical treatment before placing on the market for the final consumer or use as an ingredient in food | 0.015 | ||
-Almonds, pistachios, and apricot kernels placed on the market for the final consumer or use as an ingredient in food | 0.01 | ||
-Hazelnuts and Brazil nuts subjected to physical treatment before placing on the market for the final consumer or use as an ingredient in food | 0.015 | ||
-Hazelnuts and Brazil nuts, placed on the market for the final consumer or use as an ingredient in food | 0.01 | ||
OTA | -Unprocessed cereals | 0.005 | |
-Processed cereal products and products derived from unprocessed cereals placed on the market for the final consumer | 0.003 | ||
-Bakery wares, cereal snacks, and breakfast cereals not containing oilseeds, nuts, or dried fruits | 0.002 | ||
-Dried vine fruit (currants, raisins, and sultanas) and dried figs | 0.008 | ||
-Other dried fruits | 0.002 | ||
-Roasted coffee beans, cocoa powder, and ground roasted coffee, excl. soluble instant coffee | 0.003 | ||
-Soluble coffee (instant coffee) | 0.005 | ||
-Wine (incl. wine-based drinks), wine products or cocktails, and grape juice or nectar placed on the market for the final consumer | 0.002 | ||
-Processed cereal-based foods, baby foods for infants/children, and food for special medical purposes intended for infants | 0.0005 | ||
-Dried spices and ginger | 0.015 | ||
-Dried herbs | 0.01 | ||
-Chillies, chili powder, cayenne, paprika, | 0.02 | ||
-Liquorice root, ingredient for herbal infusion | 0.02 | ||
-Liquorice extract for use in food, beverages, and confectionary | 0.08 | ||
-Pistachios subjected to physical treatment before placing on the market for final consumer or use as an ingredient in food | 0.010 | ||
-Pistachios placed on the market for final consumer or used as ingredient in foods | 0.005 | ||
-Sunflower seeds, pumpkin seeds, (water) melon seeds, hempseeds, soybeans | 0.005 | ||
-Non-alcoholic malt beverages | 0.003 | ||
-Wine | 0.002 | ||
Nuts and seeds, ground coffee (roasted coffee) | 0.005 | ||
-Instant coffee | 0.01 | ||
PAT | -Fruit juices, fruit nectars, spirit drinks, cider, and other fermented drinks derived from apples or containing apple juice | 0.05 | |
-Solid apple products placed on the market for the final consumer, incl. compote or apple puree | 0.025 | ||
-Baby foods and apple juice or solid apple products for infants and children, incl. compote or apple puree | 0.01 | ||
-Fruit and its products | 0.05 | ||
DON | -Unprocessed cereals other than durum wheat, oats, and maize | 1.25 | |
-Unprocessed durum wheat, oats, and unprocessed maize, with the exception of unprocessed maize intended for wet milling | 1.75 | ||
-Cereals placed on the market for the final consumer, such as flour, semolina, bran, pasta, and germ except for rice products | 0.75 | ||
-Bread and bakery wares, pastries, biscuits, cereal snacks, or breakfast | 0.5 | ||
-Processed cereal-based foods and baby foods for infants and children, except rice products | 0.2 | ||
-Maize flour not placed on the market for the final consumer | 1.25 | ||
-Corn, corn meal (residue, flakes), barley, wheat, cereal, wheat flour | 1.0 | ||
ZEA | -Unprocessed cereals other than maize | 0.1 | |
-Unprocessed maize except the maize intended for wet milling | 0.35 | ||
-Cereals placed on the market for the final consumer, such as cereal flour, semolina, bran, and germ, except rice and rice products | 0.075 | ||
-Refined maize oil | 0.4 | ||
-Bread and bakery wares, pastries, biscuits, cereal snacks or breakfast, excluding maize snacks and maize-based breakfast cereals except for rice and rice products | 0.05 | ||
-Maize placed on the market for the final consumer, such as snacks and breakfast cereals | 0.1 | ||
-Processed cereal-based foods and baby foods for infants and children | 0.02 | ||
-Maize flour not placed on the market for the final consumer | 0.3 | ||
-Grain and its products | 0.06 | ||
Fumonisins FB1 + FB2 | -Unprocessed maize, except the maize intended for wet milling | 4 | |
-Maize and maize-based food placed on the market for the final consumer, excluding: | 1 | ||
| 0.8 0.2 | ||
-Maize flour not placed on the market for the final consumer | 2 | ||
Ergot sclerotia | -Unprocessed cereal grains except for unprocessed rye grains, maize, and rice | 200 | |
-Unprocessed rye grains | 500 | ||
Ergot alkaloids (sum of ergocornine, ergocristine, ergocryptine, ergometrine, ergosine, and ergotamine) | -Milling products of barley, wheat, spelt, and oats (with an ash content lower than 900 mg/100 g dry matter) | 0.1 | |
-Milling products of barley, wheat, spelt, and oats, incl. barley, wheat, spelt, and oat grains placed on the market for the final consumer (with an ash content equal to or higher than 900 mg/100 g dry matter) | 0.15 | ||
-Rye milling products and rye placed on the market for the final consumer | 0.5 | ||
-Processed cereal-based food for infants and young children | 0.02 | ||
T-2 + HT-2 | -Cereal grains for direct human consumption: | ||
| 0.2 | ||
| 0.1 | ||
| 0.05 | ||
-Cereal products for human consumption: | |||
| 0.2 | ||
| 0.1 | ||
| 0.05 | ||
| 0.075 | ||
| 0.025 | ||
| 0.015 | ||
Citrinin (CIT) | -Food supplements based on rice fermented with red yeast Monascus purpureus | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoev, S.D. Foodborne Diseases Due to Underestimated Hazard of Joint Mycotoxin Exposure at Low Levels and Possible Risk Assessment. Toxins 2023, 15, 464. https://doi.org/10.3390/toxins15070464
Stoev SD. Foodborne Diseases Due to Underestimated Hazard of Joint Mycotoxin Exposure at Low Levels and Possible Risk Assessment. Toxins. 2023; 15(7):464. https://doi.org/10.3390/toxins15070464
Chicago/Turabian StyleStoev, Stoycho D. 2023. "Foodborne Diseases Due to Underestimated Hazard of Joint Mycotoxin Exposure at Low Levels and Possible Risk Assessment" Toxins 15, no. 7: 464. https://doi.org/10.3390/toxins15070464
APA StyleStoev, S. D. (2023). Foodborne Diseases Due to Underestimated Hazard of Joint Mycotoxin Exposure at Low Levels and Possible Risk Assessment. Toxins, 15(7), 464. https://doi.org/10.3390/toxins15070464