Spectroscopic and Microestructural Evidence for T-2 Toxin Adsorption Mechanism by Natural Bentonite Modified with Organic Cations
Abstract
:1. Introduction
2. Results
2.1. Cation Exchange Capacity (CEC)
2.2. Bentonite (NB) and Quaternary Salt-Modified Bentonite Materials Characterization
2.2.1. Elemental Composition
2.2.2. Charge Balance
2.2.3. Porosity
2.2.4. Morphological Changes
2.2.5. Functional Group Analysis
2.2.6. ζ-Potential and Point of Zero Charge
2.2.7. T-2 Toxin and In Vitro Adsorption Assays
2.2.8. Mechanism of T-2 Toxin Adsorption
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Bentonite Preparation
5.2. Cation Exchange Capacity
5.3. Quaternary Salts Bentonite Modification
5.4. Bentonite (NB) and Quaternary Salt-Modified Materials Characterization
5.4.1. Elemental Composition
5.4.2. Porosity
5.4.3. Scanning Electron Microscopy (SEM)
5.4.4. High Resolution Transmission Electron Microscopy (HR-TEM)
5.4.5. Fourier Transform-Infrared Spectroscopy Analysis (FT-IR)
5.4.6. Zeta Potential (ζ) and Point of Zero Charge
5.4.7. T-2 Toxin In Vitro Adsorption Assays
5.4.8. Residual T-2 Quantification
5.5. Data Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vidal, A.; Marín, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Determination of aflatoxins, deoxynivalenol, ochratoxin A and zearalenone in wheat and oat-based bran supplements sold in the Spanish market. Food Chem. Toxicol. 2013, 53, 133–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glenn, A.E. Mycotoxigenic Fusarium species in animal feed. Anim. Feed. Sci. Technol. 2007, 137, 213–240. [Google Scholar] [CrossRef]
- Amelin, V.G.; Timofeev, A.A. Identification and determination of mycotoxins in food additives and feed by HPLC-high-resolution time-of-flight mass spectrometry. J. Anal. Chem. 2015, 4, 410–414. [Google Scholar] [CrossRef]
- Janik, E.; Niemcewicz, M.; Podogrocki, M.; Ceremuga, M.; Stela, M.; Bijak, M. T-2 Toxin-The Most Toxic Trichothecene Mycotoxin: Metabolism, Toxicity, and Decontamination Strategies. Molecules 2021, 26, 6868. [Google Scholar] [CrossRef]
- Groopman, J.D.; Kensler, T.W.; Wu, F. Food Safety: Mycotoxins occurrence and toxic effects. In Encyclopedia of Human Nutrition, 3rd ed.; Caballero, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 337–341. [Google Scholar]
- Li, D.; Han, J.; Guo, X.; Qu, C.; Yu, F.; Wu, X. The effects of T-2 toxin on the prevalence and development of Kashin-Beck disease in China: A meta-analysis and systematic review. Toxicol. Res. 2016, 5, 731–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalantari, H.; Moosavi, M. Review on T-2 toxin. Jundishapur J. Nat. Pharm. Prod. 2010, 5, 26–38. [Google Scholar]
- Magan, N.; Medina, A.; Aldred, D. Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathol. J. 2011, 60, 150–163. [Google Scholar] [CrossRef]
- Resnik, S.; Costarrica, M.L.; Pacin, A. Mycotoxins in Latin America and the Caribbean. Food Control 1995, 6, 19–28. [Google Scholar] [CrossRef]
- Halász, A.; Lásztity, R.; Abonyi, T.; Bata, Á. Decontamination of Mycotoxin-Containing Food and Feed by Biodegradation. Food Rev. Int. 2009, 25, 284–298. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, M.; Negi, B.; Kaushik, N.; Adhikari, A.; Al-Khedhairy, A.A.; Kaushik, N.K.; Choi, E.H. T-2 mycotoxin: Toxicological effects and decontamination strategies. Oncotarget 2017, 8, 33933–33952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Zhao, L.; Gong, G.; Zhang, L.; Shi, L.; Dai, J.; Han, Y.; Wu, Y.; Khalil, M.M.; Sun, L. Invited review: Remediation strategies for mycotoxin control in feed. J. Anim. Sci. Biotechnol. 2022, 13, 19. [Google Scholar] [CrossRef]
- Boudergue, C.; Burel, C.; DragaccI, S.; Favrot, M.; Fremy, J.; Massimi, C.; Prigent, P. Review of mycotoxin-detoxifying agents used as feed additives: Mode of action, efficacy and feed/food safety. EFSA Support. Publ. 2009, 6, 1–192. [Google Scholar] [CrossRef] [Green Version]
- Vila-Donat, P.; Marín, S.; Sanchis, V.; Ramos, A.J. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem. Toxicol. 2018, 114, 246–259. [Google Scholar] [CrossRef] [Green Version]
- Adamović, M.; Stojanović, M.; Grubišić, M.; Ileš, D.; Milojković, J. Importance of aluminosilicate minerals in safe food production. Maced. J. Anim. Sci. 2011, 1, 175–180. [Google Scholar] [CrossRef]
- Rosales-Landeros, C.; Barrera-Díaz, C.; Bilyeu, B.; Guerrero, V.; Núñez, F. A Review on Cr (VI) Adsorption Using Inorganic Materials. Am. J. Anal. Chem. 2013, 4, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Petrovic, Z.; Dugic, P.; Аlеksic, V.; Bеgic, S.; Sаdаdinоvić, J.; Micic, V.; Kljajic, N. Composition, structure and textural characteristics of domestic acid activated bentonite. Contemp. Mater. 2014, 1, 133–139. [Google Scholar] [CrossRef]
- Di Gregorio, M.C.; Neeff, D.V.; Jager, A.V.; Corassin, C.H.; Carão, Á.C.d.P.; de Albuquerque, R.; Oliveira, C.A.F. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev. 2014, 33, 125–135. [Google Scholar] [CrossRef]
- Karimi, L.; Salem, A. The role of bentonite particle size distribution on kinetic of cation exchange capacity. J. Ind. Eng. Chem. 2011, 17, 90–95. [Google Scholar] [CrossRef]
- Natour, R.M.; Yousef, S.M. Adsorption efficiency of diatomaceous earth for mycotoxin. Arab Gulf J. Sci. Res. 1998, 16, 113–127. [Google Scholar]
- Eya, J.C.; Parsons, A.; Haile, I.; Jagidi, P. Effects of dietary zeolites (bentonite and mordenite) on the performance juvenile rainbow trout Onchorhynchusmyskis. Aust. J. Basic Appl. Sci. 2000, 2, 961–967. [Google Scholar]
- Stojanović, A.I.; Daković, A.S.; Matijašević, S.D.; Rottinghaus, G.E.; Sekulić, Z.T.; Stanić, T.T. Adsorpcija T-2 toksina mineralnim adsorbentima. Hem. Ind. 2008, 62, 59–63. [Google Scholar]
- Daković, A.; Sekulić, Z.; Rottinghaus, G.E.; Stojanović, A.; Milićević, S.; Kragović, M. T-2 toxin adsorption by hectorite. J. Serb. Chem. Soc. 2009, 74, 1283–1292. [Google Scholar] [CrossRef]
- Deng, Y.; Velázquez, A.L.B.; Billes, F.; Dixon, J.B. Bonding mechanism between aflatoxin B1. Appl. Clay Sci. 2010, 50, 92–98. [Google Scholar] [CrossRef]
- Franco, D.E.V. Modificación Química de la Estructura de Aluminosilicatos para Incrementar la Adsorción de la Toxina T-2. Bachelor’s Thesis, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla de Baz, Mexico, 2012. [Google Scholar]
- Moosavi, M. Bentonite Clay as a Natural Remedy: A Brief Review. Iran. J. Public Health 2017, 46, 1176–1183. [Google Scholar]
- Moussa, A.I.; Sobeih, A.M.K.; Al-Hawary, I.I.; Elkassas, W.M.; Barakat, R. Efficacy of kaolin and bentonite clay to reduce aflatoxin M1 content in contaminated milk and effects on milk quality. Pak. Vet. J. 2020, 40, 181–186. [Google Scholar] [CrossRef]
- Abdelnaby, A.; Abdelaleem, N.M.; Elshewy, E.; Mansour, A.H.; Ibrahim, S. The efficacy of clay bentonite, date pit, and chitosan nanoparticles in the detoxification of aflatoxin M1 and ochratoxin A from milk. Environ. Sci. Pollut. Res. 2022, 29, 20305–20317. [Google Scholar] [CrossRef]
- Whitlow, L.W.; Hagler, M.W. Mycotoxins in feeds. Feedstuffs 2005, 77, 69–79. [Google Scholar]
- Kozak, M.; Domka, L.; Skrzypczak, A. Adsorption of the quaternanry ammonium salts on bentonite. Physicochem. Probl. Miner. Process. 2002, 36, 299–306. [Google Scholar]
- Vargün, E.; Kücükuysal, C.; Evren, Ö.; Gülcan, M.; Ataytür, Ö.; Güngör, C. The effects of type and amount of quaternary salts on modification of canakkale bentonite. Mugla J. Sci. Technol. 2017, 3, 178–183. [Google Scholar] [CrossRef]
- Hauschild, L.; Lovatto, P.A.; Lehnen, C.R.; d’ Ávila, C.A.; Guarez, G.G.; Mallman, A.A. Digestibilidade e metabolismo de dietas de suínos contendo zearalenona com adicao de organoaluminossilicato. Pesqui. Agropecuária Bras. 2007, 42, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Santos, G.A.; Rodrigues, I.; Starkl, V.; Naehrer, K.; Hofstetter, U.; Encarnacao, P. Mycotoxins in aquaculture: Occurrence in feeds components and impact on animal performance. In Avances en Nutrición Acuícola; Cruz-Suarez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villareal, D.A., Gamboa-Delgado, J., Eds.; Universidad Autónoma de Nuevo León: Monterrey, Mexico, 2010; pp. 514–546. [Google Scholar]
- Li, C.; Sun, Z.; Zhang, W.; Yu, C.; Zheng, S. Highly efficient g-C3N4/TiO2/ kaolinite composite with novel three-dimensional structurevand enhanced visible light responding ability towards ciprofloxacin. Appl. Catal. B 2018, 220, 272–282. [Google Scholar] [CrossRef]
- Mao, J.; Zhou, Y.; Lv, G.; Zhou, R. Simultaneous Detoxification of Aflatoxin B1, Zearalenone and Deoxynivalenol by Modified Montmorillonites. Molecules 2022, 27, 315. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.; Johnson, N.M.; Strey, A.; Taylor, J.F.; Marroquin-Cardona, A.; Mitchell, N.J.; Afriyie-Gyawu, E.; Angrah, N.A.; Williams, J.H.; Wang, J.S.; et al. Calcium montmorillonite clay reduces urinary biomarkers of FB1 exposure in rats and humans. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 809–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, T.D.; Wang, M.; Elmore, S.E.; Hearon, S.; Wang, J.S. NovaSil clay for the protection of humans and animals from aflatoxins and other contaminants. Clays Clay Miner. 2019, 67, 99–110. [Google Scholar] [CrossRef]
- Lagaly, G. Characterization of clays by organic compounds. Clay Miner. 1981, 16, 1–21. [Google Scholar] [CrossRef]
- Li, Y.W.; Schulthess, C.P. Ion-exchange modeling of divalent cation adsorption on SWy-3 montmorillonite. Clays Clay Miner. 2021, 69, 167–187. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Ali, S.M.; Nasr, E.A.; Mahmoud, H.A.A.; Awwad, E.M. Effective Sequestration of Phosphate and Ammonium Ions by the Bentonite/Zeolite Na–P Composite as a Simple Technique to Control the Eutrophication Phenomenon: Realistic Studies. ACS Omega 2020, 5, 14656–14668. [Google Scholar] [CrossRef]
- Yilmaz, N.; Yapar, S. Adsorption properties of tetradecyl- and hexadecyl trimethylammonium bentonites. Appl. Clay Sci. 2004, 27, 223–228. [Google Scholar] [CrossRef]
- He, H.; Duchet, J.; Galy, J.; Gerard, J.F. Grafting of swelling clay materials with 3-aminopropyltriethoxysilane. J. Colloid. Interface Sci. 2005, 288, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Bujdák, J. Methylene Blue Interactions with Reduced-Charge Smectites. Clays Clay Miner. 2001, 49, 244–254. [Google Scholar] [CrossRef]
- Errais, E. Réactive des Surface D’argiles Naturelles Etude de l´Adsorption de Colorants Anioniques. Ph.D. Thesis, Université de Strasbourg, Strasbourg, France, 2011. [Google Scholar]
- Pironon, J.; Pelletier, M.; de Donato, P.; Mosser-Ruck, R. Characterization of smectite and illite by FTIR spectroscopy of interlayer NH4+ cations. Clays Clay Miner. 2003, 38, 201–211. [Google Scholar] [CrossRef] [Green Version]
- De Albuquerque, G.C. Desenvolvimento e Caracterização de Argilas Organofílicas para uso em Alimentação Animal como Adsorbente Inativador de Micotoxinas: Aflatoxina B1 e Fumonisina B1. Ph.D. Thesis, Universidad Federal de Santa Catarina, Florianópolis, Brazil, 2006. [Google Scholar]
- Tyagi, B.; Chudasama, C.D.; Jasra, R.V. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim. Acta Part A 2006, 64, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.N.; Nguyen, T.D.C.; Dao, T.P.; Tran, H.T.; Nguyen, D.B.; Ahn, D.H. Synthesis of organoclays and their application for adsorption of phenolic compounds from aqueous solution. J. Ind. Eng. Chem. 2013, 19, 640–644. [Google Scholar] [CrossRef]
- Zhang, Z.; Jia, M.; Jiao, W.; Qi, B.; Liu, H. Physical properties and microstructures of organic rectorites and their modified asphalts. Constr. Build. Mater. 2018, 171, 33–43. [Google Scholar] [CrossRef]
- Lazo, J.C.; Navarro, A.E.; Sun-Kou, M.R.; Llanos, B.P. Síntesis y caracterización de arcillas organofílicas y su aplicación como adsorbentes del fenol. Rev. Soc. Química Perú 2008, 1, 3–19. [Google Scholar]
- Dutta, A.; Singh, N. Surfactant-modified bentonite clays: Preparation, characterization, and atrazine removal. Environ. Sci. Pollut. Res. 2014, 22, 3876–3885. [Google Scholar] [CrossRef]
- Nešić, V.D.; Ostojin, M.V.; Nešić, K.D.; Resanovinić, R.D. Evaluation of the efficacy of different feed additives to adsorbe T-2 toxin in vitro. Proc. Nat. Sci. Matica Srp. Novi Sad. 2009, 116, 55–59. [Google Scholar] [CrossRef]
- Shen, Y.H. Phenol sorption by organoclays having different charge characteristics. Colloids Surf. A Physicochem. Eng. Asp. 2004, 232, 143–149. [Google Scholar] [CrossRef]
- Kwolek, T.; Hodorowicz, M.; Stadnicka, K.; Czapkiewicz, J. Adsorption isotherms of homologous alkyldimethylbenzylammonium bromides on sodium montmorillonite. J. Colloid Interface Sci. 2003, 264, 14–19. [Google Scholar] [CrossRef]
- Daković, A.; Matijaševic, S.; Rottinghaus, G.E.; Dondur, V.; Pietrass, T.; Clewett, F.M. Adsorption of zearalenone by organomodified natural zeolitic tuff. J. Colloid Interface Sci. 2007, 311, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Kogel, J.E.; Lewis, S.A. Baseline studies of the clay minerals society source clays: Chemical analysis by inductively coupled plasma-mass spectroscopy (ICP-MS). Clays Clay Miner. 2001, 5, 387–392. [Google Scholar] [CrossRef]
- Cárdenas, V. Modificación de la Estructura y Polaridad de un Aluminosilicato para Incrementar su Capacidad de Adsorción de Zearalenona. Bachelor’s Thesis, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla de Baz, Mexico, 2010. [Google Scholar]
- Moreno, B. Modificación Química y Estructural de Arcillas y Zeolitas para la Adsorción Isotermal de Ocratoxina A. Bachelor’s Thesis, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla de Baz, Mexico, 2010. [Google Scholar]
- Reverte, A.B. Adsorción de Zearalenona por Aluminosilicatos Modificados Mediante sales Cuaternarias de Amonio de Diferente Polaridad. Bachelor’s Thesis, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla de Baz, Mexico, 2013. [Google Scholar]
- Vargas, B.N. Adsorción de Deoxinivalenol con Aluminosilicatos Modificados Química y Estructuralmente. Bachelor’s Thesis, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla de Baz, Mexico, 2014. [Google Scholar]
- Juárez, A. Efecto de la Longitud de Cadena de Cationes Orgánicos en la Adsorción de Ocratoxina A con Aluminosilicatos Modificados. Bachelor’s Thesis, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla de Baz, Mexico, 2017. [Google Scholar]
- Muñoz, I.D.J.; Mendoza, C.A.; López, G.F.; Soler, A.A.; Hernández, M.M. Edafología, Manual de Métodos de Análisis de suelo; Facultad de Estudios Superiores Iztacala, UNAM: Tlalnepantla de Baz, Mexico, 2012. [Google Scholar]
- Russel, W.B.; Saville, D.A.; Schowalter, W.R. Colloidal Dispersions; Cambridge University Press: London, UK, 1989. [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
meq/100 g | |||||
---|---|---|---|---|---|
Element (MW) | K (39) | Na (23) | Ca (43) | Mg (24) | Total |
NB | 3.52 ± 1.01 | 105.32 ± 8.83 | 54.51 ± 1.89 | 343.04 ± 1.83 | 506.39 ± 10.76 |
NB + NH4Cl | 1.45 ± 2.36 | 67.21 ± 30.39 | 43.88 ± 9.21 | 304.89 ± 50.51 | 417.43 ± 99.38 |
Chemical Element | NB | B14 | B16 | B18 | ANOVA (F Value; p) |
---|---|---|---|---|---|
Al | 5.08 ± 0.36 a | 4.94 ± 0.29 a | 4.81 ± 0.44 a | 2.52 ± 0.38 b | 31.29; <0.0001 |
C | 12.28 ± 1.39 a | 17.22 ± 0.66 b | 16.89 ± 0.39 b | 19.57 ± 0.08 b | 44.06; <0.0001 |
Ca | 0.33 ± 0.03 a | 0 b | 0 b | 0 b | 275.7; <0.0001 |
Cl | 0 a | 0 a | 0 a | 1.62 ± 0.06 b | 2019; <0.0001 |
Fe | 0.84 ± 0.46 a | 0.59 ± 0.11 a | 0 b | 0 b | 9.73; 0.004 |
K | 0 | 0 | 0 | 0 | ns |
Mg | 0.94 ± 0.07 a | 0.66 ± 0.04 a | 0.65 ± 0.12 a | 0.31 ± 0.23 b | 10.07; 0.004 |
Na | 0.90 ± 0.04 a | 0.51 ± 0.09 b | 0.51 ± 0.15 b | 0.39 ± 0.04 b | 17.32; 0.0007 |
Si | 19.10 ± 1.83 a | 11.69 ± 0.71 b | 12.72 ± 0.86 b | 9.63 ± 0.42 b | 41.71; <0.0001 |
Tested Material | NB | B14 | B16 | B18 | |
---|---|---|---|---|---|
Sheet charge | Octahedral | −0.93 | −0.08 | −0.26 | −1.58 |
Tetrahedral | 0.56 | −0.24 | −0.05 | 0.56 | |
Interlayer | 0.38 | 0.32 | 0.31 | 0.34 | |
Layer charge | −0.37 | −0.32 | −0.31 | −1.02 | |
Charge Balance | 0.01 | 0.01 | 0 | −0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-García, F.A.; Cristiani-Urbina, E.; Morales-Barrera, L.; Rodríguez-Peña, O.N.; Hernández-Portilla, L.B.; Flores-Ortíz, C.M. Spectroscopic and Microestructural Evidence for T-2 Toxin Adsorption Mechanism by Natural Bentonite Modified with Organic Cations. Toxins 2023, 15, 470. https://doi.org/10.3390/toxins15070470
García-García FA, Cristiani-Urbina E, Morales-Barrera L, Rodríguez-Peña ON, Hernández-Portilla LB, Flores-Ortíz CM. Spectroscopic and Microestructural Evidence for T-2 Toxin Adsorption Mechanism by Natural Bentonite Modified with Organic Cations. Toxins. 2023; 15(7):470. https://doi.org/10.3390/toxins15070470
Chicago/Turabian StyleGarcía-García, Fernando Abiram, Eliseo Cristiani-Urbina, Liliana Morales-Barrera, Olga Nelly Rodríguez-Peña, Luis Barbo Hernández-Portilla, and Cesar Mateo Flores-Ortíz. 2023. "Spectroscopic and Microestructural Evidence for T-2 Toxin Adsorption Mechanism by Natural Bentonite Modified with Organic Cations" Toxins 15, no. 7: 470. https://doi.org/10.3390/toxins15070470
APA StyleGarcía-García, F. A., Cristiani-Urbina, E., Morales-Barrera, L., Rodríguez-Peña, O. N., Hernández-Portilla, L. B., & Flores-Ortíz, C. M. (2023). Spectroscopic and Microestructural Evidence for T-2 Toxin Adsorption Mechanism by Natural Bentonite Modified with Organic Cations. Toxins, 15(7), 470. https://doi.org/10.3390/toxins15070470